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Abstract
Single-view 3D reconstruction aims to recover the 3D shape from one image of an object and has attracted increasingly
attention in recent years. Mostly, previous works are devoted to learning a mapping from 2 to 3D, and lack of spatial
information of objects will cause inaccurate reconstruction on the details of objects. To address this issue, for single-view 3D
reconstruction, we propose a novel voxel-based network by fusing features of image and recovered volume, named IV-Net.
By a pre-trained baseline, it achieves image feature and a coarse volume from each image input, where the recovered volume
contains spatial semantic information. Specially, the multi-scale convolutional block is designed to improve 2D encoder by
extracting multi-scale image information. To recover more accurate shape and details of the object, an IV refiner is further
used to reconstruct the final volume. We conduct experimental evaluations on both synthetic ShapeNet dataset and real-world
Pix3D dataset, and results of comparative experiments indicate that our IV-Net outperforms state-of-the-art approaches about
accuracy and parameters.

Keywords Single-view 3D reconstruction · Multi-scale convolution · Deep learning · Residual convolutional neural network

1 Introduction

3D reconstruction generates a 3D shape of an object from
single or more 2D images, and it plays an important role
in various applications, including medical image processing
[1], virtual reality [2], CAD [3], human detection [4], etc. 3D
reconstruction has been tackled using conventional computer
vision algorithms [5, 6].

But these traditional algorithms require prior knowledge
assumptions and sophisticated hardware and are thus not
practical in many scenarios. Recently, deep learning has
shown powerful advantages in computer vision. So many
researchers were prompted to learning-based methods for
3D reconstruction. For multi-view 3D reconstruction, some
works paymore attention tomatching view features extracted
from different views of an object [7–9]. Compared with
multi-view reconstruction, single-view 3D reconstruction is
more difficult and with some troubles, such as self-occlusion
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and the absence of sufficient object information from differ-
ent angles. Therefore, it is necessary to propose a single-view
3Dreconstruction algorithmwith higher reconstruction accu-
racy.

Generally, the reconstructed 3D shape of an object can be
represented as volume [7–14], mesh [15], or point clouds
[16–18], etc. For single-view voxel-based reconstruction,
there are several learning-based networks that were proposed
to settle the task. For example, someapproachesfirstly extract
view feature from single input image and then transform the
view feature into 3D representations [7–9]. 3D VAE-GAN
[10] is an adversarial learning-based network. Then, some
methods also utilize transformers to perform end-to-end
single-image 3D reconstruction [11, 12]. The above methods
do not explicitly consider the spatial semantic information
of objects, which leads to the inaccuracy or incompleteness
of the reconstructed volume. Considering the reconstruction
accuracy, parameters and optimization convergence speed of
our model, we choose to improve AttSets [8] and propose a
better reconstruction framework.

In this paper, for single-view 3D volume reconstruction,
we present a novel framework IV-Net. IV-Net reconstructs
a refined volume by fusing features of image and volume
recovered from baseline and contains two main modules:
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a baseline and an IV refiner. For each single-view input, the
baselinemodule is pre-trained to generate a relatively reliable
3D volume, which supplements certain spatial information.
Then, based on the pre-trained baseline, an IV refiner further
generates a better-reconstructed volume, where the details
and shape of an object can be better predicted due to fusing
image feature with spatial information.

Our main contributions are as follows:

(1) We construct a unified refiner network for single-view
3D reconstruction, namely IV-Net. It shows the advan-
tages of recovering the shape and details of an object
and has universal and adaptable application prospect.

(2) We present a multi-scale convolutional block to extract
multi-scale information for enhancing learning ability
of 2D encoder.

(3) We construct a residual convolutional neural network as
3D encoder to extract efficiently spatial feature of the
recovered volume.

(4) Experimental results on both ShapeNet and Pix3D
datasets demonstrate that IV-Net improves the recon-
struction quality and performs favorably compared with
state-of-the-art methods.

This paper consists of five sections. Section 2 introduces
the related work. Section 3 discusses our framework and
loss functions. The datasets, evaluation metrics and results
of comparative experiments are shown in Sect. 4. Section 5
presents the conclusion and the prospect for future research.

2 Related work

Predicting the 3D shape from a 2D image is a challeng-
ing and ill-posed problem. Recently, with the availability of
large-scale datasets, there are some learning-based networks
presented for single-view reconstruction.

