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Abstract
Convolutional neural network (CNN) has shown its superpower in image denoising in recent years. However, most CNN
models suffer from a large number of model parameters and the effect of image denoising still needs to be improved. To
cope with these issues, we propose a recursive lightweight CNN approach that can make the noisy images purer and purer,
namely PPNets, in this paper. The PPNets mainly consist of four parts: separable convolution–batch normalization–ReLU
(SCBR) blocks to extract coarse features, bottlenecks with skip connection to integrate coarse features and refined features to
enhance expression ability of model, noise proposal network with an attention mechanism to predict noise level and recursive
strategies to stack the denoising model to make the noisy images purer and purer. Since SCBR uses depthwise convolution
and pointwise convolution to replace traditional convolution operations, the proposed PPNets have fewer weight parameters.
We conduct extensive experiments on two gray image datasets and three color image datasets. The experimental results
demonstrate that the PPNets are significantly superior to the traditional models in denoising effectiveness. At the same time,
the PPNets outperform the compared state-of-the-art CNN models in terms of both denoising effectiveness and the number
of model parameters.

Keywords Image denoising · Convolutional neural networks · Lightweight networks · Recursive networks · Depthwise
separable convolution · Pointwise convolution

1 Introduction

In real-world applications, a clean image x is easily con-
taminated by noise v during production, transmission and/or
storage and it will result in a noisy image y. This procedure
can be simply formulated as y = x + v, where v generally
denotes additive Gaussian noise with a standard deviation
σ . Image denoising aims at removing v from y to restore
the clean image x . It is a typical inverse problem in com-
puter vision [1]. Many researchers have devoted themselves
to solving it with different techniques.

Image denoising techniques can be roughly divided into
two groups: traditional models and deep learning models.
Most traditional models usually apply handcrafted filters to
spatial domain and/or transform domain of noisy images [2].
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In spatial domain denoising, filters are directly applied to the
original pixel matrix. In this way, the filters can be classified
as either local filters or non-local filters according to whether
they only filter the pixels within a certain distance or the pix-
els in the entire image. Some pioneering local filters include
Gaussian filter, weighted median filter, rank filter, Weiner
filter, bilateral filter and so on [3–5]. The non-local mean
(NLM) filter and its variants are popular non-local filters for
image denoising [6–8]. In contrast, transformdomain denois-
ing targets the nonzero coefficients transformed from the
original image.Discrete cosine transform (DCT), fast Fourier
transform (FFT) and discrete wavelet transform (DWT) are
among the most widely used transformation methods [2,9].
Another denoising model is based on sparse representation
and dictionary learning, whose basic idea is that a signal
(image patch) can be represented by a linear combination of
basis from a redundant dictionary and most of the weights of
the basis in the combinations are zeros [10–12]. For exam-
ple, Dabov et al. used an enhanced sparse representation in
transform domain for image denoising, and the proposed
block-matching and 3D filtering (BM3D) achieved good
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denoising performance [13]. Zhang andDesrosiers combined
gradient histogram with sparse representation to denoise
while preserving the texture [14]. Liu et al. presented a group
sparsity mixture model to first learn the prior of the image
patch group and then applied it to thewhole image for denois-
ing [15]. Besides, denoising with total variation (TV) has
shown its promising performance [16–18].

Although the traditional models have made significant
progress in image denoising, most of them have at least
two defects: subjectivity of filter design and complex opti-
mization algorithms. The first defect makes it challenging to
design universal filters for different types of noisy images.
In other words, well-designed filters on an image set may
perform poorly on another set. The second defect makes
image denoising very time-consuming, limiting applications
in practical denoising problems [1,19].

In recent years, deep learning techniques, especially con-
volutional neural networks (CNN), have achieved promising
results in computer vision tasks including denoising. It is
due to the powerful representation capabilities of CNN. The
pioneering work of using CNN for image denoising was pro-
posed by Zhang et al., which combined residual learning and
batch normalization to handle blind Gaussian noise [1]. To
speed up denoising and enhance the flexibility to handle spa-
tially variant noise, Zhang et al. presented a fast and flexible
CNN model (FFDNet) that had been proven to be effective
and efficient for image denoising [20]. Another approach
to fast image denoising is attention-guided scaling [21]. To
improve denoising performance, Tian et al. introduced batch
renormalization and attention mechanism into CNN models
[19]. Several image denoising models are derived from the
well-known U-Nets [22–25]. Among them, Jia et al. put for-
ward a cascading U-Nets architecture with multi-scale dense
processing to focus on the connections between U-Nets for
image denoising [25]. A multistage progressive denoising
network that decomposed the denoising task into some sub-
tasks to progressively remove noise has been proven effective
for image denoising [26]. One challenging problem of the
CNN-based image restoration model is that the performance
might degrade with increasing depth. To solve this prob-
lem, scholars have tried different ideas like deeply recursive
CNN, skip connection, residual learning and dense con-
nection [27–29]. The above CNN-based work mainly used
real-valued CNN for denoising. Very recent studies showed
that complex-valued CNN could also achieve competitive
denoising effects [30,31]. Despite CNN’s success in the field
of image denoising, it still faces the following issues: (1) The
denoising effect still has some room for improvement; (2)
vanishing gradients may appear especially when the depth of
CNNmodel grows; (3) it lacks fusion of features from differ-
ent layers; and (4) the massive amount of model parameters
may result in difficulty of applications in mobile devices.

Inspired by the above analysis, this paper aims to pro-
pose a novel CNN-based denoising network that can make a
noisy image purer and purer, namely PPNets. The key con-
cepts of PPNets include SCBR, bottleneck, noise proposal
network (NPN), block and recursive model. Specifically,
SCBR refers to as separable Conv-BN-ReLU (CBR), in
which depthwise convolution and pointwise convolution are
used to replace standard convolution to reduce the number
of model parameters. Bottleneck stacks three SCBR com-
ponents and introduces skip connection to avoid gradient
vanishing. NPN denotes a noise proposal network, which
can predict noise levels and noise values. Block represents
a complete denoising model composed of CBR, several bot-
tlenecks, skip connection, long–short connection and NPN.
A recursive model means that the block can be recursively
applied for denoising. The more the blocks applied, the purer
the images will be produced.With the concepts, the proposed
PPNets achieve good denoising effects with lightweight
denoising models. The novelty of the proposed PPNets lies
in (1) dividing a complex denoising task into several recur-
sive simple subtasks, and (2) a noise proposal network with
an attention mechanism is proposed to improve the denois-
ing performance. Both design strategies make the proposed
PPNets effective and lightweight.

