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Abstract
For image classification using Deep Learning, applying visual explanations allows end-users to understand better the basis
of model decisions in the inference process. Our method optimizes the black-box visual explanation called Randomized
Input Sampling for Explanation (RISE) by proposing the concept of Decisive Saliency Map (DSM) and the corresponding
quantitativemetric. The introduction ofDSMmakes the discriminative salient regionsmore prominent and easier to understand
with ignorable extra costs.Moreover,DSMefficiently correlates robustness assessmentwith the visual explanation via saliency
value distribution. It provides a reference indicator for the reliability and robustness assessment of the model predictions,
complementing the common-used Softmax confidence score. Experiments demonstrate that the utilization of DSM and the
related quantitativemetric can improve the visualization ofmainstreamCNNmodels, and differentiate the concrete importance
of confusingly similar salient regions. By quantitatively assessing the robustness of the inference process, DSM identifies the
potential misclassification risk of high-performance CNN models accurately.

Keywords Visual explanation · Data analysis · Robustness assessment · Black-box models

1 Introduction

As an essential branch of Machine Learning proliferating,
DeepLearning can achieve high-performance,multi-purpose
machine vision applications by skillfully designing con-
volutional neural networks (CNN) models and training
with adequate image samples. Nowadays, CNN applica-
tions are gaining popularity for quality control of products
in automatic manufacturing environments. Especially image
classification tasks realize the most prevalent CNN-based
error-proofing machine vision applications [1, 2]. However,
as a subset of Machine Learning, CNN has the same short-
comings. It is difficult to understand the decision mechanism
and is not as intuitive as pattern-based machine vision solu-
tions with hand-crafted rules. Usually, end-users tend to
be more skeptical of CNN-based applications than pattern-
based machine vision solutions [3].

B Xiaoshun Xu
xxs_sgm@aliyun.com

1 School of Mechanical Engineering, Shanghai Jiao Tong
University, Shanghai 200240, China

2 SAIC General Motors Corporation Limited, Shanghai
201206, China

With the superior performance of Machine Learning and
the increasing number of applications in many fields, the
need to improve its interpretability has become mandatory.
Explainable Artificial Intelligence (XAI) is the concept that
Machine Learning models are required to be interpretable,
trustworthy, and efficientlymanageable [4, 5]. Since its emer-
gence, XAI has been widely emphasized by the government,
academia, and industry. Through the joint efforts of pro-
fessional organizations, XAI-related ISO standards [6] have
been gradually established and published.

To provide end-users with a better understanding and trust
of image classification tasks based on CNN, the rational
implementation of visual explanations for inference mecha-
nisms is a feasible and reliable solution. When end-users can
understand a black-box model’s decision process to assess or
verify the output via visualization, they will be receptive to
model deployment [3, 7–9]. Proper visual explanations also
localize fine-grained features of the image [10], estimate the
influences of the wrong prediction, reveal deficiencies in the
input data and training process, and offer guidance for contin-
uous updates and efficient improvement of themodels [11]. In
real-world medical applications, IGOS + + [12] discovered
the classification model overfitting to the texts instead of the
indicative symptoms of pneumonia on the X-ray images. For
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CNN applications in industry, visual explanations facilitate
avoiding quality control incidents in massive manufacturing
due to the lack ofmodel transparency and interpretability [7].

Another essential property of interpretability for machine
vision in industrial quality control applications is robust-
ness assessment. High robustness means that the model
can maintain its regular performance under perturbation or
worse situations [6, 13], i.e., minor changes in the input
should not cause significant variance in the model output.
While reflecting and understanding the interpretability of
model inferences, assessing and verifying the robustness of
model applications has also become a well-defined workflow
required by ISO standards. Typical industrial manufactur-
ing cases are deployed in physically enclosed environments
and secure local networks. Although malicious intrusion
in adversarial attacks is almost impossible, machine vision
applications are often subject to unexpected disturbances
from external working conditions. Typical disturbances are
occlusions in ROI (region of interest), greyscale brightening
(or darkening), blurring, and other feature contaminations
caused by environmental degradation, workpiece, manu-
facturing process, and equipment. Robust machine vision
applications should rigorously ensure that the inference
results do not lead to false positives when affected by small
amounts of typical disturbances. Also, the quantity of false
negatives is within an acceptable range.

Early visual explanation research focused on analyzing
the model structure and visualizing the features processed
in various network layers [14–17]. These methods required
the models to be white-box. Some visualizations were not
easily understandable to end-users but merely interpretable
for researchers. With the promotion of CNN technology
and the support of XAI program, plenty of visual expla-
nations [18–21] applicable to black-box models have been
proposed and proven effective. Still, they do not incorporate
the function of robustness assessment and validation, also
some minor insufficiency to be improved for practical appli-
cations.

Regarding academic advances and industrial needs, our
paper optimizes RISE [20] for better applicability to CNN-
based image classification tasks by proposing the concept of
Decisive Saliency Map and the corresponding quantitative
metric. Our method derives appropriate threshold values and
weights based on the characteristics of saliency value dis-
tribution, then performs binarization and weighted sum-up
operations for the feature regionswith the highest importance
to obtain DSM and its coverage rate. The main contributions
of this paper are as follows:

We carried out the data analysis of the distribution of the
saliency value to propose the concept ofDSM.The character-
istic of the distribution is merged into the visual explanation
to highlight the essential salient regions that determinemodel

inference. Several comparisons display the differences in fea-
ture graininess focused by CNN models of different depths
by applying DSM.
Our optimization method continues the concise and easy-
to-implement ideas of RISE, making the visual explanation
more intuitive but less dispersive. Our method displays more
fine-grained and decisive salient regions for image classifi-
cation applications via visualization.
The coverage rate of DSM can provide the quantitative
robustness assessment and an extra reference indicator of
the trustworthiness of the model predictions, complement-
ing the Softmax confidence score. The rate detects samples
with high confidence scores but implies a high risk of model
misclassification. Furthermore, the robustness assessmentwe
proposed can be adopted into black-box models in industrial
machine visions at an ignorable computational cost, respond-
ing to the incoming ISO standard requirement for the AI
industry.

2 Related work

Due to the differences in research perspectives and pur-
poses, dozens of visual explanations have been developed
recently for CNNmodels with distinct techniques and visual
effects [22]. Commonly used Deep Learning visual expla-
nations are generally subordinate to Local Interpretability
of Post-Hoc Explainability strategies. They are classified
as model-specific and model-agnostic to distinguish visual
explanation types. Model-specific methods are designed for
specified models of which the designer has a certain level of
knowledge at least.Model-agnostic methods are intended for
any unknown models or algorithms. In most model-agnostic
cases, only these models’ inputs (samples) and outputs (pre-
dictions) are visible and accessible.

