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Abstract
Recent generative adversarial networks (GANs) can synthesize high-fidelity faces and the closely followed works show the
existence of facial semantic field in the latent spaces. This motivates several latest works to edit faces via finding semantic
directions in the universal facial semantic field of GAN to walk along. However, several challenges still exist during editing:
identity loss, attribute entanglement and background variation. In this work, we first propose a personalized facial semantic
field (PFSF) for each instead of a universal facial semantic field for all instances. The PFSF is built via portrait-masked
retraining of the generator of StyleGAN together with the inversion model, which can preserve identity details for real faces.
Furthermore, we propose an individual walk in the learned PFSF to perform disentangled face editing. Finally, the edited
portrait is fused back into the original image with the constraint of the portrait mask, which can preserve the background.
Extensive experimental results validate that our method performs well in identity preservation, background maintenance and
disentangled editing, significantly surpassing related state-of-the-art methods.

Keywords Face editing · Personalized facial semantic Field · Identity preservation · Disentangled facial manipulation ·
Generative adversarial networks · StyleGAN

1 Introduction

Face editing task aims to manipulate a facial attribute toward
the desired status, such as adding age or adding smil-
ing (see Fig. 1). Real facial semantic editing is needed
in extensive applications, but there are still challenges [1].
Extensive works have been proposed: such as earlier algo-
rithms [2,3] based on three-dimensional morphable face
models [4] (3DMMs) and methods [5,6] based on improved
conditional generative adversarial networks (CGANs).
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Recently, generative adversarial networks (GANs) [7–10]
have made impressive strides in generating realistic high-
resolution face images. Walking in the latent space of a
pretrained facial GAN in appropriate directions can result
in facial attribute variation. This phenomenon implies that
there is abundant facial semantic information determined by
the latent space together with GAN models, which is termed
as facial semantic field (FSF) in this paper. Thus, several
recent studies [1,11–17] propose to edit face based on the
priors from pretrained famous GANs. These works show
effectiveness in face editing via finding a semantic direc-
tion and then moving toward it, but three challenges remain:
identity loss, background alteration and entangled manipula-
tion. For example, adding eyeglasses via InterFaceGAN [11]
may remove the beard and background by mistake (see the
first row of Fig. 2). In addition, adding facial age via Inter-
FaceGAN [11] may also put on eyeglasses (see the second
row of Fig. 2). The possible reason is that prior works utilize
fixed pretrained GANs to edit all faces, ignoring individuals’
differences. For each facial attribute, the universal walking
direction is insufficient for disentangled editing for different
individuals.
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Fig. 1 Different editing
examples (in resolution 1024 ×
1024) from our method. The
background and identity are
kept well after disentangled
editing. More edited examples
are public on our project page at
https://github.com/lcd21/PFSF

Fig. 2 Visual comparison on different editing results. Notice the back-
ground and other attributes

To address the above limitations, we propose to perform
disentangled face editing by learning an individual walk in a
personalized facial semantic field instead of a universal facial
semantic field for all faces as peers [11,18,19]. The motiva-
tion is that there are personalized differences during facial
semantic changing. For example, old people may smile in
a quite different manner in contrast to children. Thus, per-
sonalized walk can leverage more individual characteristics,
stimulating more identity preservation and semantic disen-
tanglement. Our personalized walk framework consists of
three steps: (1) the generator of StyleGAN and the inversion
model are retrained, producing a personalized facial semantic
field. The PFSF is built via portrait-masked constraints with
more personalized facial details for each instance. Sampling
from the personalized facial semantic field, the generator can
synthesize similar faces to the original ones compared to the
universal facial semantic field from the fixed GANs model
used by peers [11,18,19]. In other words, with the help of
the learned personalized facial semantic field, more iden-
tity information is preserved. (2) For individual semantic
manipulation with disentanglement, we learn to walk in the
personalized facial semantic field tomanipulate the objective
attribute but preserve the other attributes. This disentangled
semantic walk is supervised via an attributes predictor. (3)

The edited portrait is integrated into the background of the
given image with the constraints of a portrait mask, which
can preserve the background.

Broad experiments are performed on the public datasets
FFHQ [9] and CelebaHQ [7] to assess the proposed method.
Results demonstrate that our method can preserve the back-
ground well and surpass recent state-of-the-art works on
identity preservation and disentangled editing.

The major contributions of this work are listed as follows.