The PPNets have the following key contributions:

(1) SCBR with depthwise convolution and pointwise con-
volution is introduced into denoising. It has strong
representation learning ability and produces fewer model
parameters to result in lightweight denoising models.
Three SCBRs are stacked as a bottleneck.

(2) Skip connection is used to avoid gradient vanishing and
fuse features from different layers. Long–short connec-
tion enhances the effect of shallow layers’ features on
deep layers. NPN is proposed to predict noise levels and
noise values.

(3) A block containing a CBR, several bottlenecks and NPN
is a complete denoising model. And they can be recur-
sively applied to make noisy images purer and purer.

(4) Experiments reveal that the proposed PPNets signifi-
cantly outperform the state-of-the-art compared models
in terms of both denoising effect and model parameters.

The rest of the paper is organized as follows: Sect. 2
introduces related work of CNN-based image denoising. The
proposed PPNets are presented in detail in Sect. 3. The exper-
imental settings and results are analyzed and discussed in
Sect. 4. Finally, we conclude the paper and provide recom-
mendations for future work in Sect. 5.
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2 Related work

2.1 Convolutional neural networks for image
denoising

CNNs have shown great power in the community of com-
puter vision, such as image restoration, image segmentation,
image classification and object detection. Burger et al. [32]
applied multilayer perceptron (MLP) to image denoising and
achieved comparable results as BM3D. Jain and Seung [33]
introduced a convolutional neural network to denoise image
and the results show that CNN can achieve similar or bet-
ter performance than the Markov random field model. The
authors in [1] proposed a deep convolutional neural net-
workmodel (DnCNN) that combines residual learning, batch
normalization and ReLU to remove the noises from contam-
inated images. Generally, There are two ways to boost the
denoising performance of neural networks. First, it is shown
that the depth of network is of vital importance with the suc-
cess of AlexNet [34], GoogleNet [35], ResNet [36] and so
on. Therefore, adding the width and/or depth of the neural
networks can help to obtain better results. Tai et al. proposed
a very deep persistent memory network (MemNet) to explic-
itly fuse the shallow features and deep features [37]. Tian
et al. [38] combined two networks to increase the width of
the network. Second, enlarging the receptive fields is also
a working methods. Chen et al. integrated dilated convolu-
tion and several convolutional networks in a feed-forward
way, where dilated convolution helps to capture more useful
information [39]. An attention-guided denoising convolu-
tional neural network (ADNet) was introduced and it could
be expressed as a feed-forward neural network by introduc-
ing dilated convolution and attention mechanism [19]. Some
other works also demonstrate the effectiveness of the atten-
tion mechanism on denoising [40,41]. An image restoration
CNN (IRCNN) used multiple dilated convolution with dif-
ferent dilation factors to recover the corrupted image [42].
Besides, a prior-guided dynamic tunable network was pro-
posed to handle handling much more complicated real noise
existed in images [43]. These approaches have demonstrated
the effectiveness of CNN for image denoising.

2.2 Separable convolution

Due to the huge amount of parameters, deep CNNs may suf-
fer from high computation costs. A direct way to cope with
this issue is to reduce the amounts of CNNmodel parameters
to improve the efficiency of the model. The separable convo-
lution was presented for this purpose [44]. MobileNets are
such examples that used separable convolutions to reduce
the model complexity while still maintaining comparable
results [45]. In addition to this, the separable convolutions
can significantly improve the quality of semantic segmen-

tation [46,47], image recognition [48,49], change detection
[50], image super-resolution [51], etc.

Generally, separable convolution consists of two steps:
depthwise convolution that applies a single filter to the each
channel of input and pointwise convolution that uses 1 × 1
convolution to integrate the outputs of depthwise convolu-
tion.

Traditional standard convolution operation takes an hin ×
win×m featuremap Fin as input and outputs an hout×wout×n
feature map Fout, where hin and win are the height and width
of Fin, m is the number of input channels, hout and wout are
the height and width of the output feature map Fout, and n is
the number of output channels. The computational cost (cc1)
and parameter size (ps1) of standard convolution with kernel
size of k can be expressed as Eqs. (1) and (2), respectively:

cc1 = k · k · m · n · hout · wout, (1)

ps1 = k · k · m · n. (2)

It can be seen that the computational cost and the param-
eter size mainly depend on m, n, hout and wout. As a
comparison, the computational cost (cc2) and parameter size
(ps2) of separable convolution with kernel size of k can be
expressed as Eqs. (3) and (4), respectively:

cc2 = k · k · m · hout · wout + m · n · hout · wout, (3)

ps2 = k · k · m + m · n. (4)

From Eqs. (1) to (4), it can be easily found that both the
computational cost and the parameter size of separable con-
volution are much less than those of standard convolution.
Therefore, separable convolution has the potential to improve
the efficiency of denoising.

2.3 Skip connection

Increasing the depth of CNN can help to mine more features
for image denoising. However, with the growth of depth,
the CNNs appear to performance degradation and may suf-
fer from gradient vanishing [52]. To address these issues,
He et al. introduced skip connection to allow the model to
learn information from shallow layers, and the results show
that the residual network is easier to train and performance
can be improved even if the depth increases [36]. Further,
Mao et al. proposed very deep residual encoder–decoder net-
works (RED-Net) that composed of skip connection between
convolution and deconvolution operations to remove the
noises/corruptions [53]. Tian et al. introduced residual learn-
ing and skip connection to obtain clean images [38]. These
studies show that skip connection enables model to learn dif-
ferent level features and thus is helpful for image denoising.
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3 Proposed PPNets

In this section,wepropose the denoisingCNNmodel, namely
PPNets, in detail. Generally, a CNNmodel for image denois-
ing includes two aspects:

(1) Model performance. In order to improve the effect of
model, we use SCBR as basic components of network.
SCBR is inspired by Convolution–BN–ReLU combi-
nation while standard convolutions are replaced with
separable convolutions, which significantly reduces the
model complexity with little performance degradation.
The skip connection is adopted to transmit information
from shallow features to deep features and reactivate
“dead” neurons caused byReLU.Moreover, a novel noise
proposal network (NPN) is proposed to detect and quan-
tify noise from refined extracted features.