2.1 Model-specific methods

Model-specific methods are the most interpretability tech-
niques contributed by the AI community, and always provide
reliable and fundamental explanations.Model-specific visual
explanations for CNN are based on backpropagation and
class activation mapping (CAM), including Guided Back-
prop [14], CAM [23], GRAD-CAM [24], Score-CAM [25]
etc. Although these methods have excellent and understand-
able visualizations, they require accessing or modifying
partial model network layers to perform specific opera-
tions, including global averaging and weighted summation
of gradients, class activation maps, weights of convolutional
featuremaps, or forward passing scores on object classes [26,
27].
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Therefore, model-specific approaches do not apply to
complex CNN models deployed after encapsulation, e.g.,
mainstream industrial machine vision products.

2.2 Model-agnostic methods

Typical model-agnostic methods are based on local approxi-
mate interpretability, or sensitivity analysis of how the output
is influenced by perturbed input [11, 28].

Local approximate interpretability constructs simplified
models to explain linearly, such as Local Interpretable
Model-agnostic Explanations (LIME) [18] and its variant
Anchor [21].

Though both are based on superpixels segmentation,
Anchor improves LIME by anchoring and superimposing
with if–then rules. However, the prerequisite for establishing
an Anchor interpretation of image classification is to obtain
the correct superpixels segmentation, which may lead to
considerable variances in visualization due to particular seg-
mentation algorithms and hyper-parameters. It also requires
that the image sample has adequate discriminative feature
areas to build a reasonable explanation for Anchor.

The sensitivity analysis method generates the saliency
maps of the input image by analyzing changes in the pre-
diction influenced by the input perturbation. Typical saliency
maps used for CNNmodels [27] are heatmapsmasked on the
original input images, reflecting the different degrees of influ-
ence of the feature regions by heat colours. Representative
methods as [19] and [20]. They visualize the image feature
regions that significantly influence the results and include
quantitative metrics of accuracy on interpretability: deletion
and insertion. RISE [20] already possesses concise design,
excellent performance, and high applicability. These proper-
ties are the preliminary basis for the feasibility of applications
in industrial environments. Recently, based on the overall
experimental results of several benchmark datasets and CNN
models, RISE is one of the best methods evaluated by five
recognized visualization metrics [29].

However, there is still space for improvement in reflecting
visualization attributes, particularly feature graininess and
importance ranking [30, 31]. Meaningful perturbation [19]
requires additional meta-parameters but provides less sharp
visualization due to Gaussian blur masking. It is difficult to
identify the feature importance since it only contains coarse
feature patterns. RISE may confuse judgments due to minor
salient regions and noises generated by the randomness of
themasking process. By balancing the advantages of deletion
and preservation processes, the recent study IGOS + + [12]
uses bilateral perturbations to generate fine-grained saliency
maps with additional cost. Meanwhile, its scattered salient
regions may interfere with subjective cognition.

Although the available visual explanations help under-
stand and highlight the feature regions, not many are appli-
cable to black-box models while having explicit effects. To
our knowledge, none of them assess the robustness of the
model inference process in conjunction with the visualiza-
tions.

3 Decisive saliencymap (DSM)

Motivated by RISE, after measuring the differences in pre-
dictions by using thousands of perturbed input images and
obtaining the saliency maps for each label class, we fur-
ther utilize the saliency value distribution information to
improve the visual explanation. DSM is calculated to high-
light the essential feature regions. It suppresses the dispersion
[29], noises, and minor feature distractions from the random
masking process. The coverage rate ofDSMserves as a quan-
titative metric and comparison criteria.

The overall flowchart is shown in Fig. 1.

3.1 Acquisition of decisive saliencymaps

In CNN models, for a 3-channel input image I ∈ RH×W×3

with length H and width W , f (I ) is the confidence score
(probability) of the inference on the input and processed by
the Softmax function. As defined in (1) [20], f (I �M) is the
confidence score of the perturbed images obtained after the
element-wise randommultiplication operation of the original
image. M ∈ {0, 1} is the random binary mask, with the prob-
ability p for unmasking. It is empirically set to 0.5 from the
range [0,1], indicating half image patches occlusion.E[M]
is the expectation value of all possible masking operations
when the image pixel λ is still preserved as M(λ) = 1.MC
denotes a total of N times of Monte Carlo sampling mask-
ing operations andmodel inferences. The importance of each
pixel is approximately computed by the weighted average of
the masks and corresponding confidence scores, then gener-
ates saliency maps SI , f (λ) to the inferences as follows:

SI , f (λ)
MC≈ 1

E[M] · N
∑N

i=1
f (I � Mi ) · Mi (λ) (1)

For a CNN model with K classes, the stacked 1-channel
saliency maps obtained from (1) is SI , f (λ) ∈ RH×W×1×K ,
represented as SK . For a specific class k in the saliency map
Sk ∈ RH×W×1, the values of the saliency map for each pixel
are scalars si j ∈ (0, 1) indexed by i , j in height and width,
respectively.

Let the maximum, minimum, and mean values of si j
in Sk be max(si j ),min(si j ), and mean

(
si j

)
, respectively.

According to (1), it can be derived intuitively that si j has
the following properties:
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Fig.1 Overall flowchart of the proposed method

1. The value of si j is positively correlated with the clas-
sification confidence score fk(I ) of the original image,
and the number of high-importance pixels preserved by
the random masking operations Mi(λ). The confidence
score fk(I � Mi ) of the masked image is smaller than
the original image confidence score fk(I ) in most cases.

2. Since the masked input and the model for the confidence
score fk(I � Mi ) are identical in the saliency map of the
same class, the absolute value difference of max(si j ) and
min(si j )mainly comes from the total number of saliency
pixels preserved by the mask Mi (λ) that can reproduce
most class feature information.

3. The larger the values of max(si j ), min(si j ), mean
(
si j

)

and the closer to fk(I ), the higher the number of pixels
in the high-saliency regions. It means the inferences can
hardly be perturbed into misclassification by the random
masks. Accordingly if fk(I�Mi ) is generally higher, the
robustness of the inference process is relatively better in
industrial applications. And vice versa, low fk(I � Mi )

means the model is more susceptible to random masks
with poor robustness. Masking a small part of the salient
region leads to a significant decrease in max(si j ) and
min(si j ).