With a limited memory budget, OGN [13] utilizes octree
to represent high-resolution 3D reconstructed volumes.
Matryoshka networks [14] decompose the 3D shape of an
object into nested shape layers and are better than octree-
based methods. With the success of generative adversarial
networks (GANs) [19] and its variations, 3D VAE-GAN
[10] generates a volume from a single-view input by using
GAN and variational autoencoders (VAEs). Besides, 3D-
R2N2 [7], AttSets [8], and Pix2Vox++ [9], all based on
encoder–decoder, firstly encode the single-view input images
to fixed-size feature vectors and then pass them into 3D
decoder to decode 3D representations. In particular, AttSets
[8] chooses the encoder–decoder of 3D-R2N2 [7] and SilNet
[20] as its twobasenets.Moreover, researchers have alsoused
transformers for 3D volume reconstruction [11, 12]. How-
ever, those voxel-based works, without considering spatial

information of objects, reconstruct comparatively inaccurate
volumes in detail and shape. And different from voxel-based
representation, for a given single-view image, Pixel2Mesh
[15] applies a graph convolutional network to generate a 3D
triangular mesh, and PSGN [16] and 3D-LMNet [17] gener-
ate point representations.

3 Methodology

The proposed IV-Net focuses on reconstructing a 3D volume
of size 323 from a single-view image and contains two-step
optimization modules: a baseline and an IV refiner, as illus-
trated in Fig. 1. Firstly, for each single-view image input,
baseline is pre-trained to obtain image feature and a coarse
volume, which supplements additional spatial information.
Then, IV refiner is further trained to generate a more accu-
racy volume. Next, we will introduce these two modules in
detail, respectively.

3.1 Baseline

Our baseline model includes of three components: a 2D
encoder, a latent feature processing (LFP) module and a
3D decoder. From each single-view input, the baseline is
pre-trained to get image feature and a coarse 3D volume of
size 323. Considering the reconstruction accuracy, parame-
ters and optimization convergence speed of our model, we
improve the AttSets [8] network as our baseline. Specially,
in our paper, its encoder–decoder is based on 3D-R2N2 [7].
The encoder and decoder of 3D-R2N2 are standard resid-
ual convolutional neural networks (CNNs), and they can
enhance and accelerate the optimization process for very
deep networks by adding residual connections between stan-
dard convolution layers.

3.1.1 2D Encoder

Fromeach single-view127×127×3 image input, 2Dencoder
gains a fixed 1 × 1024 image feature vector z, as shown in
Fig. 2. Our 2D encoder is based on the 2D encoder of 3D-
R2N2 [7], which mainly uses fixed 3 × 3 convolution in
convolution layers. And to extract multi-scale image feature,
we design multi-scale convolutional (MSC) block to replace
some fixed-scale convolution layers, see Fig. 2. The MSC
block begins with a MSC layer to extract multi-scale feature
maps from input feature and then utilizes a 1 × 1 convolu-
tion layer to enhance the relation betweenmulti-scale feature
maps in channels, see Fig. 3a. For example, a MSC layer uti-
lizes three different kernels to extractmulti-scale information
of the input feature and then concatenates the three output
feature maps along the channel to get the output feature, see
Fig. 3b. In practical application, considering the sizes of input
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Fig. 1 Overview of the proposed IV-Net

Fig. 2 2D encoder with MSC blocks, where fc is a fully connected layer

Fig. 3 Multi-scale convolutional (MSC) block extracts the multi-scale
information of input feature in 2D encoder. a Architecture of MSC
block. In practical application, we only use two kernels (i.e., 3 × 3,

5 × 5) in each MSC layers. bMSC layer with three convolutional ker-
nels (c = 6). ‘C’ denotes concatenating feature maps along the channel

image features, we only use two kernels (i.e., 3×3 conv, 5×5
conv) in MSC layers. More specifically, those convs in MSC
layers are all with same stride 1×1, padding of ‘SAME,’ and
filter c/n, where c is the number of channels of input feature,
and n is the number of types of kernels.

3.1.2 Latent feature processing (LFP) module

LFPmaps the 1×1024 feature vector z to a voxelized 43×128
latent image featureFI. AttSets [8] is a unified framework for
single-view and multi-view 3D reconstruction and employs
a LFP module to attentively fuse the image features and get
a voxelized latent image feature. For a given single-view
image, we can simplify the LFP, which only contains a fully
connected (fc) layer, a relu activation and a reshape operation.