(2) Model learning.Weuse residual learning and recursion to
boost model performance, and combine them with batch
normalization to accelerate model convergence.

3.1 Flowchart of PPNets

The proposed PPNets are built on one or more Blocks. A
block is a complete denoising unit of the proposed PPNets, in
which a series of strategies will be designed or be introduced
to improve denoising performance. The details of the block
and its corresponding components will be described in the
following subsections in this section.

Several blocks can also be stacked for recursive denoising
models. Suppose the maximal number of blocks is 3, we
name the PPNets with 1, 2 or 3 Blocks PPNet-1, PPNet-2 or
PPNet-3, respectively. Figure 1 details the PPNets based on
Blocks.

It can be seen that the contaminated image was denoised
recursively by the stacked blocks. Specifically, PPNet-3
stacks blocks three times to obtain the final model architec-
ture. And when it starts denoising, PPNet-3’s Block-2 will
take the Block-1’s output (roughly denoised image) as input,
the Block-2 will output a cleaner image to the Block-3, and
so on. It is obviously that the output of the Block-1 is cleaner
than raw input, the Block-2’s output is much cleaner than
the Block-1’s output, and the output of Block-3 is the final
denoising result, which achieves the best denoising perfor-
mance. Note that all the PPNets of the final model do not
share parameters with each other as they will handle differ-
ent noise level input.

3.2 SCBR: separable convolution–batch
normalization–ReLU

It is well known that the convolution–batch normalization–
ReLU (CBR) combination has shown great power in image

processing, such as image classification, object detection
and semantic segmentation. Typically, standard convolutions
can be split into depthwise convolution and pointwise con-
volution, i.e., separable convolutions, which significantly
reduce the model computational cost and memory consump-
tion without noticeable performance degradation. Inspired
by these, we choose Separable Conv-BN-ReLU (SCBR) as
PPNet’s basic component and set all the depthwise convolu-
tion filter size to 3 × 3 and pointwise convolution filter size
to 1 × 1. An SCBR is illustrated in Fig. 2.

The channel’s numbers of feature maps are closely related
to the performance of model. Generally speaking, the larger
the channel’s numbers, the better the effectiveness of the
model. However, we simply set 64 as the number of chan-
nels of feature maps in consideration of model performance
and model complexity. Specifically, each feature map before
depthwise convolution and standard convolution of the inter-
mediate layers are padded zeros to ensure the output feature
map has the same size of input image. The description of
SCBR can be shown in Eq. (5):

OSCBR = frelu( fbn( fpconv( fdconv( fpad(Iin))))), (5)

where OSCBR and Iin denote the output and input of this
process, respectively, and fpad, fdconv, fpconv, fbn and
frelu represent zero padding, depthwise convolution, point-
wise convolution, batch normalization and ReLU activation,
respectively.

3.3 Bottleneck

Aswe all know, deep neural networks always suffer fromgra-
dients vanishing/exploding, performance degradation prob-
lems and soon.ResNet proposes skip connection and residual
learning to solve these problems [36]. Skip connection
directly enables both information transmission from shallow
layers to deep layers in network forward propagation and
gradients transferring from deep layers to shallow layers in
network backward propagation. Meanwhile, skip connection
can alleviate neurons “death” problem caused byReLU func-
tion to some extent. The bottleneck stacks 3 SCBRs linearly
to extract more expressive features, and integrates shallow
features with deep features via skip connection to obtain
robust features. The structure of bottleneck is illustrated in
Fig. 3, where the long arrow denotes the skip connection.

The procedure of a bottleneck can be formulated as Eq.
(6):

Obottleneck = fSCBR( fSCBR( fSCBR(Iin))) + Iin, (6)

where Obottleneck and Iin denote the output and input of this
procedure, respectively, fSCBR denotes the function of SCBR
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in Sect. 3.2 and “+” denotes the addition operation for ele-
mentwise.

3.4 Block, the complete structure of PPNet

3.4.1 Structure

For input noisy images, the denoising block in this paper is
composed of one CBR, five bottlenecks and one noise pro-
posal network (NPN), as shown in Fig. 4. In this figure, the
NPN (will be described in detail in Sect. 3.4.2) is identified
by a red dashed box. If we consider one CBR or SCBR as 1
layer, then each Bottleneck has 3 layers and one Block has
18 layers in total (1 CBR, 15 SCBRs from the five Bottle-
necks and 2 layers in NPN), which can effectively balance
the large receptive field size and the complexity of themodel.
Again, we use another skip connection in block (so-called
long–short connection, shown as the second-longest arrow in
Fig. 4) to combine the coarse features with refined features
to enhance the model expression ability. Since the NPN pre-
dicts the noise values in the noisy images, we use the noisy
images minus the predicted noise values and can obtain the
denoised images, i.e., the “outputs” in the Block.

According to the functions of the components in theBlock,
it can be further divided into three parts: extract layer, refine
layer and proposal layer.

The extract layer uses CBR to extract coarse features.
Assuming that Iin and Oext represent the input noisy image
and the output of extract layer, respectively, the extract layer
can be formulated as Eq. (7):

Oext = fext(Iin), (7)

where fext denotes the function of extract layer.
The following refine layer consists of five Bottlenecks. It

takes the coarse features as input and makes full use of skip
connection to integrate coarse features and refined features to
enhance model expression ability. The refine layer is shown
as Eq. (8):

Oref = fref(Oext) + Oext, (8)

where fref denotes the function of refine layer, Oref denotes
the output of refine layer and “+” denotes elementwise addi-
tion operation.

