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Abstract
3D point cloud denoising is a fundamental task in a geometry-processing pipeline, where feature preservation is essential
for various applications. The literature presents several methods to overcome the denoising problem; however, most of
them focus on denoising smooth surfaces and not on handling sharp features correctly. This paper proposes a new sharp
feature-preserving method for point cloud denoising that incorporates solutions for normal estimation and feature detection.
The denoising method consists of four major steps. First, we compute the per-point anisotropic neighborhoods by solving
local quadratic optimization problems that penalize normal variation. Second, we estimate a piecewise smooth normal field
that enhances sharp feature regions using these anisotropic neighborhoods. This step includes bilateral filtering and a novel
corrector procedure to obtain more reliable normals for the subsequent steps. Third, we employ a novel sharp feature detection
algorithm to select the feature points precisely. Finally, we update the point positions to fit them to the computed normals
while retaining the sharp features that were detected. These steps are repeated until the noise is minimized. We evaluate
our method using qualitative and quantitative comparisons with state-of-the-art denoising, normal estimation, and feature
detection procedures. Our experiments show that our approach is competitive and, in most test cases, outperforms all other
methods.

Keywords Point cloud denoising · Normal estimation · Sharp feature detection · Anisotropic neighborhoods

1 Introduction

Constructing and analyzing 3D digital models used to rep-
resent real environments are critical in the age of Industry
4.0 for various tasks, such as planning, maintenance, train-
ing, and education. 3D acquisition techniques can be used
on a target scene or object to obtain accurate surface data,
typically represented by an unordered set of 3D points, that
is, a 3D point cloud. Although these raw data can be useful
for constructing and analyzing these models, they present
undesired noise due to physical limitations or inconsisten-
cies during acquisition. Noise can disturb further processing,
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such as segmentation [52], compression [11], registration
[5], recognition [69], mesh generation [7], or rendering [40].
Consequently, point cloud denoising is a fundamental task in
common geometry-processing pipelines.

Because point clouds lack connectivity information and
surface details are difficult to differentiate from noise, point
cloud denoising is challenging. Early attempts only aimed
to smooth the points [1]. However, this is not sufficient to
obtain good-quality results for applications such asmeshgen-
eration or rendering, where feature preservation is essential.
Several methods have been proposed to address this prob-
lem [30], ranging from classical moving least square-based
methods to deep learning-based methods. Most of these rely
on a two-step-based scheme, with the first step consisting of
computing denoised normals and the second step consisting
of updating point positions to fit these normals.

We propose a sharp feature-preserving point cloud denois-
ing method consisting of four main steps. In the first step,
we used local quadratic optimization problems to compute
anisotropic neighborhoods. In the second step, we used these
anisotropic neighborhoods to filter the point cloud normal
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field and reduce noise. This step includes a normal correc-
tor operation that minimizes the problems in the subsequent
steps. In the third step, using the filtered normals, we detect
sharp feature points and treat them differently. We classi-
fied all the points into non-feature, edge, and corner points.
Finally, we updated the point positions using this classifica-
tion and the filtered normal field. These steps were repeated
until the noise was removed. The resulting point cloud
had piecewise smooth regions and enhanced sharp feature
regions, preserving surface details.

Herein, we compare our method to several state-of-the-
art denoising methods using point and normal distance error,
obtaining competitive results and outperforming them in
most test cases. We include several visual comparisons using
challenging test cases to demonstrate how our denoising
method better preserves the surface details. In addition,
because our method incorporates solutions for normal esti-
mation and feature detection problems, we evaluate them
numerically. The main contributions of this study are sum-
marized as follows:

• We propose a point cloud denoising algorithm that
focuses on processing surfaces that present sharp fea-
tures. The algorithmcanminimize noisewhile preserving
the surface details.

• We present an extension to point clouds of the mesh-
based anisotropic neighborhood computation proposed
in [38]. This method allows us to compute piecewise
smooth normals while preserving the hard transitions at
the sharp feature regions.

• We present a normal correction algorithm for refining
the normals of points near sharp feature regions. This
algorithm provides more reliable normals for use in the
denoising algorithm.

• We introduce a sharp feature detection algorithm that
tends to detect thin sharp feature regions. This algorithm
is useful in the denoising algorithm to avoid the gener-
ation of gaps and the excessive accumulation of points
near the sharp feature regions.

The remainder of this paper is structured as follows. Sec-
tion 2 presents related studies on the denoising problem.
Section 3 introduces our proposed denoising method. Sec-
tion 4 explains the computation of connectivity information
and geometric measurements that are useful for the steps of
the method. Sections 5, 6, 7, and 8 describe the four pri-
mary steps of the proposed method. Section 9 presents the
experiments and results. Finally, in Sect. 10, we present our
conclusions and discuss future research.

2 Previous work

Point cloud denoising has been addressed in various ways.
Some approaches are based on the moving least squares
(MLS) method, which aims to approximate an underlying
surface and project noisy points onto it. This scheme was
adapted to preserve details and achieve greater robustness
against noise [23,25,26,50,53,67].

A different approach to address the denoising problem is
to use sparse representations adopted by several geometry-
processing algorithms. These methods assume that most
noisy points can be approximated using piecewise smooth
surfaces with sparse transitions. The denoising task is for-
mulated as the sparse reconstruction of point normals and/or
point positions using regularization based on the metric �1
[2,41], themetric �0 [61], or low-rankmatrix approximations
[13,49].

Thenon-local self-similaritymethodsproposed for images
[10,16] were extended to denoising of point clouds. Dif-
ferent patch representations are used, such as polynomial
surfaces [17], variations in height fields [18], local displace-
ments [28,59], local probing fields [19], point normals [46],
and sampled collaborative points [56], which exploit the sim-
ilarity between non-local surfaces.

The relationships between the points can be represented
using graphs. To address the denoising problem, some meth-
ods use this representation to exploit graph properties and
Laplacian regularizers in a local [20,21,60] and non-local
[73] fashion. Furthermore, the authors proposed a feature
graph learning framework applied to the denoising problem
in [34], using point coordinates and normals as relevant fea-
tures.

Surface denoising is commonly performed in two steps,
where the first step denoises the normal field and the second
step fits the noisy point positions to the denoised normals.
These steps are complemented by neighborhood clustering
[33,65] and/or feature detection [43,71,77,78]. In a differ-
ent way, Béarzi et al. introduced geometric structures named
Wavejets to represent local surfaces [4]. These structures are
then used to reduce noise and enhance detail by updating the
point positions and normals.

The locally optimal projection (LOP) method involves
sampling and projecting a set of uniformly distributed par-
ticles onto the underlying surface that the noisy point cloud
represents [42]. This method was extended to be more robust
against irregular distributions [35] and deal with feature
preservation [36,45,54,70].

Recently, geometric deep learning methods have become
popular owing to their impressive results in computer graph-
ics applications. The point cloud denoising problem was
tackled by this type of method [6,9,22,27,31,47,48,55,57,
74]; however, most of them did not deal with feature preser-
vation correctly. Yu et al. introduced an LOP-based network
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for feature-aware point cloud consolidation, which can pro-
cess noisy inputs [72]. Lu et al. proposed a network capable of
predicting feature points and noise-free normals [44]. These
predictions are used to iteratively update the point positions
until the noise is removed. Similarly, Wei et al. proposed
a normal refinement network that processes adaptive geo-
metric descriptors, that is, the local height and normal fields
[68]. The refined normals are then used to update the point
positions.

Although the presented methods attempt to deal with
detail preservation, most of them focus on the preserva-
tion of smooth features without correctly dealing with sharp
features. Sparse- and two-step-based methods have shown
excellent performance in the preservation of this type of
feature, particularly those that include feature detection pro-
cedures in their denoising pipeline. The proposed method,
which belongs to a family of two-step methods, also focuses
on the preservation of sharp features. More specifically, we
presented a novel method for robustly estimating a clean nor-
mal field based on anisotropic neighborhoods and a novel
normal correction operation. For anisotropic neighborhood
computation, we extend the idea proposed in our previous
work [38], introducing a new functional and its discretiza-
tion to deal with point clouds. Then, using a clean normal
field, we introduce a novel sharp feature detection algorithm
that is more selective than the previous methods. This behav-
ior helps to avoid point agglomeration near feature regions
and the formation of gaps. Finally, the point positions are
updated using clean normals and feature detection informa-
tion, similar to the method proposed by Yadav et al. [71].