3.1.3 3D Decoder

3D decoder transforms latent feature FI into a coarse volume
of size 32 × 32 × 32. And its construction is same with the
3D decoder of 3D-R2N2 [7].

3.1.4 IV Refiner

To supplement certain spatial information, based on pre-
trained baseline, IV refiner fuses features of image and
recovered coarse volume, then to get a more accuracy vol-
ume. It consists of two components: a 3D encoder and a 3D
decoder. Following the structure of our 2D encoder, we con-
struct 3D residual convolutional architectures for 3D encoder
to effectively extract voxel feature.
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Fig. 4 Network architectures of 3D Encoder/A (top) and 3D Encoder/B (bottom)

3.1.5 3D Encoder

Generally, the combinations of features have twomain meth-
ods: ‘concat’ and ‘+.’ To get voxel feature FV of the coarse
volume, based on these two methods, we construct two ver-
sions of residual convolutional architectures for 3D encoder:
3D Encoder/A and 3D Encoder/B, as shown in Fig. 4.
Every residual convolutional block begins with two banks
of 4 × 4 × 4 convolutional layers with stride 1 × 1 × 1,
where every layer is followed by a leaky relu activation with
a leaky rate of 0.2, then adds the residual connection between
input feature and the second layer, lastly follows a max pool-
ing layer with kernel size of 2 × 2 × 2. In 3D Encoder/A,
there are three residual blocks, and the numbers of the output
channels of convolutional layers in residual blocks are 32, 64
and 128, respectively. In 3D Encoder/B, it begins with four
residual blocks and follows a reshape operation, a fc layer.
The numbers of the output channels of convolutional layers
in residual blocks are 32, 64, 128 and 128, respectively. After
being processed by 3DEncoder/A or /B, the 3D volume input
is encoded to a 43 × 128 voxel feature FV or 1× 1024 voxel
feature FV, respectively.

3.1.6 3D Decoder

3D decoder of IV refiner is identical to that of baseline. It
takes the feature combined by image feature and voxel fea-
ture FV as input and then transforms the combined feature
to generate a final volume. There are two main combination
methods. ‘+’ adds latent image feature FI with FV, and ‘con-
cat’ concatenates image feature zwith FV along the channel.
Note that we adopt 3D encoder/A and /B while applying
methods ‘+’ and ‘concat,’ respectively.

3.2 Reconstruction loss

Reconstruction loss is crucial in network training. Suppose
that Y denotes the ground truth, y represents the correspond-
ing prediction, Yi and yi are the i-th ground truth voxel and
predicted voxel, and N denotes the voxel number of the pre-
dicted volume. Two reconstruction losses are introduced as
following.

3.2.1 Cross-entropy (CE) loss

The standard cross-entropy loss is always used as the loss
function of previous works on 3D volume reconstruction
[7–9, 11]. It is calculated as follows:

lCE(Y , y) = 1

N

N∑

i=1

[Yi log(yi ) + (1 − Yi ) log(1 − yi )].

(1)

3.2.2 Dice loss

TheDice can better optimize IoUs [21] and solve the problem
of the highly unbalanced voxel occupancy [12, 22], and it is
defined as follows:

lDice(Y , y) = 1 −
∑N

i=1 Yi yi∑N
i=1 (Yi + yi )

−
∑N

i=1 (1 − Yi )(1 − yi )∑N
i=1 (2 − Yi − yi )

.

(2)

Usually, the smaller the value of lose function is, the closer
the prediction is to the ground truth. Through comparative
experiments, we finally choose Dice loss [22] as our recon-
struction loss to better optimize baseline and IV refiner step
by step.
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4 Experiments

Our IV-Net is trained in Tensorflow 2.0 with an Intel Core
i9-10920X CPU@ 3.50 GHz and a GeForce RTX 3060, and
we set a batch size of 24 and adopt an Adam optimizer [23].
In this section, we show our experimental evaluations on two
public datasets ShapeNet [24] and Pix3D [25]. For training
and testing, the output 3D reconstructions are at size 323. For
the training dataset, we first train the baseline module for 60
epochs, after freezing the pre-trained baseline, the IV refiner
is trained for 40 epochs. In addition, we adopt Intersection
over Union (IoU) and F-Score as the similarity evaluation
metrics [26].