1. A personalized facial semantic field is built for indi-
viduals retraining the GAN model with the retention of
identity and perception as optimizing constraints. This
help to preserve more facial identity during inversion.

2. The portrait mask is introduced as a constraint to both
the PFSF building and the edited image fusion. This can
maintain the background and preserve facial details.

3. An individual walk in the PFSF is proposed to perform
disentangled semantic manipulation.

4. A framework consisting of the above components is
constructed for real face editing, surpassing existing
excellent methods in both quantitative and qualitative
evaluation.

2 Related work

GAN inversion searches for a latent vector in the latent space
of a pretrained GAN, from which a new image similar to the
given image can be generated. Current works for GAN inver-
sion are in three types. The first applies optimizing strategy
[20–25] to find the right latent code by optimizing an initial
latent code directly via irritation. Image2StyleGAN [22] is
a typical optimization-based work, optimizing on the latent
vector via gradient descent. Optimization-basedmethods can
achieve decent inversions, but they are time-consuming. The
second is based on learning strategy [26–30]. They train a
network to encode the given image into the latent vector by
minimizing the difference between the inverted image and the
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original one. pSp [31] trains an network to embed vectors of
different styles in W+ space of StyleGAN. Inversion works
based on learning are fast in the inference stage, but they
lose identity for wild real faces. The last applies hybrid tech-
niques [32–35] to combine the above two strategies. IDInv
[32] trains a domain-guided network to encode given images
into the latent vectors, which are used as the initialization for
the following optimization. These existing inversion works
only perform on a fixed universal semantic field, but we con-
sider the personalized differences, and the proposed method
performs the inversion and retraining of the GANs simulta-
neously, producing a personalized semantic field for precise
attribute editing.

Recent works [1,11–17,36–38] use the priors in pre-
trained GANs for face editing. InterfaceGAN [11] searches
for a hyperplane to divide a specific attribute from one sta-
tus to another (e.g., from male to female) and moves to
the orientation perpendicular to the hyperplane. SGF [14]
and HijackGAN [13]design surrogate networks to learn the
semantic gradient in the latent space of pretrained genera-
tors, showing disentangled editing to some extent, but suffer
the loss of identity and background. GANSpace [12] is
a typical unsupervised method, searching for the attribute
direction via Principal Component Analysis (PCA). IALS
[18] learns attribute-level direction for face editing and
proposes a disentanglement transformation to achieve dis-
entanglement in pairs, but entanglements still exist among
multiple attributes. Trans4edit [19] trains a transformer to
map semantic variations into the latent vector variations.
FacialVideoEditing [36] conducts face editing in videos at
high resolution via combining GAN inversion and attributes
manipulation. Multi-view-face [38] can generate multi-view
faces via unpaired images, avoiding large-scale data collec-
tion and annotation.

3 Proposedmethod

Our facial editing framework for real faces is composed of
building a personalized facial semantic field (PFSF), learn-
ing individual walks for editing, and edited face fusion. An
overview of our framework is shown in Fig. 3. First, a per-
sonalized facial semantic field for each real face is built
by optimizing the inversion and retraining the GAN model
(e.g., StyleGAN) together, preserving more individual infor-
mation. Then, an individual walk in the above personalized
semantic field is conducted by searching the target seman-
tic direction step by step, guided by the pretrained facial
attribute predictor. Finally, the edited face is fused into the
original image via a portrait mask.

Current facial editing methods usually fail to real face
images not generated by GANs. They are based on fixed
inversion and fixed GAN, resulting in a universal facial

semantic field. This implies that it is a challenge to embed real
face images into a universal semantic field, which motivates
us to conduct GAN inversion and GAN retraining simulta-
neously, building a personalized facial semantic field for the
given image. Methods based on the UFSF ignore the per-
sonalized difference between individuals and walk in a fixed
universal semantic field along a single linear path for all faces.
By contrast, ourmethod learns a personalized facial semantic
field for each face independently and then walks in it.