3 Overview

The input of our denoising algorithm is a 3D point cloud
consisting of a set of unorganized points P = {pi }ni=1

sampled from a piecewise 2-manifold X embedded in R
3,

where n is the number of points. The set of points should
be equipped with a consistently oriented normal field. Let
us denote the point coordinates and the corresponding nor-
mals as sets of 3-dimensional vectors X = {x1, . . . , xn} and
N = {n1, . . . ,nn}, where xi ∈ R

3 and ni ∈ R
3 represent

the coordinates and the normal at point pi , respectively. The
algorithm generates a noise-free point cloudwith a clean nor-
mal field. This point cloud is sampled on a 2-manifold X ′,
which is a good approximation of X .

We assume that a common point cloud should be pre-
processed using a normal estimationmethod that consistently
preserves the normal orientation because our algorithm
requires an initial set of normals. This method does not need
to be accurate in the computation of normals; it only needs to
maintain a consistent orientation. In addition to the normal

initialization, we normalized the point positions to avoid high
variations when tuning the algorithm parameters. We com-
puted a simple average distance by considering each point’s
distance to their corresponding 10 nearest neighbors. The
inverse of the average distance was then used to define the
point cloud’s normalization scale factor.

The algorithm operates in an iterative manner, where each
iteration consists of fourmain steps, as describedbelow.First,
as a preparation procedure useful for representing the point
cloud topology and geometry, we compute point neighbor-
hoods, normals, areas, and distances.

In the first step, we compute anisotropic neighborhoods
that define normal-based piecewise smooth regions assigned
to each point. These neighborhoods are obtained by solv-
ing local quadratic optimization problems that minimize the
normal variation and distances to the evaluated point.

In the second step, we compute a new set of normals
based on anisotropic neighborhoods. These normals enhance
the feature regions because they are fitted to piecewise
smooth regions, preserving the hard transitions between
them. They may contain noise because they are computed
using noisy point positions. As a result, we used bilateral
filtering to smooth them out while retaining the enhanced
regions. We also introduce a normal correction operation
because anisotropic neighborhood-based normals are prone
to incorrect orientation owing to noisy input normals and
the parameters used for the optimization problem. This cor-
rector operation evaluates the neighboring piecewise smooth
regions for each point to determine which region best fits it.
If the current normal differs considerably from the average
normal of the selected region, we assign this average nor-
mal to the new normal for the corresponding point. We begin
by selecting candidate feature points that may require this
evaluation to define neighboring piecewise smooth regions.
We focus on potential feature points because the points that
belong to the smooth regions do not require normal correc-
tion. We then use a clustering operation that aims to segment
the points around the evaluated point based on their normals.
Each cluster is considered a neighboring piecewise smooth
region whose average normal can be used for normal correc-
tion. This normal filtering step allows us to define reliable
normals and minimize artifacts in the subsequent steps.

In the third step, we apply the same feature candidate
selection and neighborhood clustering operations, though
we use the corrected normals in this case. Then, we detect
sharp feature points using this information, classifying all
points into non-features, edges, or corners. This classifica-
tion is based on measuring the proximity of each point to
the intersection of neighboring planes approximated to the
corresponding piecewise smooth regions.

Finally, in the fourth step, we updated the point positions
to fit them to the filtered normals. The point-updating scheme
depends on the point class defined in the previous step.
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Algorithm 1 Point cloud denoising
1: procedure denoise(P)
2: for i text ← 1 to next do
3: preparingProcedure(P ,εd , k, rs , rr , rb)
4: anisotropicNeighborhoods(P ,α, β, γ , a0)
5: for i tint ← 1 to nint do
6: anisotropicNeighborhoodNormals(P ,τu )
7: for i tns ← 1 to nns do
8: normalSmoothing(P ,σns , σnn)
9: end for
10: for i tnc ← 1 to nnc do
11: roughFeatureClassification(P , τn , τta)
12: neighborhoodClustering(P)
13: normalCorrection(P , εmn)
14: end for
15: roughFeatureClassification(P ,τn ,τta)
16: neighborhoodClustering(P)
17: pointConvexityAnalysis(P ,εcc)
18: sharpFeatureDetection(P ,θ ,δcc)
19: for i t f p ← 1 to n f p do
20: non-featurePointUpdate(P ,τo,σps ,σpn ,υ f )
21: end for
22: featurePointUpdate(P ,τo,υe,υc)
23: end for
24: end for
25: end procedure

The number of iterations for the full set of steps is defined
by parameter next (external). However, because computing
anisotropic neighborhoods is expensive, we also consider
an iterative scheme that applies the following steps within
the full iteration: normal filtering, feature classification, and
point updating. The number of internal iterations is defined
by parameter nint . Algorithm 1 summarizes the proposed
pipeline, in which the color maps the main steps.

4 Preparing procedure

This section describes how we compute the connectivity
information and geometric measurements required for the
algorithm’smain steps. Let us first denote the standard k near-
est neighborhood of a point pi as Nk(pi ), where pi is also
included. The rough normal of a point pi is computed using
principal component analysis (PCA)on the points included in
Nk(pi ), where the eigenvector with the smallest eigenvalue
defines the corresponding direction. These normals are cor-
rected (switching sign) by checking the orientation of the
input normals because they have no consistent orientation.

Then, in an attempt to define an analogous representation
to the first ring neighborhood as a mesh-based representa-
tion for each point pi , we computed a local 2D Delaunay
triangulation using theNk(pi ) points projected on the plane
defined by pi and its corresponding rough normal. Because
the point cloud can present multiple points that are very close
to each other, when we compute the triangulation, we ignore

the points that are at a distance less than εdlro in the 3D
space, where εd is a tolerance factor and lro is a rough aver-
age distance computed considering the distances from each
point to the closest 6 points. The latter allows us to obtain
a more reliable triangulation for the subsequent operations.
For each pi , the points that correspond to the first ring in the
triangulation, including pi , comprise neighborhood N1(pi )
on the point cloud.

Similar to the average edge length computed on mesh-
based representations, we computed the average distance lμ
between points considering the distances from each pi to
p j ∈ N1(pi ), s.t. j �= i . In addition, using the computed
local triangulations, the area where a point pi represents is
obtained by computing the corresponding barycentric cell
area in the 3D space, that is, one-third of the total area of
all triangles that pi shares. We denote all areas as the vector
a = (a1, . . . , an)T , where ai represents the area of point pi .

Then, we define three types of neighborhoods: small, reg-
ular, and big, denoted asNs ,Nr andNb, respectively, which
are defined as follows:

Ns(pi ) = {
p j ∈ P∣∣ ‖x j − xi‖ < rsli

∧〈n j ,ni 〉 > 0
} ∩ Nk(pi ),

Nr (pi ) = {
p j ∈ P∣∣ ‖x j − xi‖ < rr lμ

∧〈n j ,ni 〉 > 0
} ∩ Nk(pi ),

Nb(pi ) = {
p j ∈ P∣∣ ‖x j − xi‖ < rblμ

∧〈n j ,ni 〉 > 0
} ∩ Nk(pi ), (1)

where li is the maximum distance from point pi to any p j ∈
N1(pi ), and rs , rr and rb are parameters used to define the
size of the neighborhoods, s.t. (1 ≤ rs)∧(rr < rb).Ns maps
the immediate interaction between points, Nr represents a
local surface for each point, andNb represents a larger local
surface whose convexity or concavity is more evident. These
neighborhoods were used in different steps of our denoising
algorithm.

Finally, we compute the set of regular normals using
the PCA-based method on the regular neighborhood points
Nr (pi ),maintainingorientation consistency.The anisotropic
neighborhoods were then computed using these normals.

5 Anisotropic neighborhoods computation

The computation of anisotropic neighborhoods is a common
technique used for denoising [24,29,38,64,76,79], where the
notion is to compute local shape adaptive structures that
can then be used to filter out noise while preserving the
features. We present an extension to the point clouds of
mesh-based anisotropic neighborhood computation intro-
duced in [37,38]. These anisotropic neighborhoods aim to
compute pointwise descriptors that define the membership
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of neighboring points to a piecewise smooth surface region
represented by the evaluated points.We assume that a smooth
region presents low normal variation such that the difference
between the two normals of any two points within this region
is minimal. In addition, the shape of the region should be as
regular as possible, centered at the evaluated point, represent
a considerable area on the underlying surface, and present
similar point normals to the normal of the evaluated point.