The si j values of pixels in the saliency map were con-
verted into a histogram for subsequent analysis. Most of the
input images with correct inference and excellent confidence
scores f (I ) have max(si j ) values close to f (I ). The distri-
bution histograms Skewness and Kurtosis of saliency maps
are relatively small.

However, the analysis also reveals some abnormal input
samples. Their model inferences and corresponding saliency
maps by RISE are both correct, as in Fig. 2a–b. Though
the confidence scores are not low in value probably, their
max(si j ) is much smaller than f (I ). Figure 2 d–f shows
the saliency value distribution fitted by functions. The his-
togram density distribution with much larger Skewness and

Kurtosis values is almost impossible to be fitted by a stan-
dard normal distribution. It can only be well fitted using the
Johnson unbounded distribution [32]. Such histogram dis-
tribution tends to have a significant long-tail effect, and the
mean saliency value is too small or even approximate to zero.

Furthermore, the salient regions in the abnormal sample
are too small for the inference to be robust. Once a slight per-
turbation degrades the input image, for instance, brightening
or darkening, or physically the object is occluded or rotated
[6], as in Fig. 2g–h, the prediction could be misclassified, or
the confidence score could be significantly reduced. Even the
inference processes of these samples by specific models are
risky if they occur in real-world applications, it is difficult for
them to be noticed, understood, and accepted by end-users,
e.g., industrial quality control personnel.

According to the analysis mentioned above, if the statisti-
cal information of si j data characteristics of the saliency map
Sk can be utilized and reflected in the visualization of the
saliency map, it can facilitate direct observation and reduce
extra computational data records during application. Besides
that, it is more feasible to assess the robustness of the model
inference based on the input perturbation methods other than
the backpropagation approaches from the principle. There-
fore, motivated by RISE, we propose an optimized method
for the saliency map. In this method, the data characteristics
of the saliency maps are merged into the visual explana-
tion through algorithmic transformation. We define the new
saliency map as Decisive SaliencyMap, which indicates that
the feature area covered by the transformed salient region
has the dominant influence and decisive effect on the image
classification prediction. Weighting decisive salient regions
into the heat map can correctly correlate with the data char-
acteristics of the saliency distribution histogram to improve
the visualization of the importance of features and provide a
reliable robustness assessment.

The process of computing the decisive saliency maps
SKDSM is as follows:
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(a) Input 1,  = 88.62% (b) Saliency map by RISE (c) Decisive Saliency Map (ours)

(d) Histogram of saliency value of input 1 (e) Well fitted by Johnson unbounded 

distribution

(f) Poorly fitted by Normal distribution

(g) Input perturbed, ′ = 6.54% (h) Saliency map by RISE of ground truth (i) Decisive Saliency Map (ours) of ground truth

Fig. 2 Visualizations of saliency maps of a typical example of poor
robustness for model inference. The input sample a is from Stanford
Car-196 [33] test set, and the CNN model is a fine-tuned EfficientNet-
B3 [34] with transfer learning. The saliency map provided by RISE in
b does not reflect the saliency value distribution characteristics. How-
ever, the saliency value distribution histogram has an apparent long-tail

effect in d–f . Once minor disturbances in g perturb the input, the clas-
sification result is incorrect, or the score is unexpectedly low. Our DSM
method can reflect the risk of insufficient robustness of model inference
by visualizing the decisive salient region in c and i

Step 1 Obtain the stacked saliency maps SK ∈
RH×W×1×K of the CNNmodel for image classification with
K classes using (1).

Step 2 Select the two-dimensional saliency map Sk ∈
RH×W×1 for the kth class as needed, search for its max

(
si j

)

and min(si j ), calculate the mean value mean
(
si j

)
. The deci-

sive saliency differential value δs is derived to reflect the
severity of the long-tail effect of the histogram distribution
using the data characteristics of the saliency map according
to (2):

δs = Cd(max
(
si j

) − min
(
si j

)
)
mean

(
si j

)

min
(
si j

) (2)

where Cd is set as the coefficient of dominance. It is used
to appropriately distinguish the importance of the original
image features and effectively suppress the noises in the
subsequent heat map without completely ignoring the subor-
dinated features.

The range of Cd value practically meaningful for the sub-
sequent binarization operation isCd ≥ 0. In [35], the research

suggests a normalized weight threshold to select a high-
lighted region for occlusion to improve robustness during
training. In our design concept, Cd should not only separate
the decisive salient regions from the rest of the image but
also properly suppress subordinate features.

The value of Cd in range of [0.1, 0.5] is proposed ini-
tially regarding the simplicity of the visualization design
and interpretation function [36]. The improper value of Cd

would make it difficult to distinguish between differences in
the robustness of the inference, or excessively ignore sub-
ordinate visualized features. When the value of Cd is set to
0.2, the following equations can equivalently emphasize the
decisive salient regions with explicit boundaries and straight-
forwardly skip the normalization process of saliency values.

Step 3Calculate the saliency threshold sdsm for the subse-
quent binarization operation on si j . Comparedwith the linear
or fixed coefficient operation of max

(
si j

)
as the binarization

threshold, the use of exponential form e−δs can accurately
distinguish the influence level of pixels in the saliency map
and the distribution characteristics of the saliency value his-
togram:
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sdsm = max(si j ) · e−Cd (max(si j)−min(si j))·mean(si j)
min(si j) (3)

Step 4 Binarize all si j in Sk with sdsm as the threshold to
obtain a new saliency map S̃k ∈ RH×W×1 consisting of s̃i j :

s̃i j =
{
1, i f si j > sdsm
0, i f si j ≤ sdsm

(4)

Step 5 Sum up of Sk and the weighted S̃k . The weight
is δs corresponding to the kth class. The selected regions
are emphasized with the contribution of Cd . Our converged
visualizationmeets the focal point principle related to human
attention well [36]. This process is equivalent to superimpos-
ing a small portion of the saliency value of essential features
on the original heat map. The optimized visualization meets
the closure principle that patterns should be clustered with
definite borders when visual explanation contains complex
feature elements. Thus, Decisive Saliency Map Skdsm for
single class and SKDSM ∈ RH×W×1×K for all classes are
obtained as follows:

Skdsm = Sk + δs · S̃k (5)

SKDSM = {S1dsm , S2dsm , S3dsm , . . . . . . , Skdsm} (6)

Our method merges the saliency maps with implicit data
characteristics information of saliency value histograms, and
represents the fine-grained features by delineating the real-
istic feature boundary. The optimization is still simple and
effective in design concepts. For the original and perturbed
input sample 1, Decisive Saliency Maps are shown in Fig. 2c
and Fig. 2i. Since the highlighted area provided by DSM is
almost impossible to be seen in Fig. 2i after perturbation in
Fig. 2g, it is more intuitive to explain the unexpectedly low
confidence score due to the lack of features than in Fig. 2h.