Fig. 1 Proposed PPNets
(PPNet-1, PPNet-2 and
PPNet-3). PPNet-1 takes a raw
noisy image as input and outputs
a relatively cleaner image;
PPNet-2 takes the previous
output as input and outputs a
much cleaner image; and
PPNet-3 receives a very low
noise level image and further
removes noises

Block-1 Block-2 Block-3

PPNet-1 PPNet-2

PPNet-3

Fig. 2 SCBR: Separable convolution–batch normalization–ReLU. Separable conv denotes splitting standard convolution into depthwise convolution
and pointwise convolution

Fig. 3 Structure of a bottleneck, which consists of three stacked SCBR with skip connection
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inputs
3x3 Conv

BN
ReLU

Bottleneck +
Noise

Proposal
Network

- outputs

Fig. 4 Structure of a block

It is noted that complex background from the given
image or video might be more easier to hide features, which
increases the difficulty of extracting key features in the train-
ing process. To address this issue, the proposal layer uses
NPN to detect the position of noises and the level of noises
simultaneously, as formulated by Eq. (9):

⎧
⎪⎨

⎪⎩

Omer = Conv(Oref)

Opro = fnrp(Omer) ∗ fnlp(Omer)

= fpro(Oref)

, (9)

where Opro stands for the output of proposal layer.
Finally, we adopt residual learning to generate the model

prediction. This process can be formulated as Eq. (10):

Ores = Iin − Opro

= Iin − fpro( fext(Iin) + fref( fext(Iin)))

= fppnet(Iin).

(10)

3.4.2 Noise proposal network

Noise proposal network (NPN) takes highly integrated coarse
and refined features as input and outputs the noise value at
each position of input noisy image. To predict the noise val-
ues, we use a small fully convolutional network to process the
feature map generated by the refine layer. Specifically, NPN
applies standard 3×3 convolution on the result of refine layer
to merge the different expressive ability’s features and output
a lower-dimensional feature map (1-d for gray images and
3-d for color images). Then this feature map is fed into two
sibling standard 1 × 1 convolutional layers (one for rough
noise values prediction and the other for noise level predic-
tion). In a word, this network is simply implemented with a
3×3 convolutional layer followed by two 1×1 convolutional
layers, as shown in Fig. 5.

Noise rough prediction. It is difficult to predict the exact
noise values directly, especially for the input imagewith only
a little noise or the very end stage of recursive learning in
Sect. 3.5. In these cases, the noise values of most regions in
the input imagewill be zero and convolutional layers are hard
to predict them. Therefore, we first generate a set of coarse
noise values and then the coarse noise values will be handled
by noise level prediction.

Noise level prediction. At the same time, a noise level rep-
resentation feature map will be generated by another 1 × 1
convolution on the shared feature map with the activate func-
tion tanh. It is worth mentioning that although both Sigmoid
and Softmax can be adopted as activate functions for noise
level prediction, Sigmoid function always suffers from sat-
uration problem and Softmax function tends to predict the
similar result for the same class. Therefore, we simply add
tanh function to convert the features into nonlinearity in the
proposed PPNet.

Noise value generation. After obtaining the output of the
noise rough prediction and the noise level prediction, we can
generate the final prediction of the noise value by Eq. (11):

Onpn = Onrp ∗ Onlp, (11)

where Onrp and Onlp are the result of noise rough predic-
tion and noise level prediction, respectively, Onpn denotes
the ultimate result of noise proposal networks and ∗ denotes
the elementwise multiply operation.

3.5 Recursivemodel

Nowadays, denoising models are becoming more and more
complex in order to obtain better results. However, inves-
tigating the denoising results, we can see that whether the
model is complex or not, the denoising performance on lower
noise level images is usually better than on higher noise
level images. In other words, removing noises from relatively
cleaner images is much easier for denoisingmodels. An intu-
ition is that dividing the denoising process into several steps
may help to improve the denoising performance. Instead of
obtaining noise removal images directly, we change our goal
to predict relatively clean images. By applying this proce-
dure recursively, the denoised image in the previous step can
be taken as input and continue to be denoised. Finally, we
can obtain better denoising performance as the input is much
cleaner than raw noisy image except for the first step. Fol-
lowed by this intuition, we simply stack the same network
architecture several timeswhile every network owns different
parameters. Assume fppnet stands for the denoising function
mentioned in Eq. (10) and fppnetx represents the x th time of
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Fig. 5 Noise proposal network

inputs 3x3 Conv

1x1 Conv

1x1 Conv
Tanh

outputs*

denoising, the formulation of recursive denoising model can
be described as Algorithm 1.

Algorithm 1 Recursive denoising
Input: raw noisy image Iin, target noise level σ , recursive round N and

plain denoising method fppnet .
Output: denoised image Ores
1: function RD(Iin, σ , N )
2: Ores ← Iin
3: for i = 1 → N do
4: Ores = f ippnet(Ores )
5: if noise level of Ores == σ then
6: Break
7: end if
8: end for
9: return Ores
10: end function

Suppose Iin is an image with 80% noises, and the ideal
goal of denoising is to obtain an image with 0% noises. It
is obviously difficult for models to remove the noises from
80% to a very low level straightly.Hence, our proposed recur-
sive model performs denoising task indirectly. That is, f 1ppnet
takes 80% noises image as input and may output an image
with 60% noises, and f 2ppnet takes 60% noises image as input
and may output an image with 30% noises, and so on. At
last, f nppnet may take an image with 10% noises as input and
remove 10% noises from this image and then can obtain a
clean image. In this example, a one-step denoising task that
removes 80% noises directly is divided into several subtasks
of denoising and each removes some-level noises only.

Due to the simplicity of a single block,we can stack several
blocks linearly to compose the finalmodelwithout increasing
too much complexity.

3.6 Loss function

Discriminative denoising models such as DnCNN [1] and
ADNet [19] adopt residual learning to train the model. That
is, given a noisy input y = x + n, their training objective is
residual mapping n. Following this idea, given the training
dataset {xi , yit }Di=1, where xi and yit denote the i−th input
noisy image and the corresponding clean image, respectively,
the objective of PPNet is to optimize the model parameters
θ to predict the residual image n = y − x as accurately

as possible. Specifically, the mean squared error (MSE) is
adopted as the loss function to train the denoising model.
This procedure can be described as Algorithm 2.