In a continuous setting, let us consider the 2-manifold X ,
evaluatedpoint x ′ ∈ X , and continuousmembership function
u∗ : X → [0, 1] describing the anisotropic neighborhood,
where 0 denotes no membership and 1 denotes full member-
ship. We aim to determine an optimal membership function
u∗ by solving the following optimization problem:

u∗ = argmin
u

α

∫

xi∈X

∫

x j∈X
‖ni − n j‖uiu j dada

+β

∫

xi∈X
‖x ′ − xi‖uida + γ

∫

xi∈X
‖n′ − ni‖uida

s.t . u ∈ [0, 1] ∧
∫

xi∈X
uda = a0, (2)

where n′ is the normal of x ′, the first term penalizes the nor-
mal variation, the second term penalizes the distance to x ′,
the third term penalizes the normal difference regarding n′,
the upper and lower bound constraints maintain the values
of u∗ between 0 and 1, the linear constraint helps to avoid
0 area solutions by defining an area a0 to be covered by u∗,
and the parameters α, β, and γ control the behavior of the
solution.We do not include a term to control the regularity of
u∗, such as gradient norm penalization, unlike [38], because
point cloud connectivity is not as well defined as mesh con-
nectivity. We indirectly control the regularity of u∗ by tuning
β.

In a discrete setting, considering a point cloudP as a sam-
ple of X , we can represent the coordinates of the evaluated
point x ′ as x′, n′ as n′, themembership function u∗ as the vec-
tor u∗ = (u∗

1, . . . , u
∗
n)

T , the distances between all the points
and x′ as the vectord = (d1, . . . , dn)T , where di = ‖xi−x′‖,
the distances between all the point normals with n′ as the
vector f = ( f1, . . . , fn)T , where fi = ‖ni − n′‖, and the
area for each point as the vector a, described previously. The
optimization problem can then be described as follows:

u∗ = argmin
u

αuTATQAu + βdT a′Au

+γ fT a′Au s.t . 0 ≤ u ≤ 1 ∧ aTu = a0, (3)

where Q is a square matrix whose entries are defined by
qi j = ‖ni − n j‖, A is a diagonal matrix containing the
point areas as diagonal elements, that is, aii = ai , 0 is a
vector of zeros, 1 is a vector of ones, and a′ is the area of
the evaluated point that is used to alleviate the difference

Fig. 1 Anisotropic neighborhood computation behavior. For all cases,
the evaluated point is marked by a black circle, the black arrows
represent the point normals, and the point color defines whether it cor-
responds to the neighborhood (red) or not (yellow)

between the linear and quadratic terms. We compute an opti-
mal solution u∗ for each point that allows us to describe
anisotropic neighborhoods. For practical purposes, we con-
strained the domain of u∗ to the regular neighborhood Nr

of the evaluated point; that is, u∗ = (u∗
1, . . . , u

∗
|Nr |)

T , where
|Nr | denotes the number of elements inNr . In addition, we
define a0 as the proportion of the total area represented by
the corresponding neighborhood.

Figure 1 illustrates the behavior and importance of each
term in the proposed optimization problem. If we consider
only the distance to the evaluated point, we obtain a solution
similar to a regular geometric neighborhood, as shown in
Fig. 1a.We can obtain solutions that are not sufficiently close
to the evaluated point or irregular and sparse solutions by
simply considering the normal difference within the neigh-
borhood, as shown in Fig. 1b. If we consider the distance to
the evaluated point, we can control the regularity and close-
ness of the evaluated points, as shown in Fig. 1c and 1d.
Figure 1c presents a solution that lies on the incorrect face
of the shape. The penalization of the normal difference with
respect to the evaluated point normal can help compute the
desired neighborhood, as shown in Fig. 1d.

Although all terms are important for obtaining the desired
solution, we assign more importance to the normal variation
penalization within the neighborhood in our experiments.
Figure 2 shows an example of the computation of anisotropic
neighborhoods on a noisy point cloud of a cube. The selected
points present challenging situations. The first case shows a
flat point close to a corner, where the computed neighbor-
hood represents the correct face of the cube. The second
case depicts an edge point where the computed neighbor-
hood is defined on only one of the shared faces of the cube.
The third case depicts a corner point, where the computed
neighborhood is defined on only one of the three possible
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Fig. 2 Examples of anisotropic neighborhoods computed using α = 1,
β = 0.1, and γ = 0.5 on the Cube point cloud. The point color maps
the membership value, which ranges from 0 to 1 (yellow to red). A
black circle denotes the evaluated point. The red arrows represent the
point regular normals

faces, as in the previous case. In both cases, the choice of
one of the involved faces was irrelevant for the remainder of
our denoising pipeline.

6 Normal filtering

Our normal filtering step consists of four main sequential
operations. The operations are explained as follows.

6.1 Normal estimation using anisotropic
neighborhoods

We use the anisotropic neighborhoods to estimate the
feature-preserving point normals after we compute them.
The anisotropic neighborhood for a point pi is defined
by a membership function u∗ with values between 0 and
1. We apply a simple threshold operation to select the
member points and construct the neighborhood Na(pi ) ={
p j ∈ Nr (pi )

∣∣u j > τu
}
, where τu defines an acceptable

membership function value.We compute the PCA-based nor-
mal using all included points, whose orientation consistency
is controlled by the regular normal. These anisotropic neigh-
borhood normals enhance feature regions, as shown in Fig. 3.

The selection of τu is not critical because the values of u∗
tend to be close to 0 or 1when using the appropriate values for
α,β, andγ . In contrast to the function proposed in [38],we do
not force smooth u∗ transitions between neighboring points,
so theoptimizationprocess is guidedby thenormal difference
and spatial distance only. Because the input is a noisy point
cloud, including more points with low membership function
values (e.g., 0.2), it increases the normal variability and the
distance to the evaluated point when compared to a solution
with only a few points with values of u∗ equal to 1.

6.2 Normal smoothing using bilateral filter

Because anisotropic neighborhood points are noisy, the
resulting PCA-based normals can also be noisy. For this rea-
son, we smoothed them using a bilateral filtering scheme,

Fig. 3 Normal smoothing using bilateral filtering on the Cube point
cloud. The red arrows represent the normals. The point color maps
the normal direction. Left: anisotropic neighborhood normals. Right:
smoothed normals

aiming to preserve high normal variations in feature regions.
The bilateral filter is applied iteratively to the normal field by
considering spatial and normal distances. The new normal ñi
for each iteration is computed as follows:

ñi = 1

Wn(pi )

∑

p j∈Nr (pi )

wi jn j , (4)

where wi j = Kns
(‖xi − x j‖

)
Knn

(‖ni − n j‖
)
, Kns and

Knn are Gaussian kernel functions used to smooth spatial
and normal distances, Wn(pi ) is a normalization factor, i.e.,
Wn(pi ) = ∑

p j∈Nr (pi ) wi j , and the behavior of the ker-
nels Kns and Knn is defined by the standard deviations σns
and σnn , respectively. The number of smoothing iterations is
defined by the parameter nns . Figure 3 shows an example in
which noisy anisotropic neighborhood normals are processed
to obtain smoother normals and preserve the high variation
in feature regions. These normals better represent the under-
lying surface.

This operation is used to refine anisotropic neighborhood
normals. Thus, we apply only a few iterations using a low
value for σnn and fix σns as a proportion of the average edge
length lμ. The first row in Fig. 4 shows the normal estimation
error for the four test cases using different numbers of itera-
tions and σnn values. Tomeasure the normal estimation error,
we use the root mean square measure with a threshold for
multiple normals (RMSMτ ) introduced in [75]. The bottom-
left corner location of each subfigure represents the error of
the anisotropic neighborhood normals. It is worth noting that
in all cases, we can reduce the normal error by performing a
few smoothing iterations with an appropriate σnn value. For
the first three test cases, we should avoid values of σnn that
are greater than 0.5. The fourth test case represents a surface
with smooth features; therefore, σnn = 0.6 seems to show a
greater improvement. For more details about the test cases
and error measurement, see Sect. 9.