3.2 DSM-based evaluationmetric

Causal metrics have been commonly used in previous
research to objectively evaluate the performance of visual
explanations, e.g., AUC scores (Area Under probability
Curve) of the deletion and insertion, pointing game, etc.
These approaches mainly concentrate on validating the accu-
racy, localization, and faithfulness of the saliency maps.
They do not involve the robustness assessment of the model
inferences. Also, AUC calculations require additional GPU
inferences, increasing computational cost and time exten-
sively.

In image classification tasks based on CNN models, even
if the subjective observations of saliency maps of various
input samples are similar and the objective AUC calculations

are approximate in value, the inference processes still have
significant differences regarding the dependence of features,
which can be reflected by SK

DSM
.

To better analyze the differences in visual explanations, a
new quantitative evaluation metric rkdsm is proposed in this
paper, namely the calculation of the coverage rate of DSM.
As a concise and intuitive quantitative metric, rkdsm directly
reflects the ratio of pixels of the decisive salient region in an
image for the kth class, which directly quantifies the robust-
ness of image classification of black-box models to potential
perturbation.Using s̃i j from (4) to derive the rkdsm of specified
class from Skdsm as:

rkdsm = 1

H · W
H∑

i=1

W∑

j=1

s̃i j (7)

The metric rkdsm does not rely on subjective cognition
while reflecting the quantitive difference in the histogram
density distribution of saliency value of similar visual expla-
nations. It can be used for long-term tracking to compare
whether the inference processes are robust and unnecessary
for updates. The computational runtime is much faster and
more efficient than causal metrics that rely on GPUs.

3.3 DSM for robustness assessment

The most common metric for judging the trustworthiness of
image classification results is the Softmax confidence score.
However, it has been proven [37] that the Softmax confidence
score tends to lose calibration as themodel structure becomes
deeper and more complex, making the model overconfident
in the prediction. Even high confidence scores do not ensure
the reliability and robustness of the inference process nor
truly reflect the likelihood of the correct result.

In [37] also verified that temperature scaling is the sim-
plest and most effective solution for confidence probability
calibration without affecting the model’s accuracy. The Soft-
max function σSM, which converts the network logit vectors
zi to confidence score at the end of the model networks, is
calibrated by adding the temperature parameter T in (8), then
the prediction q̂i is calibrated as in (9). However, this calibra-
tion solution requires access to the model design, making it
impossible to apply to most CNN models encapsulated and
deployed in the industrial environment.

σSM(zi/T )(k) =
exp

(
z(k)i /T

)

∑K
j=1 exp

(
z( j)i /T

) (8)

q̂i = max
k

σSM(zi/T )(k) (9)
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Table 1 Saliency value distribution data of input samples.rkdsm can be a reference indicator for reliability complementing the confidence score, as

most wrong predictions relate to low rkdsm values but acceptable scores

Input sample
number

Dataset/
Source CNN Model Name of

Class k
Prediction
Class No.  Probability

GT
&

Top 1

r dsm  for
class k

Mean
saliency

Max
saliency

Min
saliency Skewness Kurtosis

1 Stanford Car-196 EfficientNet-B3 Smart fortwo 2012 196 88.62% Y 0.088% 0.0597 0.0915 0.0516 3.2850 13.5925

ResNet50 goldfish 1 32.36% Y 0.317% 0.2529 0.2904 0.2248 0.6174 0.2646

EfficientNet-B0 goldfish 1 30.90% Y 0.016% 0.0059 0.0073 0.0052 1.3897 4.1776

ResNet50 monarch butterfly 323 96.21% Y 2.007% 0.5636 0.6150 0.5334 0.9057 -0.1665

EfficientNet-B0 monarch butterfly 323 43.22% Y 0.357% 0.1887 0.2117 0.1736 0.7170 2.0763

bull mastiff 243 58.59% 0.478% 0.2566 0.3571 0.2245 1.8389 3.4892

 tiger cat 282 33.73% 0.260% 0.0777 0.1090 0.0633 1.2270 1.7699

bull mastiff 243 7.06% 0.026% 0.0122 0.0183 0.0104 1.7780 3.0368

 tiger cat 282 13.23% 0.098% 0.0377 0.0553 0.0298 1.7780 3.6347

ResNet50 tusker 101 57.90% Y 0.074% 0.0324 0.0460 0.0268 1.6356 3.0002

EfficientNet-B0 tusker 101 53.90% Y 1.194% 0.2367 0.2636 0.2184 0.7631 0.0784

ResNet50 container ship 510 99.88% Y 0.901% 0.4712 0.5255 0.4325 0.4518 -0.1325

EfficientNet-B0 container ship 510 94.92% Y 2.483% 0.6980 0.7436 0.6681 0.7652 0.8604