4.1 Datasets

4.1.1 ShapeNet

As a large 3D object dataset, ShapeNet [24] contains 55 cat-
egories and 51,300 3D models. Following [7–9, 13–17, 29,
30], as a subset of ShapeNet (i.e., ShapeNet13) is also utilized
in our paper, which includes 44K models in the resolution
of 323. For ShapeNet13, 24 images of size 137 × 137 for
each model were rendered from 24 different viewpoints by
3D-R2N2 [7]. For our baseline module, the input size we
need is 127× 127. Hence, in our experiments, we just resize
single-view images from 137 × 137 to 127 × 127.

4.1.2 Pix3D

Different from the synthetic dataset ShapeNet [24], Pix3D
[25] aligns 3D models with real-world 2D images, and the
largest category of it is the chair category, which consists
of 3839 real-world images and corresponding objects. And
according to the convention, the Pix3D is just used to evaluate
the proposed methods in real-world images [9, 25]. There-
fore,we also only test our proposedmethod onPix3D-Chairs.

4.2 Evaluationmetric

For the proposed networks, IoU is applied as a similarity
metric to evaluate their reconstruction quality, and the IoU

score is calculated as follows:

IoU =

N∑
i=1

I (yi > t)I (Yi > 0)

N∑
i=1

I [(I (yi > t) + I (Yi > 0)) > 0]
, (3)

where I (·) is an indicator function which will be 0 or 1 when
the requirements are unsatisfied or satisfied, respectively, Yi
and yi are the i-th ground truth voxel and predicted value,
t is the threshold for voxelization which is setted [9] as a
fixed value 0.3 in our experiments, N denotes the total voxel
number of the predicted volume.

F-Score, as an extra metric, is also used to evaluate recon-
struction quality of methods. And the F-Score is defined [27]
as follows:

F-Score(d) = 2P(d)R(d)

P(d) + R(d)
, (4)

where d is the distance threshold which is setted [9] as 1%,
and P(d) and R(d) are the precision and recall. The precision
P(d) and recall R(d) can be computed as follows:

P(d) = 1

NR

∑

r∈R

[
min
g∈G‖g − r‖ < d

]
, (5)

R(d) = 1

NG

∑

g∈G

[
min
r∈R

‖g − r‖ < d

]
, (6)

where R and G present the predicted and ground truth point
clouds, andNR and NG denote the total number of points in
the R and G. For voxel-based reconstruction methods, we
first generate mesh of 3D surface from voxel by applying
marching cubes algorithm [28] and then sample 8192 points
[9] from mesh to obtain corresponding point cloud.

4.3 Ablation study

In this section, IV-Net is ablated by utilizing simplified LFP,
loss functions, MSC block and 3D encoders of IV refiner on
the ShapeNet dataset [24]:

Table 1 The effect of the Dice
loss, MSC block, and IV refiner
in our proposed network in terms
of IoU and F-Scores

Loss function Simplified LFP MSC block IV refiner IoU F-scores

AttSets CE 0.642 0.395

AttSets/S CE
√

0.642 0.395

AttSets/S Dice
√

0.655 0.416

Baseline Dice
√ √

0.658 0.421

Baseline Dice
√ √

‘Concat’ 0.680 0.440

IV-Net Dice
√ √

‘+’ 0.681 0.443
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Table 2 Comparisons of parameter size of the two methods ‘concat’
and ‘+’ to fuse image feature and corresponding voxel feature

Method ‘ + ’ ‘Concat’

#Parameters 23.63 M 50.58 M

Set up 1 To validate the rationality of simplifying LFP, we
trainAttSets [8]with original or simplifiedLFPwith standard
CE loss, respectively. Table 1 shows that we can maintain
learning effect of LFPwhile simplifying it.We defineAttSets
with simplified LFP as AttSets/S.
Set up 2 To compare what losses benefit the performance of
our method, the AttSets/S is also trained with Dice loss [22].
Table 1 indicates that using Dice loss to replace CE loss
[7] causes performance upgradation from 0.642 to 0.655.
Therefore, Dice loss is optimal to as our reconstruction loss.

Set up 3 One might think that the fixed 3 × 3 convolution
limits the ability to extract image features. And we replace
somefixed 3×3 convolution layerswithMSCblocks.We can
see that the performance increases from 0.651 to 0.654 after
using MSC blocks. Trained with reconstruction loss lDice,
AttSets/S with MSC blocks is defined as our baseline.
Set up 4Akey issue of IV-Net is how to fuse features of image
and recovered volume. We compare two most commonly
methods ‘+’ and ‘concat’ in Table 1. And 3D encoder/A and
/B are, respectively, adopted while applying methods ‘+’ and
‘concat.’ Table 1 shows the performance of IV refiner using
method ‘+’ is better than the ‘concat,’ and adding IV refiner
improves the performance from 0.658 to 0.681 or 0.680.
Table 2 indicates the method ‘+’ has less parameters than
‘concat.’ Hence, IV refiner utilizes ‘+’ to fuse features and
chooses 3D encoder/A as shape encoder.