6.3 Rough feature classification and neighborhood
clustering

This operation is required for normal correction and sharp
feature detection. The goal is to estimate the feature candidate
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Fig. 4 Normal estimation error
using RMSMτ on the synthetic
point clouds. For each subfigure,
the horizontal axis represents
different values for σnn , the
vertical axis represents different
values for nns, and the color
represents the RMSMτ values.
The color map follows an
exponential behavior. The first
row corresponds to the results
after normal smoothing, and the
second row corresponds to the
results after normal correction

points and cluster their regular neighborhoods Nr so that
each cluster represents a piecewise smooth region regarding
the processed normals.

First, we select an initial set of candidate feature pointsPm

based on the maximum normal variation within their small
neighborhoods Ns :

Pm =
{

pi ∈ P
∣∣∣∣∣

max
p j ,pk∈Ns (pi )

‖n j − nk‖ > τn

}

, (5)

where τn is a threshold value used to define whether the
difference between normals is sufficient to consider the cor-
responding point as a possible feature.

As in [71], we define three types of points: non-feature,
edge, and corner. We assume that any points not included
in Pm are non-features. Then, considering only the candi-
date feature points, we clustered their corresponding regular
neighborhoodsNr to obtain normal-based piecewise smooth
regions. The clustering process, which uses the processed
normals as inputs, is explained below.

The processed normals can be represented as points on the
Gaussian sphere; therefore, we select the 3 farthest points and
connect them, generating a triangle within the sphere. In the
case of non-feature points, we expect that this triangle will
present an area close to zero because the Gauss sphere points
will be close to each other. We anticipated two dominant
locations in the case of edge points, resulting in an irregular
triangle with an area close to zero. We anticipated distant
points and a triangle with a larger area in the case of corner
points.

Based on these assumptions, we define a threshold trian-
gle area τta to determine whether the evaluated point can be
considered as a corner point candidate. Otherwise, we check
if it is an edge point candidate by measuring the largest dis-
tance between the 3 sampled points. If this distance is greater
than τn , we consider the corresponding point as an edge point
candidate. Otherwise, the point is considered a non-feature
point candidate. Although we filtered non-feature points in

the feature candidate selection operation, we filtered them
again because we usedNr instead ofNs . Let us define Pnfc,
Pec, and Pcc as the sets containing non-feature, edge, and
corner candidate points, respectively. Pnfc also contains the
points that are not included in Pm . We clustered the neigh-
borhood points based on this classification. If the evaluated
point is a non-feature candidate, we assign a single cluster
that contains all regular neighborhood points. If the point is
an edge candidate, we define two clusters whose seeds are
the most distant point normals. The points are then assigned
to the cluster with the closest seed with respect to the nor-
mal difference. If the point is a corner candidate, we define 3
clusters whose seeds are three 3 sampled normals. However,
if the fourth farthest normal is at a distance greater than 1
from these seeds, it is included as an additional seed. The
points were assigned as in the previous case. Figure 5 shows
some examples of regular neighborhood clustering at differ-
ent points in a cone point cloud. It is worth noting that the
previous operations can produce smooth transitions between
normals in areas where the surface is smooth. Furthermore,
the normal at the cone’s corner point represents one of the
surrounding surfaces assigned during anisotropic neighbor-
hood computation, as shown in Fig. 2.

As previously stated, these operations are required in two
stages. We did not include the evaluated points in their cor-
responding clusters in the case of normal correction because
the idea of normal correction is to select the neighboring clus-
ter that best fits the evaluated point. In the case of the sharp
feature detection step, we retain the evaluated points in their
corresponding clusters because they are based on corrected
normals, resulting in more reliable clusters used to define
sharp feature regions.

We adopted these simple operations because we expected
clean normals as inputs. Thus, τn and τta can be tuned by
ignoring noise. τn works as a feature threshold, and τta defines
the possible corner points. Although the number of clusters
is limited to the maximum number of seeds, i.e., 4, we can
approximate various feature types using them.
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Fig. 5 Clustering examples on a cone point cloud viewed from the
top. The first subfigure shows the normals obtained in the previous
operations, where the point colormaps the corresponding direction. The
other subfigures show different clustering examples for different points
(highlighted in yellow), where the point color maps the corresponding
cluster average normal

6.4 Normal correction

Some estimated normals can point in the wrong direction
due to the initial noisy PCA-based normals and the use of
non-ideal parameters for the anisotropic neighborhood com-
putation step, especially for points close to sharp feature
regions. In this operation, we correct these undesired nor-
mals to represent the underlying geometry better and avoid
problems in the following steps.

Once we define the feature candidate points, that is,
Pec ∪ Pcc, we evaluate their regular neighborhood clusters
to define the ones that better fit the corresponding points.
Recall that the clustering applied for this operation did not
include the evaluated points. We used two types of point-to-
cluster distances to measure how well a cluster fits a feature
candidate point.

First, assuming that each cluster represents a plane, we
compute the average point-to-plane distance considering all
planes formed by the cluster points and their corresponding
normals. The average point-to-plane distance dplane for an
evaluated point pi and cluster C is defined as follows:

dplane(pi , C) = 1

|C|
∑

p j∈C

∥∥〈n j , xi − x j 〉
∥∥ , (6)

Fig. 6 Importance of the dch distance. The white point represents the
evaluated point whose normal should be corrected. The green and
blue points represent two different clusters. The red arrows repre-
sent the normals for each point. The dashed colored lines represent
the corresponding approximated planes for each cluster, i.e., (xC,nC).
The colored rectangles represent the CH regions on the corresponding
planes. The evaluated point is closer to the approximated planes of the
green cluster, but it is distant from the corresponding CH region. Con-
sidering both distances, dplane and dch , the evaluated point is closer to
the blue cluster

where |C| denotes the number of elements in C,
Second, we assumed that each cluster represents a

bounded plane region. To define this region, we compute
the average normal nC and average position xC for cluster
C, representing the plane of the cluster. We project all the
cluster points onto this plane and use them to compute a 2D
convex hull (CH) shape that represents the boundaries of the
cluster. We denote the 2D points of the CH as the ordered set
Cπ
ch , which also represents the CH polygon. Distance dch in

this region is defined as follows:

dch(pi , C) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dch_out (pi , C)
if xπ

i lies out

of CH shape

0 otherwise

, (7)

where xπ
i is the projection of xi onto the plane defined by nC

and xC . Term dch_out (pi , C) denotes the conventional point-
to-polygon distance between xπ

i and the corresponding CH
polygon Cπ

ch .
The final point-to-cluster distance is defined as dcluster

(pi , C) = 0.5dplane(pi , C) + 0.5dch(pi , C). Figure 6 illus-
trates the importance of combining both distances, with the
ideal cluster for the evaluated point being blue. However, if
we consider the dplane distance only, the green cluster will
be assigned because its corresponding approximated planes
are closer than those approximated to the blue cluster. Con-
sidering a bounded region in this measurement (i.e., the CH)
allows us to choose the correct cluster.

Then, for each pi ∈ Pec ∪ Pcc, we define the average
normal of the closest cluster as n∗

C with respect to distance
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Fig. 7 Normal correction on the Cube point cloud. The red arrows
represent the normals. The point color maps the normal direction. The
circled point presents an incorrect normal direction which is modified
after normal correction. Left: normals generated after the smoothing
operation. Right: corrected normals

dcluster . If ‖ni − n∗
C‖ > τn we assign n∗

C as the corrected
normal for pi . Note that the normal is updated only if the
new normal is significantly different. For example, in the
cone point cloud presented in Fig. 5, the normals will not
undergo modifications because the corresponding cluster
average normals are similar to the current normals. This cor-
rector operation is iterative, where the number of iterations is
defined by the parameter nnc, and rough feature classification
and neighborhood clustering procedures are applied for each
iteration. However, the greater the number of iterations, the
greater the chance of introducing artifacts. In our preliminary
experiments, we found that 2 or 3 iterations were sufficient
to improve the smoothed normals. The second row in Fig. 4
shows the RMSMτ results when using this corrector opera-
tion, where we can see a slight improvement. Figure 7 shows
an example of how some normals are corrected to generate a
more reliable normal field. This operation is one of the main
novelties of our proposal, and it is required in the following
steps to define accurate edge lines.