Algorithm 2 Non-recursive loss
Input: input training dataset {x, yt } = {xi , yit }Di=1
Output: l1(θ)

1: function standardloss(x , yt )
2: loss ← 0
3: for i do = 1 → D

4: loss = loss +
∥
∥
∥ f allppnet(x

i ) − (xi − yit )
∥
∥
∥
2

5: end for
6: l1(θ) ← loss

2D
7: return l1(θ)

8: end function

As PPNets are recursive models, we can add supervised
learning at every recursion to reform the loss function. For-
mally, all outputs of intermediate PPNets are simultaneously
supervised by the MSE during training, and it can be formu-
lated as Algorithm 3.

Algorithm 3 Recursive loss
Input: input training dataset {x, yt } = {xi , yit }Di=1, recursive round N
Output: l2(θ)

1: function recursiveloss(x , yt , N )
2: loss ← 0
3: for i do = 1 → D
4: Iin ← xi

5: loss j ← 0
6: for j do = 1 → N
7: Iout = f j

ppnet (Iin)

8: loss j = loss j +
∥
∥Iout − (xi − yit )

∥
∥2

9: Iin ← Iin − Iout
10: end for
11: loss ← loss + loss j

N
12: end for
13: l2(θ) ← loss

2D
14: return l2(θ)

15: end function

We train l1(θ) (non-recursive loss) and l2(θ) (recursive
loss) loss with images of noise level of 25 with PPNet-3. The
images are from three publicly popular datasets for image
denoising, i.e., CBSD68 [54], Kodak24 [55] and McMas-
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Fig. 6 Average peak signal-to-noise ratio (PSNR) of PPNet-3 trained by l1(θ) (non-recursive loss) and l2(θ) (recursive loss) on a CBSD68, b
Kodak24 and cMcMaster with noise level of 25 at every epoch

ter [56]. The results of the corresponding PSNR regarding
training epochs are shown in Fig. 6.

It is obvious that the model achieves better performance
with non-recursive loss, so we use l1(θ) as the loss function.
Note that with the recursion time increasing, the network
depth becomes deeper and deeper and hence non-recursive
loss may suffer from gradients vanishing. However, the skip
connection is integrated into the PPNets, which alleviates
the effect of gradients vanishing to some extent. The possi-
ble reason for the poor performance of the recursive loss is
the training instability brought by the multi-supervised loss,
which makes the model hard to converge.

4 Experimental setup and results

4.1 Datasets

(1) Training datasets: For Gaussian denoising, it is known
that different positions of an image carry different infor-
mation. Following the idea of ADNet [19], we split the
Berkeley SegmentationDataset [57] and theWaterloo Explo-
ration Database [58] into patches of size 50× 50, and obtain
1348480 patches in total for training.

(2) Test datasets: we use two datasets, i.e., Set12 and
BSD68 [54] to evaluate the model denoising performance on
gray images, and another three datasets, i.e., CBSD68 (the
colorful version of BSD68) [54], Kodak24 [55] and McMas-
ter [56] to evaluate themodel denoising performance on color
images. Note that these five datasets consist of 12, 68, 68, 24
and 18 pictures, respectively, and all of them are widely used
to test denoising performance.

4.2 Training setup

To balance the model complexity and the ability to capture
more information, we simply set the depth of one Block to
18. The parameters of PPNets are initialized by He’s method
[59], and the BN’s parameter values are set as the default of

PyTorch, i.e., ε = 1e-5, β1 = 0.99 and β2 = 0.99. We adopt
Adamwith learning rate of 1e-3 and a mini-batch size of 128
to train the PPNets for 50 epochs. Specially, the learning rate
decreased by a factor of 10 and 100 at the 20th epoch and the
40th epoch, respectively.

We use PyTorch 1.6.0 and Python 3.6 to train the proposed
PPNets. All the experiments are conducted on Ubuntu 18.04
from a server with two Intel(R) Xeon(R) Gold 6240 CPUs
at 2.60GHz, 256G RAM and two 2080Ti GPUs. Besides,
the Nvidia CUDA of 10.2 and cuDNN of 7.6.5 are used to
accelerate the training and test speed on GPUs. The source
code of the PPNets can be accessed at https://github.com/
e1evenn/ppnet/.

4.3 Quantitative and qualitative analysis

In this subsection, we will analyze and compare the PPNets
with the competitive denoising models quantitatively and
qualitatively. Specifically, we will evaluate the denoising
models with PSNR, structural similarity index measure
(SSIM), model complexity and visual effect.

4.3.1 PSNR

First, we report the average PSNR on two gray image sets:
Set12 and BSD68 [54]. Six traditional denoising models
(BM3D [13], WNNM [60], EPLL [61], MLP [32], CSF [62]
and TNRD [63]) and five deep learning models (DnCNN
[1], IRCNN [42], FFDNet [20], ECNDNet [64] and ADNet
[19]) are selected as compared denoising models. They are
all state-of-the-art denoising models and have great impacts
in the community of image denoising. For each denoising
model and each test image set, three noise levels (σ = 15,
25 and 50), are considered. The results are listed in Table 1,
where the best result and the second best result of each test
image set and noise level are shown in bold and italic, respec-
tively.

From Table 1, we have the following findings: (1) In gen-
eral, the deep learning denoising models are clearly superior
to the traditional ones. The worst PSNR by deep learning
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Table 1 Average PSNR (dB) on Set12 and BSD68 (gray images)