ResNet50 bubble 971 32.13% Y 11.530% 0.2724 0.3093 0.1607 -1.7625 6.0376

EfficientNet-B0 bubble 971 8.34% Y 1.800% 0.2728 0.3046 0.1896 -1.8886 5.1544

malamute 249 67.67% 0.706% 0.1918 0.2598 0.1738 2.6362 7.4817

husky 250 28.43% 0.383% 0.2115 0.2684 0.1969 2.0962 3.8617

malamute 249 28.22% 0.155% 0.0665 0.0919 0.0580 2.2263 6.9589

husky 250 50.62% 0.337% 0.1949 0.2677 0.1811 2.7755 8.8442

valley 979 1.76% 0.002% 0.00004 0.00005 0.00004 0.1960 -1.1639

cliff dwelling 500 18.93% 0.074% 0.0510 0.0616 0.0454 0.9236 1.1925

cliff 972 61.59% 0.004% 0.00021 0.00025 0.00018 0.3341 -0.5846

valley 979 2.61% 0.002% 0.0019 0.0021 0.0018 0.1629 -0.7993

cliff dwelling 500 3.80% 0.004% 0.0013 0.0014 0.0012 0.1240 -0.5712

cliff 972 66.68% 0.028% 0.0072 0.0078 0.0066 0.0857 -1.0954

10 Stanford Car-196 EfficientNet-B3 Cadillac SRX 2012 52 89.62% Y 0.870% 0.6604 0.7841 0.6343 3.1303 12.0562

11 Stanford Car-196 EfficientNet-B3 GMC Terrain  2012 118 95.27% Y 2.570% 0.7604 0.8069 0.7298 0.8728 0.8938

12 Stanford Car-196 EfficientNet-B3  Ferrari FF Coupe 2012 101 59.72% Y 0.094% 0.1065 0.1624 0.0983 3.6340 17.3342

13 Stanford Car-196 EfficientNet-B3 Smart fortwo 2012 196 63.62% Y 0.263% 0.1591 0.2214 0.1459 3.4798 14.3630

14 Stanford Car-196 EfficientNet-B3 Smart fortwo 2012 196 19.51% Y 0.157% 0.1470 0.2027 0.1305 2.7582 11.7855

2

3

4

5

Grad-CAM

ImageNet

ImageNet

ImageNet

ResNet50

EfficientNet-B0

9 ImageNet

EfficientNet-B0

ResNet50

ResNet50

EfficientNet-B0

6 ImageNet

ImageNet7

8 ImageNet

N

N

N

N

N

Y

We propose that rkdsm performs as an additional refer-
ence indicator for the robustness assessment of CNNmodels.
It can conveniently and intuitively discover the input sam-
ples and classes with poor robustness of model inference
while avoiding modifying the model structure to calibrate.
SKDSM and rkdsm of Decisive Saliency Maps reveal poten-
tial risks beneath the subjective observation of the saliency
maps or AUC calculation, e.g., the improper essential salient
region in Skdsm , low value of rkdsm corresponding to the
prediction class, or unreliable features displayed in fine-
graininess.

Such anomalies indicate that the model failed to avoid
overfitting during training and is not capable or driven to
explore adequate discriminative features. Overfitting leads
the model highly susceptible to unpredictable misclassifica-
tion and unreasonable confidence score fluctuations due to
image perturbation and image quality degradation in real-
world applications, significantly deteriorating the robustness
of the model.

A typical and necessary method for studying the robust-
ness of various vision architectures is the occlusion in salient
regions [15], 19. In image classificationmodels, the prerequi-
site for high prediction scores f (I � Mi ) of randommasked
inputs is robust against severe occlusion. Amodelwith excel-
lent robustness indicates that masked inputs are closer to the
original input.

f (I � Mi )argmax ≈ f (I ) (10)

In a robust inference process, the larger the Softmax confi-
dence score of the fk(I ) inference result, the saliency values
SI , f (λ) and its related statistical description, i.e., max

(
si j

)
,

will be larger in value consequently. Given themasking prob-
ability in (1), mean

(
si j

)
positively correlates with the most

likely prediction scores of perturbed inputs. Large saliency
values and normal distribution will lead to a small binariza-
tion threshold after the transformation using (3) and (4). The
obtained threshold further allows Decisive Saliency Maps
skdsm to include more pixels. Then the larger the proportion
of the saliency map rkdsm , as r

k
dsm ∝ fk(I ) usually. Through

distinct perspectives, our method shares logical similarities
with the information loss process in [38].

To improve the robustness, the SKdsm and rdsm of decisive
saliency map can serve as an alternative function to confi-
dence probability calibration, which guides the improvement
of the model’s training dataset or procedure. Typical actions
are using Random Erasing [39] or CutMix [40] for data
augmentation, introducing the label smoothing function and
applying other regularization, etc.

4 Experiments

4.1 Datasets and implementation

The datasets for validating DSM in this paper are ImageNet
[41] and Stanford Car-196 [33]. Three types of CNNmodels
established are listed below:
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1. ResNet50 [42], provided by TensorFlow2.3, and its
weight pre-trained on the ImageNet dataset. Hereafter
referred to as ResNet50.

2. EfficientNet-B0 [34], provided by TensorFlow2.3, and
its weight pre-trained on the ImageNet dataset. Hereafter
referred to as EfficientNet-B0.

3. EfficientNet-B3 [34], which simulates a fine-grained
visual classification application deployed in industrial
environments, is obtained by transfer learning in Ten-
sorFlow from the pre-trained weight on ImageNet with
multiple data augmentation, label smoothing, stochastic
weight averaging. The inference accuracy of the model
on Stanford Car-196 is 93.68% without test-time aug-
mentation or model ensemble. Hereafter referred to as
EfficientNet-B3.

The Cd = 0.2 is experimentally verified in two common
datasets by comparing the deletion process and visualization
of samples.

Since model-agnostic methods assume that CNN models
are black-box and the input image from the real world is not
limited to ImageNet, the preprocess input instruction (ensure
image colour channel zero-centred) is not applied to adjust
the RGB channel distribution of the input image. The pre-
diction results and saliency value distribution characteristics
for the samples in this paper are shown in Table 1, where
green indicates a confidence score greater than 60% or rkdsm
greater than 1%; orange indicates that the results do notmatch
Ground Truth (GT) or rkdsm is less than 0.2%.

Referring to the empirical results of multiple samples in
Table 1, we conclude several descriptions as follows:

1. High robustness When the value of rkdsm is equal to or
greater than 1%, it can be validated that the image has
enough essential feature regions for the model to recog-
nize. The inference process can robustly overcome the
perturbation, even mostly covering the decisive salient
region. All results for samples with rkdsm values above
1% in Table 1 are Ground Truth and Top 1 class, even
if the score probability results are numerically low (e.g.,
sample 7).

2. Barely acceptable When rkdsm is between 0.2% and 1%,
the robustness of model inference is relatively weak. Per-
turbation large enough to cover the decisive salient region
still impacts the results.

3. Poor robustness When rkdsm is below 0.2% or far worse,
the robustness deteriorates rapidly. The model inference
is highly susceptible to negligible occlusion in the input
image. Even if the occlusion is only 10 to 30 pixels of
a 224 × 224 image, which is harmless for human per-
ception, there is a high possibility of false prediction for
CNN models.

(a) Input 2, 1 =  32.36% (b) RISE

(c) Histogram of input 2 saliency 

value (d) DSM (Ours), 
1

 = 0.32%

Fig. 3 Comparisons of the visual explanations on sample 2 by RISE
and DSM using ResNet50

(a) Input 3, 323 =  96.21% (b) RISE

(c) Histogram of input 3 saliency 

value (d) DSM (Ours), 
323

 = 2.01%

Fig. 4 Comparisons of the visual explanations on sample 3 by RISE
and DSM using ResNet50

4.2 Experiments on ImageNet

When observing visual explanations subjectively using
DSM, we can discover the feature regions’ actual influence
and avoid the confusion caused by subordinated features that
have insufficient influences on inference. In Figs. 3 and 4, a
comparison can be found between RISE and DSM’s differ-
ences in saliency maps using ResNet50.