The distance to non-selected clusters can be very similar to
the distance to the closest cluster in the case of true edges and
corner points. This allows us to adopt a multi-normal scheme
that is useful for the point-updating step, particularly for the
updating of non-feature points (more details in the following
sections). We denote the closest cluster as C∗. We consider
the average normal nC of another cluster C to be an additional
normal if dplane(pi , C) < dplane(pi , C∗)+εmn , where εmn is
the tolerance value used to define the proximity criteria. We
do not consider the distance dch for this estimation because
the CH of the closest cluster can include consecutive edge
points, generating a considerable dch distance from the other
clusters. Figure 8 illustrates this case, where the evaluated
point presents dch distance equal to 0 for the green cluster
and a considerable dch distance for the blue cluster. Thus,
the blue cluster will never be considered for multi-normal
assignment if the tolerance value is too restrictive.

7 Sharp feature detection

We aim to detect feature points precisely using the corrected
normals by estimating the edges of the underlying surface and

Fig. 8 Excluding dch for multi-normal analysis. The white point
represents the evaluated point, for which we expect a multi-normal
assignment since it is located on the edge of the underlying surface. The
green and blue points represent two different clusters. The red arrows
represent the normals for each point. The colored dashed lines repre-
sent the corresponding CH regions. The evaluated point is considerably
distant from the blue cluster, regarding dch

selecting only the closest points to them as features, avoiding
the inclusion of nearby points that can be considered part of
the surrounding smooth regions.

First, we apply the same process used for normal filtering
to cluster point regular neighborhoods of feature candidate
points; however, in this case, we include the evaluated point
pi in the corresponding closest cluster C1.We define the other
possible clusters as Cm , wherem ∈ {2, 3} orm ∈ {2, 3, 4} for
the corner candidate points andm = 2 for the edge candidate
points.

Then, to define if pi is a feature point, pi should be the
closest point to the edge between C1 and Cm within a narrow
neighborhoodwhose principal direction crosses the edge tan-
gent line perpendicularly at the closest point to pi . Figure 9
illustrates this concept, where we show that multiple points
pi are selected as feature points because they are the closest
points to the edge of the underlying surface within their nar-
row neighborhoods. Note that in all cases, the green and blue
clusters represent curved andflat surfaces, respectively. Thus,
the edge of the underlying surface is a curve that is difficult to
approximate owing to the point distribution and presence of
noise. Therefore, we use multiple planes to approximate the
local surface of pi and the local surfaces for each p j ∈ Cm ,
generating intersection lines between the plane of pi and the
planes of each p j . These lines approximate the edge of the
underlying surface, and we use them to define whether point
pi is a feature point.

ConsiderPi andP j as the planes formed by the coordi-
nates and normals of pi and point p j ∈ Cm . The intersection
betweenPi andP j is considered the edge line for this pair
of points, the direction of which is denoted by ei j . Subse-
quently,we compute a vector e⊥

i onPi pointing in a direction
orthogonal to ei j , that is, e⊥

i = ni × ei j . Following the same
idea, we compute a vector e⊥

j onP j orthogonal to ei j , that is,
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Fig. 9 Sharp feature detection intuition. In the first four subfigures, we
show the sharp feature detection analysis for four different points pi
(circled in red) that are considered sharp feature points. The red arrows
represent the corrected normals, the point color of the corresponding
cluster, and the dashed line at the edge of the underlying surface. The
shaded region defines the region we should analyze (narrow neighbor-

hood) for each point to define if it is the closest one to the edge of the
underlying surface. The last subfigure shows how the detected sharp
feature points should be updated to approximate the edge of the under-
lying surface, where the yellow points are non-feature points and the
red points are sharp feature points

Fig. 10 Sharp feature detection narrow neighborhood. The blue points
correspond to C1. The green points correspond to Cm . The shaded region
defines the field of view onPi andP j . The points that lie in this region
are considered part of the narrow neighborhood

e⊥
j = n j ×ei j . Using e⊥

i and e⊥
j , we define the narrow neigh-

borhood for both clusters as follows. For C1, We projected all
cluster points on the planePi . Subsequently, we trace a line
centered at xi in the direction e⊥

i . This line, combined with a
tolerance angle θ , defines the field of Pi . Thus, if we trace
a line from xi to another projected point included in C1 and
the angle between both lines is lower than θ/2, we consider
the corresponding point as part of the narrow neighborhood.
For Cm , we first define the projection of xi onto P j as x

π j
i .

Then, we project all the points included in Cm onto the plane
P j . Similar to the previous case, we trace a line centered at
x

π j
i along the direction e⊥

j , which, combined with the same
tolerance angle θ , defines a field of view of P j . As in the
previous case, we consider the points that lie in the field of
view as part of a narrow neighborhood. Figure 10 illustrates
the definition of this narrow neighborhood.

Then, for each point p j , we check if pi is the closest point
to the intersection line between the planes Pi and P j by

considering the points included in the corresponding narrow
neighborhoods defined on C1 and Cm . If pi is the closest point
for all p j ∈ Cm , we consider pi to be a feature point regarding
Cm . Using this information, we classify each point pi into
non-features, edges, or corners as follows: If pi is not the
closest point considering all available Cm clusters, we assign
it to the set Pn f of non-feature points. Pn f also includes
non-feature candidate points Pn f c. If pi is the closest point
to only one cluster C′

m , we assign it to the set Pe of the edge
points. For this set of points, we also included a global edge
direction ei by selecting the direction ei j of the closest edge
line regarding the cluster C′

m . If pi is the closest point of the
two clusters, we measure whether it is a local maximum or
a minimum regarding an approximated tangent plane. We
define this tangent plane using the regular normal computed
in the preparation procedure and point position xi . If all the
points inNb(pi ) are below this plane or all of them are over
it, we assign pi to the set of corner points Pc; otherwise, we
assign it to Pe. This analysis does not consider all possible
corner types; it focuses on salient corners, that is, peaks and
valleys.

Owing to the noise in the point cloud, the edge lines can
pass through the feature candidate points, allowing non-ideal
points to be considered the closest. Figure 11 shows an exam-
ple in which the points are projected onto a plane defined
by ei j . The edge line between pi and p j is represented by
a single point (red), which is the intersection of the corre-
sponding planes Pi and P j , represented by black lines.
We expect that pi should be considered as the edge point in
this case because the local neighborhood represents a convex
surface. However, pi is not the closest point to the edge line
because of the noisy point positions and estimated normals.
To avoid this problem, we estimate a more external edge line
for convex regions and a more internal edge line for concave
regions; that is, we apply a displacement of δcc to planesPi

andP j , following their normal directions for convex points
and following their opposite normal directions for concave
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Fig. 11 Convexity-based displacement ofPi andP j . The blue points
correspond to C1. The green points correspond to Cm . The red arrows
represent the point normals. The red point represents the edge line
between Pi and P j . The yellow point represents the edge line after
applying the displacement δcc. Note that pi is not the closest point to
the red point, but it is the closest to the yellow one

Fig. 12 Sharp feature detection on the Cube point cloud. Non-feature
points are colored in yellow; edge points are colored in orange and
corner points are colored in red. Left: result using δcc = 0. Right: result
using δcc = 0.5lμ

points. The dashed lines in Fig. 11 represent the new plane
positions and the yellow point represents the new edge line.
pi is the point closest to the edge line. Figure 12 shows an
example of how this displacement affects the selection of the
sharp feature points. The selection of an appropriate δcc value
depends on the noise level. The greater the noise, the higher
the value of δcc.

To define whether a point pi is convex or concave, we first
computed a smooth version of the point cloud using regular
Laplacian smoothing on the Riemannian graph defined by
Ns . For this process, we used 10 smoothing iterations and 0.2
step size. This smooth representation enables the assessment
of a cleaner local surface approximation for pi . For each pi ,
we compute the average regular normal ni of the neighboring
points regarding Ns and the centroid ci of the neighboring
points regarding Nb using the point positions of the smooth
representation. We then define the plane defined by pi on the
smooth surface and ni asP . If ci is at a distance greater than
εcc from P , is below it, we consider pi , and is below it. If
ci is at a distance greater than εcc fromP and is over it, we

Fig. 13 Sharp feature detection on the Block point cloud through dif-
ferent denoising iterations. Non-feature points are colored in yellow,
edge points are colored in orange, and corner points are colored in red.
From left to right: first iteration, second iteration, third iteration, and
fourth iteration

consider pi to be concave. Otherwise, we consider pi to be
undefined, and no displacement is applied to Pi and P j .
We introduced big neighborhood Nb for the computation of
ci becauseNr can be too small for convexity analysis. If we
increase the size of Nr , we can disturb other procedures.