Method Set12 BSD68

σ=15 σ=25 σ=50 σ=15 σ=25 σ=50

BM3D [13] 32.37 29.97 26.72 31.07 28.57 25.62

WNNM [60] 30.70 30.26 27.05 31.37 28.83 25.87

EPLL [61] 32.14 29.69 26.47 31.21 28.68 25.67

MLP [32] – 30.03 26.78 – 28.96 26.03

CSF [62] 32.32 29.84 – 31.24 28.74 –

TNRD [63] 32.50 30.06 26.81 31.42 28.92 25.97

DnCNN [1] 32.86 30.43 27.18 31.72 29.23 26.23

IRCNN [42] 32.77 30.38 27.14 31.63 29.15 26.19

FFDNet [20] 32.77 30.44 27.32 31.64 29.19 26.29

ECNDNet [64] 32.81 30.39 27.15 31.71 29.22 26.23

ADNet [19] 32.98 30.58 27.37 31.74 29.25 26.29

PPNet-1 32.88 30.45 27.24 31.66 29.15 26.19

PPNet-2 32.97 30.58 27.43 31.73 29.23 26.29

PPNet-3 33.00 30.63 27.48 31.74 29.26 26.32

models are better than the best PSNR by traditional models.
For example, when we investigate the results on Set12 with
σ = 25, we can see that the worst PSNR achieved by deep
learning model is 30.38 with IRCNN [42], while the best
PSNR by traditional models is 30.26 with WNNM [60]. The
former is clearly better than the latter. (2) As for the deep
learning models except for the proposed PPNets, ADNet
[19] achieves the best results in most cases, indicating that
the attention mechanism may improve the denoising effec-
tiveness. (3) PPNets exhibit promising denoising results.
Specifically, PPNet-3 achieves the best results in all cases,
followed by PPNet-2 that obtains the second best results in 4
out of 6 cases. PPNet-1 achieves results that are comparable
to the DnCNN [1], IRCNN [42], FFDNet [20] and ECNDNet
[64].

Then,we list the denoising results on the three color image
sets (BSD68 [54], Kodak24 [55] and McMaster [56]) with
five noise levels (σ = 15, 25, 35, 50 and 70) in Table 2. The
PPNets denoising models are compared with one traditional
model (CBM3D, BM3D for color images [13]) and four deep
learningmodels (FFDNet [20],DnCNN [1], IRCNN [42] and
ADNet [19]). From this table, we have the following similar
findings as those from gray test image sets: (1) CBM3D per-
forms the worst in all cases when compared with the deep
learning models. Specifically, the PSNR values obtained by
CBM3D [13] are much lower than those by the deep learn-
ingmodels. (2)WhenADNet is comparedwith FFDNet [20],
DnCNN [1] and IRCNN [42], it achieves the best results in
all cases. It may owe to the attention mechanism used by
ADNet [19]. (3) PPNet-3 is superior to any other denoising
models in all cases, while PPNet-2 achieves the second best
results in 9 out of 15 cases. PPNet-1 achieves comparable

results to FFDNet [20], DnCNN [1] and IRCNN [42]. All
these indicate that the proposed PPNets are very effective for
denoising.

4.3.2 SSIM

Besides, we report the average SSIM values of differ-
ent methods on five image sets: Set12, BSD68, CBSD68,
Kodak24 and McMaster, where the first two are gray image
sets and the rest are color image sets. Note that the noise level
is set to be 25. As given in Table 3, PPNet-3 outperforms the
compared methods in all gray image sets and achieves the
second best results in all color image sets. Besides, PPNet-
2 also achieves good results with gray images. Although
ADNet obtains the best SSIM values in all the three color
image sets, it performs poorly in gray image sets.

4.3.3 Model complexity

We further compare the complexity of the deep learning
denoising models for grayscale images using the number of
model parameters, the number of floating-point operations
(FLOPs) and the sizes of the generated denoising model, as
shown in Table 4. Note that the FLOPs are with the patch
size of 50 × 50.

From this table, we have the following findings: (1) For
the DnCNN [1], FFDNet [20], ECNDNet [64] and ADNet
[19], they have close complexity in both parameter numbers
(≈ 0.5M) and model sizes (≈ 2000KB) while FFDNet has
less FLOPs than the other three models. (2) PPNet-1 has
the lowest complexity among all the deep learning models
in terms of the three indicators; and its complexity is only
about 1/7 ∼ 1/6 of DnCNN [1], FFDNet [20], ECNDNet
[64] and ADNet [19]. (3) As the number of the blocks in
the PPNets increases, the complexity of the PPNets contin-
ues to grow. Specifically, once a block is appended to the
PPNets, the number of the parameters, FLOPs and model
sizes of the PPNets increase approximately by 0.07M, 0.19G
and 290KB, respectively. (4) Although the PPNet-3 achieves
the best PSNRwith both grayscale images and color images,
its complexity is far lower than that of DnCNN [1], FFDNet
[20], ECNDNet [64] andADNet [19]. Note that the complex-
ity of IRCNN [42] is slightly lower than that of PPNet-3, but
is significantly higher than that of PPNet-1 and PPNet-2. All
the PPNets perform better than IRCNN [42] with PSNR, as
shown in Tables 1 and 2. All these findings demonstrate that
the proposed lightweight PPNets have lower complexity than
the compared deep learning denoising models.
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Table 2 Average PSNR (dB) on
CBSD68, Kodak24 and
McMaster (color images)

Dataset Method σ=15 σ=25 σ=35 σ=50 σ=75

CBSD68 CBM3D [13] 33.52 30.71 28.89 27.38 25.74

DnCNN [1] 33.98 31.31 29.65 28.01 –

IRCNN [42] 33.86 31.16 29.50 27.86 –

FFDNet [20] 33.80 31.18 29.57 27.96 26.24

ADNet [19] 33.99 31.31 29.66 28.04 26.33

PPNet-1 33.88 31.17 29.51 27.87 26.16

PPNet-2 33.98 31.24 29.64 28.05 26.35

PPNet-3 34.06 31.35 29.70 28.10 26.43

Kodak24 CBM3D [13] 34.28 31.68 29.90 28.46 26.82

DnCNN [1] 34.73 32.23 30.64 29.02 –

IRCNN [42] 34.56 32.03 30.43 28.81 –

FFDNet [20] 34.55 32.11 30.56 28.99 27.25

ADNet [19] 34.76 32.26 30.68 29.10 27.40

PPNet-1 34.64 32.09 30.51 28.90 27.19

PPNet-2 34.75 32.23 30.67 29.15 27.45

PPNet-3 34.86 32.34 30.78 29.21 27.57

McMaster CBM3D [13] 34.06 31.66 29.92 28.51 26.79

DnCNN [1] 34.80 32.47 30.91 29.21 –

IRCNN [42] 34.58 32.18 30.59 28.91 –

FFDNet [20] 34.47 32.25 30.76 29.14 27.29

ADNet [19] 34.93 32.56 31.00 29.36 27.53

PPNet-1 34.78 32.36 30.78 29.09 27.30

PPNet-2 34.95 32.57 31.05 29.46 27.62

PPNet-3 35.04 32.67 31.13 29.54 27.76

Table 3 Average SSIM on
Set12, BSD68, CBSD68,
Kodak24 and McMaster with
noise level 25