Facial attributes A = {a1, a2, · · · , aN } can be quantified
as semantic scores S = {s1, s2, · · · , sN }, where si ∈ R, N
denotes the considered attributes number. For each attribute,
different scores mean different semantic intensities. Taking
attribute aging for an example, the higher attribute score
means the older face. The gradient of the semantic scores
∇S is related to the inversion module I and GAN model G,
then the personalized facial semantic field can be defined as

F(I ,G) = ∇S. (1)

For a given face x , its personalized facial semantic field F
is built by learningpersonalized inversionmodule I andGAN
model G. Then, the latent vector of x in the F is z = I (x).
We need to find a semantic direction dz for z to walk from zm
to zn step by step in the learned personalized facial semantic
field F , driving the corresponding attribute score altered from
the original attribute score sm to the target one sn gradually.
This semantic walk is expressed as

sn − sm ∼
n∑

i=m

(zi + dzi ) . (2)

3.1 Building personalized facial semantic field

GAN inversion I aims to find a latent vector z = I (x), where
the corresponding generator G can reconstruct a new image
x̂ = G(I (x)), whose difference from the original image x is
as little as possible. Since the background of the face image
needs not to be changed during editing, it is not appropri-
ate to treat the portrait and the background equally. So we
propose to focus on the portrait, neglecting the background.
We introduce the portrait matting method M [39] to extract
the portrait mask m of the original image x : m = M(x).
Then, the portrait in the original image x can be represented
as xp = x · m, and the portrait in the reconstructed image
x̂ can be expressed as x̂ p = x̂ · m. The pixel reconstruction
loss and perceptual loss are used to minimize the differences
between the inverted image x̂ and the original image x . The
objective is expressed as

L inv = Lpixl + λ1Lpert

= L2(x, x̂) + λ1L pert (x, x̂)
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Fig. 3 Framework of our
method. For a given face image,
the personalized facial semantic
field (PFSF) is built by inverting
it into the latent space of GAN
and retraining GAN together,
which is colored blue. After the
PFSF is built, the generator of
GAN is fixed, and a pretrained
facial attribute classifier is used
as supervision for searching
disentangled semantic direction
in the PFSF. This individual
walk aims to walk in the right
semantic direction, making the
given face image edited
according to the semantic target
(e.g., smiling). The editing
process is colored in orange.
Finally, the edited portrait is
fused with the background of
the original image

= L2(M(x) · x, M(x) · G(I (x)))

+ λ1L pert (M(x) · x, M(x) · G(I (x))) (3)

where the perceptual loss L pert is from work [40], and the
reconstruction L2 denotes the mean square error (MSE).
Building PFSF is marked as light blue at the top of Fig. 3.

The inversion module I and generator G are parameter-
ized by θI and θG , respectively, then the personalized facial
semantic field can be learned by the following objective func-
tion.

θ∗
I , θ

∗
G = argmin

θI ,θG

(L inv) (4)

3.2 Individual semantic walk for facial editing

After the personalized facial semantic field is built for the
given image x , the personalized generatorG and correspond-
ing latent vector z = I (x) are learned. The generated image
G(z) shows little difference to the original face x . Then, the
synthetic image G(z) can be manipulated into the semantic
target (e.g., smiling or aging) via z’s walk in the personal-
ized facial semantic field in the proper semantic direction.
For disentangled and precise facial editing, we propose to
walk individually, instead of the universal and linear manner
used by current methods.

Our strategy for disentangled semantic direction consists
of two steps: first, preliminary semantic directions for exten-
sive instances sampled from the personalized facial semantic
field are obtained by the gradient of attributes classifiers.
Then, the average of the above preliminary semantic direc-
tions is seen as the final direction. The disentangled semantic
direction dz in the personalized facial semantic field should
guarantee that while a latent vector z walks along it, the gen-
erated image G(z + dz) should change only one attribute

as desired and preserve the rest. N binary facial attributes
(a ∼ {0, 1}) are listed as A = {a1, a2, · · · , aN }. For exam-
ple, a39 = 1 means young and a39 = 0 means old. The
attributes A of a face image x is recognized via the facial
analysis model P [41]. This step is expressed as A = P(x).

The cross-entropy loss Ltar is used to drive the selected
attribute from the original status to the objective status.

Ltar = −yt log (at ) − (1 − yt ) log (1 − at ) , (5)

where at = P(G(z + dz))[t] is the attribute probability pre-
dicted by P , and yt means the objective label of the target
attribute.

The MSE loss is adopted to guarantee other attributes
unchanged, which is critical for disentangled editing. Let
Aother = {a1, a2, · · · , ai }i �=t be other attributes except target
attribute at and Yother = {y1, y2, · · · , yi }i �=t be the cor-
responding label values. Then, the loss to preserve other
attributes can be represented as

Lother = 1

N − 1
‖Aother − Yother‖2 . (6)

The individual semantic direction can be searched via the
following objective.

dzx = argmin
dz

(λtarL tar + λotherLother) , (7)

where λtar and λother denote the weights to control the two
losses’ contributions.