In Fig. 3a–b, the original visual explanation for sample
2 gives the impression that each goldfish is of equal impor-
tance for the model inference, i.e., the model focuses equally
on the features represented by multiple goldfish. In contrast,
our approach shows in Fig. 3d that the region represented
by one and only one goldfish in the fish school has the
maximum value and its proximity of the feature saliency,
while the salient regions of other goldfish do not. Our visual
explanation also better reflects the purpose for which the
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deletion process was set up. It is to discover regions with
profound feature informationwhich have a significant impact
on the classification score, but with as few pixels as possible,
through perturbation like masks [19].

Figure 4c shows that sample 3 has a lower absolute value
of Kurtosis relative to sample 2 and a much higher mean
saliency value in Fig. 3c. Combined with DSM shown in
Fig. 4d, the visual explanation reflects that the focused fea-
ture area is adequate. The pixels with the maximum saliency
value are concentrated on the right-wing instead of the rela-
tively uniform distribution on both wings shown in Fig. 4b.
rkdsm of sample 3 is quantified as in Table 1. It visualizes the
discrepancy in the distribution of the saliency values. Sample
3 has a larger decisive salient region than sample 2, which is
consistent with the high probability score.

To further verify the discriminative effect of DSM on the
feature regions and the feasibility of robustness assessment,
the salient region of the Top-1 class of the prediction is per-
turbed with the mask motivated by adversarial erasing [43]
or by patch permutations, as in Fig. 5. The visual explana-
tion of DSM guides the size and location of the mask. Patch
permutations boost the model to learn features of different
levels of granularity when training [44]. Simultaneously, it
demonstrates the robustness of the model to spatial structural
information disturbancewhen inferring [38]. Comparedwith
occlusions and patch permutations, other natural and spatial
perturbations, e.g., Gaussian blur, are tested to have relatively
minute disturbance on the model inference.

The inference process with poor robustness fails for the
perturbed input sample to get the correct prediction. Once the
only goldfish representing the decisive saliency is occluded
partially or perturbed by shuffle operation, as in Fig. 5a–d, the
confidence score of the goldfish is reduced to lower than the
probability of other classes, leading to misclassification. In
contrast, input images with a sufficiently large coverage rate
of DSM can maintain correct results and high scores, even
after a severer perturbation or being shuffled into smaller
grids than the previous sample, as in Fig. 5e–f. The result
indicates enough high-importance feature areas for themodel
to recognize.

The samples abovewere further testedby comparingDeci-
sive Saliency Maps of several CNN models with different
network depths. In well-designed CNN models, the deeper
the structure and higher the accuracy, the better the mod-
els can exploit the fine-grained features. Nevertheless, many
samples preliminarily verify thatwhen the features of interest
are similar to different CNN models, overfitting may mani-
fest in focusing excessively on limited fine-grained regions
due to deeper layers, leading to poor robustness of models.
Too much attention to too small features is not conducive to
model generalization in real-world applications.

As shown in DSM, EfficientNet-B0 focuses on the same
goldfish as ResNet50 in Fig. 5g, but the region of decisive

saliency is much smaller. We perturb salient regions guided
by DSM as in Fig. 5h and find that even a negligible pertur-
bation to the human eye already caused the false prediction
of EfficientNet-B0. Therefore, if the robustness of the model
for real-world applications is a concern, a deeper and more
complexmodel,while performing better,may not be themost
appropriate choice without sufficient degraded samples and
data augmentation.

DSM is also applicable to the class discriminative infer-
ences of input samples containing objects ofmultiple classes.
As in Fig. 6a, input sample 4 has two classes, bull mastiff
and tiger cat, which are the Top-2 classification results by
ResNet50. It can be found that a small amount of perturba-
tion in the decisive salient region representing the tiger cat,
shown in Fig. 6e, significantly reduces the confidence score
for the cat as in Fig. 6f. Compared to the saliency map by
RISE in Fig. 6d, DSM indicates clearly that only the cat’s
mouth and nose, not its head as a whole, are being focused
on by the model. The confidence score of the first class (bull
mastiff) increases remarkably after the salient region of the
second class is disturbed with the indication of DSM, allow-
ing the prediction to be very “confident” in Fig. 6f. When
the features that ResNet50 and EfficientNet-B0 focus on are
approximate, the inference process of EfficientNet-B0 is less
robust in comparison again, as shown in Fig. 6k–l. The cover-
age rate of theDSMof both classes is fairly low. Occlusion as
a tiny mask on decisive salient regions of the top class lowers
its score to third in Fig. 6m. The input sample is shuffled into
different levels of granularity in Fig. 6n–p. In most patch per-
mutations cases, class 243 scores are higher than class 282,
depending on the integrity of decisive salient regions after
shuffle operation.

Figure 7 shows a comparison of more visual explanations
of input samples. The visual explanations are generated by
RISE, our method DSM, and the most representative model-
specific method, GRAD-CAM. DSM improvement focuses
on highlighting the most important features compared to
other visual explanations, such as focusing on the animal’s
eyes in samples 5 and 8. For sample 7 bubbles which may
represent the dispersion problem [29], DSM visualizes the
bubble contours unambiguously while suppressing the noise.

For themisclassification cases, DSMcan reflect the risk of
untrustworthiness in the inference, and facilitate the detection
of false predictions. The other two visual explanations are
incapable of verification during interpretation. For puzzling
sample 9, the valley, both CNN models without preprocess-
ingmisclassified it as the cliff, and they are highly susceptible
to perturbation to misclassify input as the cliff dwelling.
However, confidence scores greater than 60% cannot expose
the risk of misclassification. But DSM reveals that the value
of rkdsm is too small. The high-saliency region is unnoticeable
via visualization, thus exposing misclassification risk.
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(a) Input 2, DSM occlusion, ResNet50 

′
1 =  17.47%

(b) RISE for class 1 (c) DSM for class 1, ′
1

 = 0.201%
(d) Input 2, patch permutations, 

ResNet50 ′ =  0.48%

(e) Input 3, DSM occlusion, ResNet50 

′
323 =  83.62%

(f) Input 3, patch permutations, 

ResNet50 ′
323 =  85.10%

(g) DSM of Input 2, EfficientNet-B0 

=  30.9% 
1

=0.016%.