Figure 13 shows an example of the behavior of the sharp
feature detectionmethod for different iterations of the denois-
ing algorithm.We can see that the feature points are precisely
selected, even in the presence of high noise levels, and that
they quickly begin converging to the edge lines of the under-
lying surface. In contrast to other methods, we do not require
an explicit threshold parameter defining if a point is a fea-
ture because we select the closest points to the edge lines
instead. In Sect. 9, we present examples of how the denois-
ing algorithm benefits from this approach. The sharp feature
detection procedure is summarized in Algorithms 2 and 3,
where we assume that neighborhood clustering and convex-
ity analysis are performed. In these algorithms, the function
intersection returns the intersection line between two planes,
function angle returns the minimum angle between two vec-
tors, function distance returns the distance between a point
and a line, function projection returns the projection of
a point on a plane, and function cornerCheck represents
the last filtering operation applied to the possible corner
points.

8 Point updating

Once we have a set of filtered normals and the point classi-
fication, we update the point positions using an adaptation
of the method proposed in [71], which applies a different
point-updating scheme depending on the point class. For
all updating operations, we consider the neighborhood Np,
which denotes a small neighborhood without including pi ,
that is,Np(pi ) = Ns(pi ) − {pi }. We first iteratively update
non-feature points to update the edge and corner points
simultaneously. As in [71], we constrained the possible dis-
placement of each point to a Euclidean sphere with radius τo
centered at the original noisy point position. In the following
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Algorithm 2 Sharp feature detection
1: procedure sharp feature detection(P ,θ ,δcc)
2: Pn f ← Pn f c, Pe ← {}, Pc ← {}
3: for each pi ∈ Pec ∪ Pcc do
4: L ← getNeighborhoodClusters(pi )
5: C1 ← L[1]
6: if pi is convex then
7: δ ← δcc
8: else if pi is concave then
9: δ ← −δcc
10: else
11: δ ← 0
12: end if
13: Pi ← (xi + δni ,ni )
14: f eature_count ← 0
15: for each Cm ∈ L − {C1} do
16: is_ f eature_cluster ← True
17: for each p j ∈ Cm do
18: P j ← (x j + δn j ,n j )

19: (ei j , xi j ) ← intersection(Pi ,P j )
20: e⊥

i ← ni × ei j , e⊥
j ← n j × ei j

21: is_ f eature_cluster_point ← True
22: N i

narrow ← narrowNeighs(C1,Pi ,xi ,θ)
23: N

j
narrow ← narrowNeighs(Cm ,P j ,xi ,θ)

24: Nnarrow ← N i
narrow ∪ N

j
narrow

25: d ← distance(xi ,(ei j , xi j ))
26: for each pk ∈ Nnarrow do
27: if distance(xk ,(ei j , xi j ))< d then
28: is_ f eature_cluster_point ← False
29: break
30: end if
31: end for
32: if is_ f eature_cluster_point is False then
33: is_ f eature_cluster ← False
34: break
35: end if
36: end for
37: if is_ f eature_cluster is True then
38: f eature_count ← f eature_count + 1
39: end if
40: end for
41: if f eature_count > 1 then
42: if cornerCheck(pi ) is True then
43: Pc ← Pc ∪ {pi }
44: else
45: Pe ← Pe ∪ {pi }
46: end if
47: else if f eature_count == 1 then
48: Pe ← Pe ∪ {pi }
49: else
50: Pn f ← Pn f ∪ {pi }
51: end if
52: end for
53: return (Pn f ,Pe,Pc)

54: end procedure

section,we describe the updating scheme for each point class.
Please refer to [71] for further details on updating operations,

Algorithm 3 Narrow neighborhood
1: procedure narrow neighs(C,P ,x,θ)
2: Nnarrow ← {}
3: xπ ← projection(x,P)
4: for each pk ∈ C do
5: xπ

k ← projection(xk ,P)
6: if angle(xπ

k − xπ , e⊥
j ) ≤ θ/2 then

7: Nnarrow ← Nnarrow ∪ {pk}
8: end if
9: end for
10: return Nnarrow
11: end procedure

Non-feature point updating for each point pi ∈ Pn f , the
new position x̃i is computed as follows:

x̃i = xi

+ υn f

⎛

⎝ 1

Wp(pi )

∑

p j∈Np(pi )

wi j 〈n∗
j , x j − xi 〉ni

⎞

⎠ ,
(8)

where wi j = Kps
(‖xi − x j‖

)
Kpn

(
‖ni − n∗

j‖
)
, Kps and

Kpn are Gaussian kernel functions used to smooth spatial
and normal distances, Wp(pi ) is a normalization factor, i.e.,
the sum of all the used weights wi j , the behavior of the ker-
nels Kps and Kpn is defined by the standard deviations σps

and σpn , respectively, n∗
j = argmaxnk∈M j

K pn (‖ni − nk‖),
M j denotes the set of multi-normals for the point p j , com-
puted during normal correction, and υn f controls the amount
of displacement for each update. The multi-normals allow
the usage of close edge or corner points whose main normal
points in a different direction from ni . This updating opera-
tion is applied iteratively, where nn f p denotes the number of
iterations.

Edge point updating for each point pi ∈ Pe, the new
position x̃i is computed as follows:

x̃i =xi + υe

⎛

⎜
⎝

⎛

⎝
∑

p j∈Np(pi )

nπ
j

(
nπ
j

)T + eieTi

⎞

⎠

−1

⎛

⎝
∑

p j∈Np(pi )

(
nπ
j

(
nπ
j

)T
x j + eieTi xi

)⎞

⎠ − xi

⎞

⎠ ,

(9)

where nπ
j = n j − 〈n j , ei 〉ei and υe controls the amount of

displacement.
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Fig. 14 Denoising examples on the sphere and tetrahedronpoint clouds.
Left: noisy point clouds. Right: denoised point clouds using the pro-
posedmethod. The point colormaps the corresponding normal direction

Corner point updating for each point pi ∈ Pc, the new
position x̃i is computed as follows:

x̃i = xi + υc

⎛

⎜
⎝

⎛

⎝
∑

p j∈Np(pi )

n jnTj

⎞

⎠

−1

⎛

⎝
∑

p j∈Np(pi )

n jnTj x j

⎞

⎠ − xi

⎞

⎠ ,

(10)

where υc controls displacement.
Figure 14 shows some simple examples using the pro-

posed denoising method, and we can see that it is capable of
dealing with smooth and sharp surfaces.

9 Results

We compared our method to point cloud denoising, normal
estimation, and feature detection methods. We used seven
non-uniformmeshmodels for the numerical evaluation, with
the vertices acting as input point clouds and corrupted with
synthetic noise (see Fig. 15). These synthetic point clouds are
named Armadillo, Casting, Cube, Dragon, Fandisk, Octahe-
dron, andRockerArm, and are corruptedwithGaussian noise
in randomdirectionswithσ = 0.5lro,σ = 0.5lro,σ = 0.3lro,
σ = 0.5lro, σ = 0.28lro, σ = 0.3lro, and σ = 0.3lro, respec-
tively. These models are used in [66] and [71]. We used point
clouds generated from raw scans of objects with sharp fea-
tures for visual evaluation. We refer to them as shutter, iron,

and tool, respectively. These data were used by [36]. We
also consider the Gargoyle point cloud, which is a partial
scan included in [71], the Building point cloud, which is a
sampled point cloud from [58], the Twelve and Cube2 point
clouds, which are included in [45], the Block model used
in [38], the Mug model included in [63], and the BoxUnion
point clouds used in [55].