Fig. 5 Visual comparisons of
AttSets/S, baseline and IV-Net
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Moreover, we also give some visual comparisons of
AttSets/S with CE loss, baseline and IV-Net (‘+’) in Fig. 5.
And Fig. 5 indicates that our baseline reaches better perfor-
mance than AttSets/S with CE loss and IV-Net outperforms
baseline, which validate the effect of Dice loss, MSC block
and IV refiner using 3D encoder/A.

4.4 Evaluation on the ShapeNet dataset

On the synthetic ShapeNet dataset [24], we split ShapeNet
into two sets, with 4/5 of it to train and the remaining to

test, same as [7, 8]. IV-Net is compared with several state-
of-the-art methods, containing 3D-R2N2 [7], OGN [13],
Matryoshka [14], AtlasNet [29], Pixel2Mesh [15], OccNet
[30], IM-Net [31], AttSets [8], and Pix2Vox++ [9], and the
IoU scores and F-Scores of these methods are illustrated in
Tables 3 and 4, respectively, where the overall IoU/F-Score
are taken as the mean IoU/F-Score across all 13 categories.
For the overall IoU and F-Score, we observe that our IV-Net
outperforms these methods. Additionally, IV-Net outper-
forms all other methods in 5 of the 13 categories about IoU
and in 4 of 13 about F-Score.

Table 3 IoU results of several reconstruction approaches on ShapeNet13. For each category, the best IoU score is highlighted in bold

Category 3D-R2N2 OGN Matryoshka AtlasNet Pixel2Mesh OccNet IM-Net AttSets Pix2Vox++ IV-Net

Airplane 0.513 0.587 0.647 0.493 0.508 0.532 0.702 0.594 0.674 0.701

Display 0.468 0.502 0.532 0.457 0.582 0.651 0.585 0.565 0.548 0.614

Telephone 0.661 0.702 0.756 0.543 0.762 0.794 0.762 0.743 0.809 0.792

Watercraft 0.560 0.632 0.591 0.355 0.471 0.579 0.607 0.601 0.603 0.630

Speaker 0.662 0.637 0.701 0.296 0.672 0.655 0.683 0.721 0.721 0.723

Lamp 0.381 0.398 0.408 0.261 0.399 0.474 0.433 0.445 0.457 0.487

Bench 0.421 0.481 0.577 0.431 0.379 0.597 0.564 0.552 0.608 0.611

Rifle 0.544 0.593 0.616 0.573 0.468 0.656 0.723 0.601 0.617 0.672

Sofa 0.628 0.646 0.681 0.354 0.622 0.669 0.694 0.703 0.725 0.737

Cabinet 0.716 0.729 0.776 0.257 0.732 0.674 0.680 0.783 0.799 0.796

Car 0.798 0.828 0.850 0.282 0.670 0.671 0.756 0.844 0.858 0.856

Chair 0.466 0.483 0.547 0.328 0.484 0.583 0.644 0.559 0.581 0.597

Table 0.513 0.536 0.573 0.301 0.536 0.659 0.621 0.590 0.620 0.635

Overall 0.560 0.596 0.635 0.352 0.552 0.626 0.659 0.642 0.670 0.681

Table 4 F-Score results of several reconstruction methods on ShapeNet13. For each category, the best IoU score is highlighted in bold

Category 3D-R2N2 OGN Matryoshka AtlasNet Pixel2Mesh OccNet IM-Net AttSets Pix2Vox++ IV-Net