(h) Input 2, DSM occlusion, 

EfficientNet-B0 ′
1 =  20.21%

Fig. 5 Comparisons ofRISEandDSMusingResNet50 andEficientNet-
B0. In (a)-(c), the GT class dropped from first to third after perturbation
in decisive salient regions. In (d), the decisive salient region is per-
turbed by patch permutations into 2 × 2 grids. The prediction fails
consequently. The inference with ResNet50 under large occlusion or

permutated into 4 × 4 grids shows good robustness in (e)-(f). The con-
fidence score is scarcely affected, and the value of r323dsm is big. Using
EfficientNet-B0 for input sample 2, DSM shows in (g) that the value of
r1dsm is too low (only 0.016%) and displays poor robustness. Therefore
a negligible perturbation in (h) has reduced the score of the GT class
from the first to the second

4.3 Experiments on stanford car-196

For encapsulated Deep Learning models in industrial appli-
cations or even traditional pattern-based machine vision
algorithms, visual explanations are validated by RISE and
DSM, which are perturbation-based approaches and suitable
for black-box models. The only premise is that the industrial
machine vision systems can output the results with probabil-
ity scores correctly matching each of the massive perturbed
input samples. With transfer learning and multiple regular-
izations, EfficientNet-B3 simulating industrial applications
obtains higher accuracy and acceptable confidence scores (>
80%) due to better model performance and a smaller volume
of class labels in the fine-grained dataset Stanford Car-196
compared to ImageNet.

When referring to the first and second columns of Fig. 8,
it is difficult for end-users to detect the robustness risk based
only on visual explanations and confidence scores. Provided
that the predictions are correct, the difference in the size
of essential salient regions produced by samples with high
robustness of model inference and those without is difficult
to be distinguished precisely. Calculating AUC using the
deletion process is costly in GPU inference. However, the
difference in AUC values still does not directly indicate the
discrepancy in robustness, referring to the fourth column of
Fig. 8.

Figure 8i shows the input sample with high robustness of
model inference. The distribution histogram in Fig. 8y shows

that the mean saliency value is high. The fit error between
the Johnson unbounded and log-normal distribution is low.
Whereas the sample with poor robustness of model inference
is shown in Fig. 8m, it is seen that the mean saliency value is
low as in Fig. 8z. The value of Kurtosis is much higher, and
the distribution has a long tail effect.

Combined with physical objects in the real world, the
visual explanations of DSM in the third column of Fig. 8
focus on discriminative features such as vehicle front mesh
grilles, emblems, headlights, and taillights. Despite the dis-
tinctiveness of implementation methods, the findings are
basically consistent with the description of [45]. DSM
reduces the confusion of background and unneeded physi-
cal features on subjective cognition.

When decisive salient regions and coverage rates are con-
siderably larger, models can still have correct predictions
with unaffected confidence scores on samples even if large
areas of the images are perturbed, as in Fig. 9a–b. This is
the case for most test set samples after various data aug-
mentation and training optimization of the fine-tuned model.
In contrast, when the decisive salient regions are small but
inferences have relatively high confidence scores, the predic-
tions are susceptible to the perturbation in decisive salient
regions in Fig. 9c–f. Corresponding to the real-world appli-
cation, it is equivalent to the situation where minor damage
to an auxiliary vehicle part causes CNN models to fail to
recognize the vehicle type. Though EfficientNet-B3 has bet-
ter performance, deeper layers, and more keen attention to
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(b) RISE for class 243 (c) DSM for class 243, 
243

 = 0.48%

(a) Input 4, ResNet50

243 = 58.59%, 282 = 33.73%

(d) RISE for class 282 (e) DSM for class 282, 
282

 = 0.26%

(g) RISE for class 243 (h) DSM for class 243

(i) RISE for class 282 (j) DSM for class 282

(k) DSM for class 282, EfficientNet-B0

282 = 13.23%, 
282

=0.092%

(l) DSM for class 243, EfficientNet-B0

243 = 7.06%, 
243

 = 0.032%

(m) Input 4, DSM occlusion

′
282 = 7.21%, ′

243 = 9.11%

(n) Input 4, patch permutations, ResNet50

′
243 = 30.33 %, ′

282 = 0.38%

(o) Input 4, patch permutations, ResNet50

′
243 = 11.55%, ′

282 = 3.34%

(p) Input 4, patch permutations, ResNet50

′
243 = 0.83%, ′

282 = 0.03%

(f) Input 4, DSM occlusion, Resnet50

′
243 = 96.07%, ′

282 = 1.69%

Fig. 6 DSM and robustness assessment of the prediction of input sam-
ple 4. The input sample a includes two ImageNet classes, 243 and 282.
b–e show the comparison of RISE andDSM.The perturbed sample f for
class 282, which refers to DSM e, shows that inference using ResNet50
shifts to focus entirely on class 243 after partial perturbation, essentially
removing the attention to class 282. In DSM using EfficientNet-B0,

class 282 is the first and 243 is the fourth. Poor robustness is visual-
ized in k and l. m shows that negligible perturbation changes the class
sequence of the result. n–p demonstrate the input sample shuffled into
3 × 3 and 4 × 4 grids. In most permutation cases, class 243 remains
higher scores than class 282
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Fig. 7 Comparison of DSM and
other visual explanations using
Resnet50 and EfficientNet-b0 for
more samples

discriminative features, its lack of robustness to infer cer-
tain classes or samples, e.g., images from the rearview of
class 196 in the Stanford Cars dataset, is reflected by the uti-
lization of DSM. DSM visually explains the variation of the
prediction scores when in different granularity of patch per-
mutations in Fig. 9g–l. The variation depends on the size of
decisive salient regions and how the grids perturb the regions.

4.4 Class sensitivity evaluation

Class Sensitivity is defined and verified with different visual
explanation methods in [29]. A responsible visual explana-
tion in the image classification task should provide a different
interpretation for each class. Besides, higher Class Sensitiv-
ity should display more discriminative and dissimilar visual
explanations between saliency maps of classes with higher
and lower scores. The advantages of DSM method regard-
ing Class Sensitivity are presented in visual cognition and

computation results of (dis)similarity metrics, as evaluated
qualitatively and quantitatively.

Qualitative Evaluation Saliency maps of the lower-score
classes provided by RISE are occasionally confusing. The
visualizations tend to misguide the observers at first glance
to convince enough, or even excessive discriminative features
are considered during model inference.

Saliencymaps byDSMare remarkably explicit andmean-
ingful for lower-score classes, exposing that models could
scarcely recognize correct features or salient regions.

The dissimilarity of saliency maps generated by RISE and
DSM is shown in Fig. 10, comparing the classes with the
highest and lowest scores. Optimization by DSM is promi-
nent in subjective cognition.