9.1 Parameter setting

Although we introduce several parameters in our denoising
pipeline, we define the following default values: εd = 0.01,
k = 50, rs = 1.5, rr = 3, rb = 2.5rr , α = 1, β = 0.1,
γ = 0.5, a0 = 0.35

∑
ai∈a ai , τu = 0.3, σns = 1.5lμ,

σnn = 0.3, nns = 7, τn = 0.2, τta = 0.2, nnc = 2,
εmn = 0.1lμ, θ = 110◦, δcc = 0.5lμ, εcc = 0.2lμ,
τo = 2lμ, σps = 2lμ, σpn = 0.5, υnf = 0.3, nnfp = 3,
and υe = υc = 0.5. These values were defined empirically
by independently evaluating the corresponding operations on
a set of test cases. For practical purposes, we define a subset
of these parameters, including nint and next, which have a
significant impact on the denoising task. These parameters
and their recommendations are presented below.

The feature size of the regular neighborhoods are used in
several operations of the pipeline, and their size is based on
k and rr . Depending on the point cloud feature sizes, rr can
be tuned to better preserve them. rr defines the proportion
of the average distance lμ that is used to define the radius
of the regular neighborhood. The smaller the feature size,
the smaller the regular neighborhood. If we note that the
small features are represented simply by immediate points,
rr = 1.5 can be the appropriate value. If a feature region
requires several points to approximate its shape, we should
consider a higher value for rr . The Gargoyle point cloud,
for example, displays very small features represented by a
few points, whereas the Iron point cloud displays larger fea-
tures represented by several points. Parameter k is used to
define the maximum number of points to be included in the
regular neighborhoods. Thus, the higher the value of rr , the
higher the value of k. In addition, consider k as a critical
parameter regarding the execution time because it defines
the complexity of the quadratic optimization problems used
for anisotropic neighborhood computation.

The noise intensity next and nint control the number of
iterations of the proposed algorithm. Ideally, we should fix
nint = 1 and tune next only to execute all the algorithm steps
for each iteration. However, applying the anisotropic neigh-
borhood computation several times results in high execution
times when the input point cloud contains a high number of
points. Thus, nint functions as a practical parameter to avoid
multiple full-step executions. The tuning of these parame-
ters is proportional to the amount of noise in the input; the
more noise, the more iterations are required. In addition to
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Fig. 15 Normal estimation (first row) and feature detection (second
row) results obtained from the first iteration of our denoising pipeline.
For normal estimation, the point color maps the normal direction. For

feature detection, non-feature points are yellow, edge points are orange,
and corner points are red. From left to right: Armadillo, Casting, Cube,
Dragon, Fandisk, Octahedron, and RockerArm

nint and next, when the noise level is high, we should tune δcc
and τo. As explained in the previous sections, when the noise
level is high, the reference edge lines are inappropriate for
sharp feature detection (see Fig. 11). Therefore, the higher
the noise, the higher the value of δcc. When the noise level
is high in the case of τo, some points are too far from their
ideal positions. Thus, for these cases, we should increase the
distance constraint to the original point positions introduced
in the point-updating scheme, that is, τo. We recommend that
δcc and τo depend on lμ as many of the default values.

The sharpness nns and σnn allow us to control the smooth-
ness of the normal field. nns denotes the number of smoothing
iterations. For sharp feature preservation, we do not require
many iterations. In case we are handling smooth features,
we can increase the number of iterations to obtain a normal
field that fits the smooth surfaces better, as shown in Fig. 4.
Furthermore, we can increase the value of σnn, which defines
the normal weight difference in the bilateral filter. As in sev-
eral bilateral normal filtering schemes, the recommendation
is to use σnn values close to 0.3 for sharp surfaces and σnn
values close to 0.8 for smooth surfaces. It is important to note
that if we oversmooth the normal field, sharp features will be
lost. In addition to these parameters, τn is used as a feature
threshold in the different steps of our algorithm. It defines an
acceptable normal difference value to consider a region as
a sharp feature candidate. Similar to the parameters used in
the bilateral filter, for smooth surfaces, we can increase the
value of τn to detect fewer features.

We did not see a significant improvement in the denoising
task in our preliminary experiments despite the fact that the
other parameters could be tweaked. Furthermore, many of
them are independent of the evaluated point cloud, or their
default values are based on relative measurements that make
them robust.

The tuned parameters for each point cloud are described as
follows: Armadillo: (next = 2, nint = 1, rr = 2.5, nns = 2).
Casting: (next = 2, nint = 2, rr = 2.5, nns = 2). Cube:
(next = 9, nint = 1). Fandisk: (next = 1, nint = 5). Dragon:
(next = 2, nint = 1, rr = 2.5, nns = 2). Octahedron:

(next = 1, nint = 10). RockerArm (next = 1, nint = 3).
Shutter: (next = 2, nint = 5). Iron: (next = 3, nint = 5,
k = 75, rr = 4). Tool: (next = 1, nint = 5). Gargoyle:
(next = 1, nint = 3, rr = {2, 2.5, 3}, nns = 1). For the
block point clouds, we fixed nint = 1, and next was modi-
fied depending on the noise level. Default values were used
when the parameter was not specified. The input normals for
all cases were computed using the PCA-based normal esti-
mation method (20 neighbors) implemented in the MeshLab
software [14].

9.2 Normal estimation evaluation

Normal estimations can be compared in different ways. In
this experiment, we adopted the feature-preserving evalua-
tion method described in [75]. We can compute the per-point
ground-truth multi-normals by assigning the normals of the
clean faces shared by the corresponding vertex because syn-
thetic noisy point clouds correspond to the perturbation of the
vertices of a clean mesh. Then, given an estimated normal in
the point cloud data, we can compare it with the most sim-
ilar normal from the available ground-truth multi-normals.
RMSMτ allows us to measure the normal estimation error.

For our method, we selected the normal filtering results
of the first iteration in the denoising pipeline. We compared
these with the results of [12,32,44,51,75], which we refer
to as PCA, JET, VCM, PCV, and DFP, respectively. For the
PCA, JET, and VCM methods, we used the implementation
provided in the CGAL library [62]. In the case of PCA and
JET, we used 18 neighbors because they generated the best
results for RMSMτ . Similarly, for the VCM method, we
use 1.5lμ for both the offset and convolutional radii. For the
PCV method, we used the implementation provided by the
authors, considering S∗ = 100 for all the point clouds, as in
their experiments. In the case of the DFP method, we used
the implementation of the authors and selected the predicted
normals of the first iteration in their denoising pipeline. This
implementation presents some limitations when processing
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Table 1 Normal estimation
results using RMSMτ

Method Arma. Cast. Cube Drag. Fand. Octa. Rock.

PCA 0.46238 0.70172 0.89779 0.64127 1.32275 1.33386 1.56447

JET 0.47469 0.72091 0.91207 0.64531 1.32273 1.33400 1.56509

VCM 0.44712 0.62568 0.91020 0.62283 1.31394 1.33260 1.56515

PCV 0.54849 0.51202 0.06235 0.70066 1.26109 1.30732 1.56655

DFP – – 0.51596 – 1.29163 1.31418 1.56811

Ours 0.69567 0.62780 0.03169 0.81419 1.24833 1.30740 1.56730

The best results are highlighted in bold

Table 2 Feature detection
accuracy results

Method Arma. Cast. Cube Drag. Fand. Octa. Rock.

VCM 0.747 0.823 0.749 0.714 0.835 0.905 0.857

FREEUPC 0.758 0.756 0.844 0.753 0.789 0.915 0.839

DFP – – 0.724 – 0.784 0.879 0.713

Ours 0.757 0.879 0.997 0.687 0.932 0.953 0.811

The best results are highlighted in bold

Table 3 Denoising results using
Gaussian noise

Method Metric Arma. Cast. Cube Drag. Fand. Octa. Rock.