Method Set12 BSD68 CBSD68 Kodak24 McMaster

BM3D [13] 0.8529 0.8055 – – –

DnCNN [1] 0.8623 0.8259 – – –

IRCNN [42] 0.8613 0.8242 0.8780 0.8741 0.8443

FFDNet [20] 0.8637 0.8267 0.8748 0.8723 0.8444

ADNet [19] 0.8625 0.8263 0.8793 0.8777 0.8497

PPNet-1 0.8611 0.8214 0.8748 0.8722 0.8454

PPNet-2 0.8650 0.8268 0.8745 0.8724 0.8466

PPNet-3 0.8656 0.8268 0.8788 0.8771 0.8493

Table 4 Complexity of models
on grayscale images

Method Parameters (M) FLOPs (G) Model sizes (KB)

DnCNN [1] 0.56 1.39 2176

IRCNN [42] 0.19 0.46 726

FFDNet [20] 0.49 0.3 1896

ECNDNet [64] 0.52 1.3 2028

ADNet [19] 0.52 1.3 2028

PPNet-1 0.07 0.19 290

PPNet-2 0.15 0.37 580

PPNet-3 0.22 0.56 870
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Table 5 Average running time on images of size 128 × 128, 256 × 256 and 512 × 512 with noise level 25 of running the schemes 10 times (in
milliseconds)

Image Size DnCNN [1] ADNet [19] IRCNN [42] FFDNet [20] PPNet-3 PPNet-2 PPNet-1

128*128 43.18 2.26 135.83 7.78 7.81 5.23 2.72

256*256 53.80 2.34 532.21 17.00 16.43 7.62 2.83

512*512 474.02 2.50 2165.35 54.99 59.52 29.97 2.98

128*128*3 N/A 2.36 59.08 7.26 8.04 5.41 2.85

256*256*3 N/A 2.45 535.00 20.34 18.08 8.25 3.05

512*512*3 N/A 2.75 2177.81 85.05 67.29 30.98 3.43

4.3.4 Running time

We report the running time of the proposed PPNets and
the compared approaches with three different sizes on both
grayscale and color images in Table 5.

It can be seen that with the increase in image sizes, the
running time of allmethods increase. Among the approaches,
ADNet ranks the first while the proposed PPNet-1 ranks the
second in all cases, but the gaps between them are very
narrow. The main reason that PPNet-1 takes a little more
running time is that we use group convolutions to implement
depthwise convolutional operations. PPNet-3 and FFDNet
have comparable running time but the former has significant
denoising results. IRCNN’s running time is so poor that it is
more than 300 times that of PPNet-1.

4.3.5 Ablation study

In this subsection, we conduct ablation studies to validate the
effectiveness of the components (skip connection in Bottle-
neck (SCB), long–short connection (LSC) and noise proposal
network (NPN)) of the proposed PPNets. For simplicity, the
experiments are conducted with the BSD68 datasets on noise
level of 25 using the PPNet-1 and the PPNet-3.

Skip connection inBottleneck. Aswementioned in Sect.
3.3, Bottleneck is composed of three SCBRs, and skip con-
nection is introduced to combine features from shallow layers
and deeper layers. Specifically, ReLU can map all negative
values to zero and keep all positive values unchanged, which
is called unilateral inhibition, and due to this characteristic, it
makesmodel sparse and avoids gradient vanishing problems.
However, negative value’s neurons will “dead” after ReLU
as their values are directly changed to 0 and no gradients will
transmit on them in back propagation. Thus, skip connection
can pass through the “dead” neurons’ features to the deeper
layers, which makes them reactivate.

Long–short connection. It is known that shallow layers’
features have weak effect on deep layers with the enhance-
ment of network growth. To solve this problem, we combine
the local and global features to strengthen the expression
ability of model. Specifically, we add the output of the first

Table 6 PSNR (dB) results of different methods from BSD68 on noise
level of 25 (PPNet-1)

ID SCB LSC NPN PSNR (dB)

1 � � � 29.1381

2 � � � 29.1414

3 � � � 29.1430

4 (PPNet-1) � � � 29.1468

Table 7 PSNR (dB) results of different methods from BSD68 on noise
level of 25 (PPNet-3)

ID SCB LSC NPN PSNR (dB)

1 � � � 29.2468

2 � � � 29.2490

3 � � � 29.2519

4 (PPNet-3) � � � 29.2607

layer and the output of the last bottleneck (the second-longest
arrow in Fig. 4) to complement the effect of deep layer, the
so-called long–short connection.

Noise proposal network. It is very important to extract
useful features from complex information. Thus, we propose
a noise proposal network (NPN) to detect the rough noise
values and noise levels simultaneously. The NPN takes the
long–short connection’s output features as input to extract the
latent noise from the complex background. Besides, the noise
level prediction procedure can be regarded as self-attention.

We use PPNet-1 and PPNet-3 to demonstrate the effect
of each component of PPNets with BSD68 on noise level of
25, and the results are shown in Tables 6 and 7, respectively,
where the first rowmodel (ID=1) is the corresponding PPNet
without all the aforementioned components (SCB, LSC and
NPN), the second row model (ID=2) adds SCB on the model
with ID=1, the third rowmodel (ID=3) addsLSC to themodel
with ID=2, and finally, when NPN is appended to the model
with ID=3, it obtains the corresponding PPNet-1 or PPNet-3
with ID=4.
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Fig. 7 Denoised images by different methods on an image (Couple) from Set12 with σ=25. a Original image, b noisy image (20.41 dB), c BM3D
(29.7 dB) [13], d IRCNN (30.05 dB) [42], e FFDNet (30.14 dB) [20] f DnCNN (30.07 dB) [1], g ADNet (30.23 dB) [19], h PPNet-3 (30.28 dB)