Quantitative Evaluation Along with the Pearson Corre-
lation Coefficient (CC), we apply several other commonly
used similarity metrics for saliency maps generated by RISE
and DSM. The dissimilarity between classes with the highest
and lowest scores is calculated and compared.
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(a) Input 1, 196= 88.62% (b) RISE (c) DSM, 
196

 = 0.088% (d) AUC = 0.01093

(e) Input 10, 52 = 89.62% (f) RISE (g) DSM, 
52

 = 0.875% (h) AUC = 0.01623

(i) Input 11, 118 =  95.27% (j) RISE (k) DSM, 
118

 = 2.576% (l) AUC = 0.06081

(m) Input 12, 101 =  59.72% (n) RISE (o) DSM, 
101

 = 0.094% (p) AUC = 0.00659

(q) Input 13, 196 = 63.62% (r) RISE (s) DSM, 
196

 = 0.263% (t) AUC = 0.00799

(u) Input 14, 196= 19.51% (v) RISE (w) DSM, 
196

 = 0.157% (x) AUC =0.00747

(y) Histogram of saliency value of input 11 (z) Histogram of saliency value of input 12

Fig. 8 DSM and corresponding deletion AUC using EfficientNet-B3 model on samples from Stanford Car-196
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(a) Input 11,

DSM occlusion
(b) DSM, ′

52 = 87.04%, 

′
52

 = 0.604%

(c) Input 13,

DSM occlusion
(d) DSM,  ′

196 =  4.594%, 

′
196

=0.018%.

(e) Input 14,

DSM occlusion
(f) DSM,  ′

196 =  10.29%, 

′
196

=0.083%.

(g) Input 10, 4×4 patch 

permutations
(h) DSM, ′

118 = 94.82%, 

′
118

 = 0.350%

(i) Input 1, 2×2 patch 

permutations
(j) DSM, ′

196 = 46.97 %, 

′
196

 = 0.008%

(k) Input 1, 3×3 patch 

permutations
(l) DSM, ′

196 = 85.86%, 

′
196

 = 0.072%

Fig. 9 Decisive SaliencyMaps for perturbed input samples with various
robustness. The predictions of EfficientNet-B3 change accordingly. The
scores do not drop in patch permutations simply due to more granular

levels of grids. The variation of scores depends on the size of decisive
salient regions and how the grids perturb the regions

Fig. 10 The dissimilarity between saliency maps of the classes with the
highest and lowest scores. Saliency maps of the lowest scores by DSM
are remarkably meaningful

TheSimilarity (SIM)metric calculates the similarity index
from the normalized saliency distributions of the predicted
and ground truth saliency maps [46, 47]. The Kullback-
–Leibler divergence (KL) is a classical measure to estimate
dissimilarities between the probability distribution of two
maps, giving more penalty to false negatives. For better com-
parison, NKL = 1 − KL is used in the evaluation [48].
The Normalized Scanpath Saliency (NSS) is an effective

Table 2 The dissimilarity evaluation results between classes with high-
est and lowest scores from the aforementioned metrics. Smaller values
are desired in dissimilarity evaluation

Method SIM NKL CC NSS

RISE 0.740 0.756 − 0.288 − 0.342

DSM 0.737 0.752 − 0.288 − 0.350

Bold values represent results whose metrics are better. Results without
bold format mean equal performance

measurement sensitive to false positives and dissimilarity
between prediction and ground truth [46, 47].

The saliency maps are normalized, respectively. Then top
classes are set as ground truth in the calculation. We binarize
the top-class saliency map in NSS with its mean saliency
value as the threshold.

The pre-trained CNN model is ResNet50. The evaluation
is conducted over a subset with more than 300 samples ran-
domly picked from ImageNet. The sample amount approxi-
mates typical saliency benchmark datasets.

The results of CC are close to the experimental results in
[29]. The symmetric computation of CC does not assume
which saliency map is the ground truth. Thus, it cannot
separate differences from false positives or false negatives.
Positive NSS indicates a consistent correlation between
saliency maps, and negative NSS indicates apparent dissim-
ilarity. Considering saliency maps generated by numerous
perturbations are distributed more pervasively than real
human eye fixation, other computational values of similarity
metrics are higher correspondingly.
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As shown in Table 2, smaller values mean larger dissim-
ilarity, representing higher Class Sensitivity. Most metrics
demonstrate a certain level of optimization by DSMmethod.

The overall evaluation results indicate that DSM is an
improved method for Class Sensitivity qualitatively and
quantitatively, illustrating the dissimilarity between the high-
est and lowest classes with increased efficiency.

5 Conclusion and future work

This paper proposes an optimized visual explanation called
Decisive Saliency Map applicable to black-box models for
image classification tasks. DSM can quantitatively calcu-
late the discrepancy of influence and size of different salient
regions, also embody extra information on the distribution
of saliency value in visualization. Its function of robustness
assessment of the model inference process is validated on
ImageNet and Stanford Car-196 datasets.

Further research will be conducted to eliminate the
influence of randomness on the quantitative metrics. Simul-
taneously, we will continue to study the visual explanations
of Deep Learning models to promote the utilization in
other CNN vision tasks, including object detection, instance
segmentation, etc. Endeavorswill bemade to reliable deploy-
ment and promotion of visual explanations in the manu-
facturing environment, analyzing the selection of backbone
networks to balance accuracy and robustness requirements.

Appendix: Metrics to evaluate class
sensitivity

The (dis)similarity metrics of saliency maps for evaluating
Class Sensitivity are listed below.

Saliencymaps and related explanations of the classes with
the highest and lowest scores can be defined as:

cmax , cmin = argmax f (I ), argmin f (I )

SMmax , SMmin = E(I , f )cmax , E(I , f )cmin
(11)

The saliency maps SMmax , SMmin are normalized as
required in SIM, KL, and NSS calculations. Then top classes
are set as ground truth in the calculation.

In KL computation, ε is a regularization constant, with
the value of 2.2204e-16 in usual. We binarize the top-class
saliencymap as SMmax

B
i inNSSwith itsmean saliency value

as the threshold.

SI M =
X∑

x=1

min(SMmin , SMmax ) (12)

K L =
X∑

x=1

SMmin ∗ log

(
SMmin

SMmax + ε
+ ε

)

NK L = 1 − K L (13)

CC = cov(SMmin , SMmax )

σSMmin ∗ σSMmax

(14)

NSS
(
SMmin , SMmax

B
i

)
= 1

N

∑

i

SMmin ×SMmax
B
i

where

N =
∑

i

SMmax
B
i (15)
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