Airplane 0.412 0.487 0.446 0.415 0.376 0.494 0.598 0.489 0.583 0.594

Display 0.227 0.215 0.400 0.451 0.319 0.468 0.466 0.310 0.296 0.387

Telephone 0.504 0.528 0.598 0.545 0.485 0.273 0.423 0.469 0.633 0.584

Watercraft 0.305 0.328 0.360 0.296 0.266 0.347 0.369 0.315 0.390 0.370

Speaker 0.231 0.225 0.279 0.199 0.190 0.249 0.200 0.211 0.152 0.216

Lamp 0.267 0.249 0.276 0.217 0.219 0.361 0.371 0.315 0.315 0.373

Bench 0.345 0.364 0.424 0.439 0.313 0.318 0.361 0.406 0.478 0.480

Rifle 0.521 0.541 0.514 0.405 0.340 0.219 0.407 0.524 0.574 0.578

Sofa 0.274 0.290 0.326 0.337 0.343 0.324 0.354 0.334 0.377 0.379

Cabinet 0.327 0.316 0.381 0.350 0.450 0.449 0.345 0.367 0.408 0.391

Car 0.481 0.514 0.481 0.319 0.486 0.315 0.304 0.497 0.564 0.549

Chair 0.238 0.226 0.302 0.406 0.386 0.365 0.442 0.334 0.309 0.402

Table 0.340 0.352 0.374 0.371 0.502 0.549 0.461 0.419 0.406 0.458

Overall 0.351 0.368 0.391 0.362 0.398 0.393 0.405 0.395 0.436 0.443
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Fig. 6 Visual examples of single-view 3D reconstruction on ShapeNet13

Table 5 IoU and F-Score results
of several reconstruction
approaches on Pix3D-Chairs

Method 3D-R2N2 Pix3D Pix2Vox++ IV-Net

IoU 0.136 0.282 0.288 0.292

F-Scores 0.018 0.041 0.068 0.109

Meanwhile, in visual effect, IV-Net is compared with two
voxel-based approaches AttSets [8] and Pix2Vox++ [9] in
Fig. 6, which indicates that IV-Net reconstructs more visu-
ally cleaner and accurate volumes in some categories. For
instance, IV-Net shows more accurate reconstruction results
than AttSets and Pix2Vox++ in the legs of chairs, the tail and
wings of airplanes, small details in rifles and lamps, and so
on.

4.5 Evaluation on the Pix3D dataset

On the real-world Pix3D dataset [25], following [9, 25],
we also use Pix3D-Chairs as the testing set, to evaluate
methods on real-world images. Considering the complex
backgrounds of real-world images, using Render for CNN
[32], we need first generate 60 images for each chair of
ShapeNet-Chairs by adding random backgrounds [9, 25],
sampled from the dataset SUN [33]. And these generated
images are used as the training set, i.e., ShapeNet-Chairs-
RfS. Our IV-Net is compared with 3D-R2N2 [7], Pix3D [25],
and Pix2Vox++ [9]. The IoUs and F-Scores on Pix3D-Chairs
are shown in Table 5, and the results indicate that our IV-Net
performs better than these methods. Figure 7 gives some
visual comparisons on Pix3d-Chairs among our baseline,

Fig. 7 Examples of single-view 3D reconstruction on Pix3D-Chairs

Pix2vox++ and IV-Net. Through adding additional spatial
feature, IV-Net obtains better reconstruction than the base-
line and Pix2vox++ on the details of objects, such as legs and
handles.

123



IV-Net: single-view 3D volume reconstruction by fusing features… 6245

Table 6 Parameter size and
inference time comparisons
among IV-Net and other
state-of-the-art methods

Method 3D-R2N2 AtlasNet Pixel2Mesh IM-Net AttSets Pix2Vox++ IV-Net

#Parameters
(M)

36 45 21 55 18 98 24

Inference time
(ms)

78.86 38.47 60.78 10.89 26.32 10.64 27.13

4.6 Computational complexity

For computational complexity of different methods, the
parameter size and inference time of IV-Net and some state-
of-the-art methods are compared in Table 6. The values of
Table 6 are collected from Pix2Vox++ [9], and we follow its
scheme to get the values of our method.

5 Conclusions

In this paper, we propose a novel framework for single-view
3D reconstruction, named IV-Net, which has universal and
adaptable application prospect. In our proposed method, we
design multi-scale convolutional block to enhance the ability
of 2D encoder and construct two versions of 3D encoders
to extract voxel feature efficiently. By fusing features of
image and recovered volume, an IV refiner raises the accu-
racy of the reconstructed volumes and recovers the detailed
structures of 3D shapes. In both quantitative and qualitative
evaluations, our network outperforms state-of-the-art meth-
ods in 3D reconstruction and has less parameters than mostly
methods. However, our proposed method does not obtain the
optimal results on some categories of ShapeNet13. In future,
we will continue to make our network better.
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