Fig. 8 Denoised images by different methods on an image
(Starfish) from Set12 with σ=50. (a) Original image, (b) noisy
image (14.98 dB), (c) BM3D (24.56 dB) [13], (d) IRCNN
(24.99 dB) [42], (e) FFDNet (25.04 dB) [20], (f) DnCNN

(25.1 dB) [1], (g) ADNet (25.04 dB) [19], (h) PPNet-3 (25.13
dB)
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Fig. 9 Line profiles of rectangle
areas of a Couple and b Starfish
in Set12
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When we look at these two tables, we can find that: (1)
When none of the components (SCB, LSC and NPN) is used,
both the PPNet-1 and the PPNet-3 obtain the worst results.
(2)When one component is added to the existing models, the
new model can improve the denoising effect. (3) When all
the components are used, both the PPNet-1 and the PPNet-3
achieve the best results among all the corresponding denois-
ing models. All these findings verify that each component
contributes to the proposed denoising models and is capable
of removing noises from complex background images.

4.4 Visual effect

In this subsection,weuse some images from the experimental
image datasets to compare the visual effect of the proposed
model and the competitive models. For simplicity, we only
use the proposed PPNet-3 for comparison. To be specific, the
rectangle area with a black borderline is enlarged to empha-
size the denoising effect. The more clearer the area is, the
more robust the model is.

Figures 7 and8 show thedenoising results of twograyscale
images, namely Couple and Starfish, by the proposed PPNet-
3 and BM3D [13], IRCNN [42], FFDNet [20], DnCNN
[1] and ADNet [19]. From these two figures, we can see
that the classic denoising method BM3D performs the worst
among all the denoisingmodels on the two grayscale images.
The denoised images by BM3D clearly exhibit noise in
some positions of the images. The deep learning denoising
approaches can improve the denoising effect so significantly
that we cannot see any noise directly from the denoised
images by these approaches. Among the deep learning mod-
els, the IRCNN and the FFDNet perform slightly worse
than the other deep learning models. The proposed PPNet-
3 achieves better or comparable visual effect to ADNet,
FFDNet and IRCNN, although the PSNR by the PPNet-3 is
superior to that of ADNet, FFDNet and IRCNN. These find-
ings can be confirmed by investigating the line profiles of the
rectangle areas of Couple and Starfish, where the denoised
images by the proposed PPNet-3 are mostly close to the orig-
inal images, as shown in Fig. 9.

As for color images, Figs. 10 and 11 display the denois-
ing visual effects of an image (kodim07.png) from Kodak24
and an image (13.tif) from McMaster, respectively, by the
proposed PPNet-3 and three deep learning denoising mod-
els (ADNet, FFDNet and IRCNN). From these two figures,
the PPNet-3 and the other three deep learning models per-
form quite well. Although the difference in the visual effect
among all the images is not very obvious, the details of the
rectangle areas by the PPNet-3 are much purer than those of
the compared models. This can also be found quantitatively
from the corresponding line profile of each channel shown
in Fig. 12, where the distances from the denoised images by
the PPNet-3 to the original images are clearly much shorter
than those from the denoised images by the comparedmodels
with many points.

All these demonstrate that the PPNet-3 can achieve
promising visual effects for both grayscale and color images.

4.5 Discussion

The experimental results in Sect. 4 demonstrate the effective-
ness and efficiency of proposed method. We speculate these
outstanding performance might due to the task decomposi-
tion and growth depth of network.

4.5.1 Task decomposition

To our knowledge, the denoising performance on higher
noise level images is usually worse than on lower noise level
images. Most approaches conduct denoising directly on raw
input noisy image and output the denoising result end to
end. In order to obtain better denoising results, we simply
divide straightforward denoising process into several recur-
sive steps, and the input of every step is cleaner and cleaner
than the raw input noisy image, which significantly reduces
the complexity and difficulty of the original denoising task.
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Fig. 10 Denoised images by different methods on an image (kodim07.png) from Kodak24 with σ=25. aOriginal image, b noisy image (20.43 dB),
c ADNet (34.25 dB) [19], d FFDNet (34.07 dB) [20], e IRCNN (33.83 dB) [42], f PPNet-3 (34.36 dB)

Fig. 11 Denoised images by different methods on an image (13.tif) from McMaster with σ=50. a Original image, b noisy image (14.57 dB), c
ADNet (32.73 dB) [19], d FFDNet (32.48 dB) [20], e IRCNN (32.21 dB) [42], f PPNet-3 (33.04 dB)
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Fig. 12 Line profiles of two color images. a, b and c: Line profiles of the R, G and B channel of 13.tif from Kodak24, respectively. d, e and f: Line
profiles of the R, G and B channel of kodim07.png from McMaster, respectively

4.5.2 Growth depth of network

It is known that deep neural networks usually lead to bet-
ter performance. By stacking the same network architecture
several times, PPNets decompose the denoising task and
increase the network depth simultaneously. Although deep
neural networks may suffer from gradient vanishing and
parameter size explosion, PPNets introduce skip connection
and separable convolutions to avoid these problems.

The advantages mentioned above make the proposed
PPNets lightweight and effective denoising methods.

5 Conclusion

Image denoising is a primary task in computer vision and
pattern recognition. In recent years, deep learning-based
approaches have shown their power in improving denoising
performance. To further enhance the effectiveness of deep
learning models and reduce their complexity, this paper pro-
poses recursive lightweight CNNs that can make the noisy
images purer and purer for image denoising, the so-called
PPNets. Several components contribute to the PPNets. The
SCBR with depthwise convolutions and pointwise convolu-
tions can significantly reduce the complexity of the models
while keeping the representative ability of convolutions. The
skip connection can avoid gradient vanishing problems. The
LSC uses local and global features to enhance the represen-
tative ability of the models. The NPN integrates the attention
mechanism to detect rough noise and noise levels simulta-

neously. These components construct one Block, and one or
more blocks can be stacked to obtain resultant clean images.
The extensive experiments demonstrate that the proposed
lightweight PPNets are promising for image denoising in
terms of the evaluation indicators. In the future, wewill apply
the PPNets to other tasks of image restoration, such as super-
resolution, dehazing and deraining.
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