Then, the instance semantic direction dz can be searched
by minimizing the loss Lnav. And the final semantic direc-
tion can be obtained via averaging those instance semantic
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directions from multiple samples zs as

dz = 1

S

S∑

s=1

dzs, (8)

where Smeans the number of images sampled from theSFPF.

3.3 Portrait fusion

After the individual semantic walk, the given face has been
edited, but its background has also been altered. We extract
the background of the original image x and the portrait of the
edited image x ′ as x ·(1−m) and x ′ ·(m), respectively. Then,
the finally edited image with the background maintained can
be illustrated as

x ′
p = x · (1 − m) + x ′ · m, (9)

where m is the portrait mask of the original image. The por-
trait fusion is marked as light gray at the bottom of Fig. 3.

The overall pipeline of ourmethod is summarized inAlgo-
rithm 1.

Algorithm 1Disentangled Face Editing via Walk in Person-
alized Facial Semantic Field
Require:
1: A real face image x , a GAN generator G(·) parameterized byθG , a

pretrained inversion model I parameterized byθI , a facial attributes
classifier P , portrait matting model M .

2: The portrait mask m = M(x)
3: while not converged do
4: L inv = LL2(m · x,m · GθG (IθI (x))) + λ1L pert (m · x,m ·

GθG (IθI (x)))
5: θ∗

I , θ
∗
G = argmin

θI ,θG

(L inv)

6: end while0
7: while s < S do
8: x̂ = Gθ∗

G
(zs)

9: at = P(G(zs))[t]
10: Ltar = −yt log (at ) − (1 − yt ) log (1 − at )
11: Aother = {a1, a2, · · · , ai }i �=t be other attributes except target

attribute
12: at and Yother = {y1, y2, · · · , yi }i �=t be the corresponding label

values
13: Lother = 1

N−1 ‖Aother − Yother‖2
14: dzs+ = argmin

dz
(λtarL tar + λotherLother)

15: s = s + 1
16: end while
17: The target semantic direction dz = 1

S

∑S
s=1 dzs

18: The inverted vector z = Iθ∗
I
(x)

19: The edited image x ′ = θ∗
G (z + k ∗ dz)

Ensure: The fused image after edited x ′
p = x · (1 − m) + x ′ · m

4 Experiments

4.1 Experimental settings

Our experiments are performed on the subsets from the face
datasets FFHQ [9] and dataset CelebaHQ [7]. The dataset
FFHQ consists of 70,000 real faces in 1024 × 1024 res-
olution. The dataset CelebaHQ is made up of 30,000 real
faces in 1024 × 1024 resolution. The facial attribute clas-
sifier is obtained from the pretrained ResNet50 [42] for
facial attributes recognition by the work [41]. While build-
ing the PFSF, the inversion is conducted via optimization as
Image2Style [20]. The learning rate and iteration times for
fine-tuning the generator are valued as 0.1 and 100, respec-
tively. The total number of the attributes is 40 as the dataset
CelebA [43]. The hyperparameters λtar , and λpre in Eq. (7)
are assigned 1 and 2. Our experiment is on a single NVIDIA
1080Ti GPU.

Benchmarks The proposed method is compared to
the recent famous works, including InterfaceGAN [11],
GANSpace [12], IALS [18] and Trans4edit [19]. The pre-
trained generator of StyleGAN [9] is adopted as the back-
bone.

Metrics Our method is evaluated in terms of identity
preservation and disentanglement. Identity preservation is
assessed in the same way as InterfaceGAN [11], adopting
cosine similarity between the identity features of the origi-
nal and the edited image. The identity features are obtained
from the face recognition framework [44]. A higher identity
preservation score means that more identity information is
preserved. The disentanglement is evaluated by the cross-
entropy of the edited attribute scores and the target attribute
scores. A lower disentanglement score means that attributes
are less entangled.

4.2 Qualitative evaluation

The visual comparisons among edited images from the pro-
posed approach and the decent benchmarks are demonstrated
in Fig. 4. We can see our method achieves much better
performance in terms of identity preservation. After edit-
ing, the personalized facial details are preserved well by our
method but are easy to be lost by compared works (e.g., see
the mouth, makeup, headdress and painting from the first
row to the fourth row, respectively). This benefits from edit-
ing on the personalized facial semantic field built for each
face instead of editing on a UFSF for all faces as peers
[11,18,19]. Fine-tuning the generator can enhance its ability
to reconstruct personalized features that even do not appear
in the original training dataset (see Fig. 5). Furthermore,
ourmethod shows better disentanglement. For instance, aged
results in the fifth row and the sixth row show that GANSpace
[12] and InterfaceGAN [11] both add age accompanied with
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Fig. 4 Visual comparison. Each
column means edited image
from the following method,
respectively: (2) GANSpace
[12], (3) InterfaceGAN [11], (4)
IALS [18], (5) Trans4edit [19],
(6) Our method

Fig. 5 Reconstructed examples
of inversions from the universal
facial semantic field (FSF) and
personalized facial semantic
fields (PFSF) before the
background fusion. It is obvious
that reconstructions from PFSF
(Ours) preserve more detailed
characteristics and show more
similarity to the original
examples
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Fig. 6 Different edited
examples from our method.
Notice that the other attributes
and the background are
preserved well

adding eyeglasses; by contrast, our method can make faces
aging without eyeglasses added. When manipulating gen-
der, our method maintains eyeglasses and smiling (the last
two rows) unchanged, however, the compared works fail to
keep them. Results from GANSpace [12] seem not as com-
petitive as other works, because GANSpace searches for
semantic direction in an unsupervised manner while the oth-
ers in a supervised manner. In addition, from the first two
rows and the last two rows, we can see that the background
of edited faces from our method is the same as the original
images; however, edited results from compared works fail to
reconstruct the corresponding background well. More edited
examples are listed in Fig. 6. All these qualitative findings are
consistent to the quantitative evaluation in the next section.

4.3 Quantitative evaluation

To perform a fair quantitative comparison on the subset of
datasets FFHQ andCelebaHQ, the same four attributes as the
benchmarks are listed. The symbol – denotes that the method
is often unable to edit the objective attribute as desired.
Tables 1 and 2 demonstrate that identity preservation scores
of edited images from our method are much higher than
those compared methods. This denotes that more identity
features are kept by the proposed method. Among different
attributes editing results from each method, it is obvious that
adding smiling obtains the best identity preservation score,
but manipulating gender gets the lowest one. This is because
changing the gender needs to change the whole face, how-
ever, adding smiling just needs small variations on the mouth
and eyes.

From Tables 3 and 4, our method demonstrates higher
disentanglement scores than benchmarks. This denotes that

Table 1 Quantitative evaluation of identity preservation on data from
FFHQ [9]. A–D in the first rowmean adding eyeglasses, adding smiling,
aging and adding male, respectively

Method A B C D

GANSpace [12] – 0.432 0.335 0.358

InterfaceGAN [11] 0.411 0.493 0.452 0.367

IALS [18] 0.405 0.522 0.478 0.348

Trans4edit [19] 0.498 0.612 0.514 0.386

Ours 0.551 0.707 0.643 0.494

Bold values indicate the best results

Table 2 Quantitative evaluation of identity preservation on data from
CelebaHQ [7]. A–D in the first row mean adding eyeglasses, adding
smiling, aging and adding male, respectively

Method A B C D

GANSpace [12] – 0.465 0.301 0.298

InterfaceGAN [11] 0.402 0.525 0.309 0.318

IALS [18] 0.397 0.529 0.361 0.291

Trans4edit [19] 0.432 0.570 0.394 0.315

Ours 0.497 0.654 0.459 0.371

Bold values indicate the best results

our method can preserve the other attributes well, while the
target attribute is edited as desired. Except for our approach,
Trans4edit [19] also obtains competitive performance in dis-
entangled editing, which benefits from the disentanglement
loss designed to train the latent transformer. Among different
edited attributes, disentanglement scores are the worst while
adding age. Since editing gender needs massive changes of
facial appearances, inevitably altering some other attributes.
On the other hand, adding eyeglasses only needs to change
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Table 3 Quantitative comparison on semantic disentanglement on
dataset FFHQ [9]. A–D in the first row mean adding eyeglasses, adding
smiling, aging and adding male, respectively

Method A B C D

GANSpace [12] – 0.442 0.410 0.474

InterfaceGAN [11] 0.266 0.412 0.270 0.459

IALS [18] 0.269 0.416 0.254 0.447

Trans4edit [19] 0.251 0.382 0.249 0.428

Ours 0.213 0.357 0.227 0.391

Bold values indicate the best results

Table 4 Quantitative comparison on semantic disentanglement on
dataset CelebaHQ [7]. A–D in the first row mean adding eyeglasses,
adding smiling, aging and adding male, respectively

Method A B C D

GANSpace [12] – 0.418 0. 459 0.641

InterfaceGAN [11] 0.276 0.383 0.438 0.597

IALS [18] 0.283 0.396 0.439 0.632

Trans4edit [19] 0.268 0.369 0.420 0.577

Ours 0.235 0.339 0.390 0.539

Bold values indicate the best results

the local region around the eyes and does not affect other
regions, so editing this attribute wins the best disentangle-
ment.

4.4 Ablation analysis

We conduct the ablation experiment by performing three
versions of our method to test the effectiveness of differ-
ent components. To test the portrait mask’s contribution to
identity preservation, we set the portrait mask as a unit matrix
to remove its effect. This version of our method is marked as
PFSF-wo-mask. In addition, we set the λ1 as 0 to remove the
loss L pert in Eq. (3) to test the perceptual loss’s contribution
to identity preservation. This version is labeled as PFSF-
wo-pert. The corresponding experimental results in terms of
identity preservation are listed in Table 5. It is obvious from
the first two rows of Table 5. that our method with PFSF
can improve the identity preservation score by a wide mar-
gin in contrast to the version with UFSF. The last three rows
in Table 5. demonstrate that the introduced portrait mask,
and the perceptual loss can improve identity preservation,
respectively. It is accordant with the visual comparison in
Fig. 5. The third and the fourth column in Fig. 5. show that
our method with the perceptual loss L pert preserves more
personalized features (e.g., the colored hair and the scar).

Furthermore, we set λother in Eq. (7) as 0 to test the con-
tribution of the loss Lother to disentanglement. Our method
without the loss Lother is marked as PFSF-wo-Lother, and
the experimental results are listed in Table 6. Table 6. shows

Table 5 Identity preservation comparison on different versions of our
method. A–D in the first row mean adding eyeglasses, adding smiling,
aging and adding male, respectively

Method A B C D

UFSF 0.405 0.522 0.478 0.348

Ours (PFSF-wo-pert) 0.519 0.667 0.617 0.453

Ours (PFSF-wo-mask) 0.535 0.688 0.630 0.477

Ours 0.551 0.707 0.643 0.494

Bold values indicate the best results

Table 6 Facial attribute disentanglement comparison on different ver-
sions of our method. A–D in the first row mean adding eyeglasses,
adding smiling, aging and adding male, respectively

Method A B C D

UFSF 0.269 0.416 0.254 0.447

Ours (PFSF-wo-Lother) 0.255 0.407 0.249 0.424

Ours 0.213 0.357 0.227 0.391

Bold values indicate the best results

that disentanglement scores are improved significantly with
constrain Lother added. Thismeans the constraint Lother con-
tributes to keeping other attributes during editing the target
attributes, and it is valid for disentangled editing.

4.5 Limitations

Several limitations exist in this work. First, limited by
the 40 binary annotations of facial attributes in the face
dataset CelebA [43], our method cannot edit other semantic
attributes (e.g., pose or illumination) beyond the above anno-
tations. In addition, our method needs to retrain the generator
for each face to build the personalized facial semantic fields.
It takes 60s to build a personalized facial semantic field and
30min to search the semantic direction (when the sampling
number S = 5, 000 in Eq.8). This is time-consuming, and it
is not appropriate for real-time application. Since the exper-
iment is conducted on a single NVIDIA GTX 1080Ti GPU,
this time-consuming limitation would be alleviated on GPUs
with more memory or with higher performance.

5 Conclusion

This paper presented a disentangled face editing method
via walking in the personalized facial semantic field. We
build personalized facial semantic fields for individuals via
retraining the GAN model with the retention of identity and
perception as optimizing constraints. Then, individual walk
in the personalized facial semantic field is conducted to per-
form disentangled semantic manipulation, with the objective
attribute manipulated but the others preserved. Experiments
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validate that the proposedmethod can surpass existing works
in terms of identity and background preservation and disen-
tangled editing. One future work is to edit other attributes
beyond the annotations in dataset CelebA, such as edit-
ing facial poses via extending our idea to 3D engineering
fields inspired by the related works [45–47]. Another poten-
tial future work is extending this method to the task of
multimodal-driven face editing (such as voice-driven face
editing [48,49])
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