APSS Dp 0.17347 0.00033 0.01386 0.20402 0.00619 0.00117 0.07060

RMSMτ 0.40497 0.66547 0.79453 0.63235 0.65859 0.44468 1.56428

RIMLS Dp 0.16603 0.00030 0.01828 0.18762 0.00602 0.00101 0.06017

RMSMτ 0.36583 0.59619 0.87196 0.56784 0.58685 0.44420 1.56535

MRPCA Dp 0.17764 0.00034 0.01841 0.19699 0.00577 0.00084 0.07746

RMSMτ 0.52573 0.82874 0.48890 0.62868 0.49439 0.31465 1.56547

DFP Dp – – 0.01842 – 0.00711 0.00106 0.08189

RMSMτ – – 0.50299 – 0.53786 0.36327 1.56814

CNVT Dp 0.19440 0.00054 0.00645 0.27554 0.01083 0.00043 0.16511

RMSMτ 0.93385 0.97103 0.48283 0.98734 0.38188 0.01685 1.56616

PCNET Dp 0.19966 0.00037 – 0.23177 0.01072 0.00245 0.11312

RMSMτ – – – – – – –

PFILTER Dp 0.26721 0.00036 – 0.35317 0.00568 0.00125 0.07893

RMSMτ – – – – – – –

SCORE Dp 0.19138 0.00036 0.02004 0.21706 0.01125 0.00299 0.14737

RMSMτ – – – – – – –

Ours Dp 0.16840 0.00030 0.00385 0.18958 0.00308 0.00041 0.07770

RMSMτ 0.57709 0.48298 0.00829 0.72447 0.23504 0.00997 1.56678

The best results are highlighted in bold

point clouds with a high number of points (e.g., armadillo,
dragon, and casting).

Table 1 lists the RMSMτ results for the seven main syn-
thetic point clouds. For the cube and Fandisk cases, our
method outperformed the others. For the Octahedron, we
obtained the best results with the PCV method. In the case
of RockerArm, all methods achieved results with similar
RMSMτ . VCM obtains the best results for Armadillo and
Dragon and PCV for casting. It should be noted that there
is no dominant method that achieves good performance in
all test cases, and we believe that our algorithm parameters

were tuned for the iterative denoising problem. The first row
in Fig. 15 shows normal results. We observe that our nor-
mals are piecewise smooth, and the transitions are enhanced.
In addition, these normals can maintain a certain smoothness
at curved surfaces, as shown in the Fandisk model.

9.3 Feature detection evaluation

The feature detection problem can be modeled as a classi-
fication problem, and it can be evaluated using an accuracy
metric. To generate ground-truth feature points on the syn-
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thetic noisy point clouds, we select the corresponding vertex
in the clean mesh for each point and check whether its shared
face normals form an angle greater than 18◦. If the latter
occurs, the evaluated point is labeled as a feature point. This
methodology for ground-truth feature point estimation was
also used by [44].

We selectedPe ∪Pc from the first iteration in our denois-
ing pipeline as the detected features.We compared our results
with those of [3,44,51], called VCM, FREEUPC, and DFP.
We used the CGAL implementation of VCM with 3lμ as the
offset radius and 1.5lμ as the convolutional radius. For the
FREEUPC method, we used the implementation provided
by the authors and the following parameters for each point
cloud. Armadillo: (k = 25, σ = 0.05). Casting: (k = 25,
σ = 0.05). Cube: (k = 18, σ = 0.07). Dragon: (k = 25,
σ = 0.05). Fandisk: (k = 25, σ = 0.05). Octahedron:
(k = 25, σ = 0.05). RockerArm: (k = 25, σ = 0.05). We
tuned theparameters for bothmethods,VCMandFREEUPC,
to achieve the highest accuracy. We chose the first iteration’s
feature detection results for the DFP method.

Table 2 presents the accuracy results. For the casting,
cube, Fandisk, and Octahedron, our method outperforms
the others, with accuracies higher than 0.87. In the case of
Armadillo, our method presents an accuracy similar to that
of the FREEUPC results. The VCM method achieved the
highest accuracy for the RockerArm. Our method performs
better when the features are sharp, which is not the case with
this model. The second row of Fig. 15 shows the results.
We can see that the detected feature regions tend to be thin,
which is an important condition for our denoising pipeline
to avoid the generation of gaps and excessive agglomeration
of points at the underlying feature regions. Furthermore, as
illustrated inFig. 13, the estimated feature pointswere refined
via denoising iterations. Other methods estimate thicker fea-
ture regions, which is undesirable for denoising algorithms.

9.4 Denoising evaluation

Weused twodifferentmetrics to performa numerical eval-
uation of denoising results on synthetic point clouds. First,
we measure the double-sided average Euclidean distance Dp

between the denoised point positions and ground-truth posi-
tions, that is, the positions of the original point cloud. Second,
we use RMSMτ to measure the normal error between the
denoised normals of the last denoising iteration and the
ground-truth multi-normals defined on the original point
cloud. The closest points between the point sets are chosen
to define their correspondence.

For synthetic point clouds, we compared our method with
[25,44,48,49,53,55,71,74], namelyAPSS,RIMLS,MRPCA,
DFP, CNVT, PCNET, PFILTER, and SCORE, respectively.
For APSS and RIMLS we used the MeshLab implementa-
tion, whereas, for the others, we used the implementations

provided by the corresponding authors. For the APSS,
RIMLS, and CNVT, the parameters used on the cube, Fan-
disk, Octahedron, and RockerArm were the same as those
described in [71]. In the case of the Armadillo, casting, and
dragon, we use (h = 4, nits = 15, α = 0) for the APSS and
(σr = 4, σn = 0.75) for the RIMLS. For the CNVT, we used
(τ = 0.2, ρ = 0.9, p = 15) for the Armadillo and Dragon,
and (τ = 0.3, ρ = 0.9, p = 150) for casting. The parameters
for theMRPCAmethodwere tuned to achieve the best results
for Dp. These parameters are defined as follows: Armadillo:
(k = 30, σ = 15, r = 3). Casting: (k = 30, σ = 15, r = 3).
Cube: (k = 30, σ = 15, r = 5). Dragon: (k = 30, σ = 15,
r = 3). Fandisk: (k = 30, σ = 15, r = 3). Octahedron:
(k = 30, σ = 15, r = 4). RockerArm: (k = 30, σ = 15,
r = 3). In the case of data-driven methods, that is, DFP,
PCNET, PFILTER, and SCORE, we use the corresponding
pre-trainedmodels and the following number of iterations: 2,
1, 2, and 1. PCNET, PFILTER, and SCORE did not compute
the final normal field. Therefore, we cannot compare them
using RMSMτ .

Table 3 shows the Dp and RMSMτ results for point clouds
corrupted with Gaussian noise. Our method outperforms the
others by considering both metrics for the cube and Octahe-
dron. In Fig. 16, we can observe that the APSS, RIMLS, and
MRPCA methods generate rounded regions at the corners
and edges, but MRPCA produces sharper normal transitions
at the edge regions. For some points, theDFP attempts to pre-
serve the sharp features; however, the overall results appear
unstable and noisy. In comparison to previous methods, the
CNVT result is noise-free in flat regions and better preserves
edges and corners. Nonetheless, it has gaps near the edges,
and multiple points converge to the same position. This phe-
nomenon occurred because the coarse feature points detected
byCNVTwere displaced to the edge lines. On the other hand,
our method presents a clean surface, enhances sharp feature
regions, and maintains a more uniform distribution, avoid-
ing the generation of gaps and agglomeration of points at the
underlying sharp feature regions.

In contrast to the cube and Octahedron, the casting and
Fandisk present curved regions in addition to the flat and
sharp regions. Our method also outperformed the others in
these cases for both metrics, Dp and RMSMτ . Figure 17
shows the visual results for Fandisk, where we can see the
same phenomena as in the previous cases for the APSS,
RIMLS,MRPCA, andDFPmethods.Additionally, theAPSS
and RIMLS generate false bumpy features. Although CNVT
produces clean flat and curved regions, the edges are noisy.
Our method is capable of preserving and enhancing sharp
feature regions while keeping curved regions smooth.

In the case of Armadillo and Dragon, we obtained the best
Dp results with RIMLS. However, RIMLS obtained consid-
erably better RMSMτ results. The latter occurs because these
point clouds present several smooth features, which are not
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Fig. 16 Results obtained on the Cube point cloud. The point color maps the direction of the normals

Fig. 17 Results obtained on the Fandisk point cloud. The point color maps the direction of the normals

Fig. 18 Results obtained on the Dragon point cloud. For visualization purposes, we reconstruct mesh models using [39]. The models are rendered
using flat shading. The APSS oversmooths the surface and the RIMLS generates bumpy regions

Fig. 19 Results obtained on the Octahedron point cloud. Comparison with data-driven methods. For visualization purposes, we reconstruct mesh
models using [8]. The models are rendered using flat shading
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Fig. 20 Results obtained on the Armadillo. Comparison with data-driven methods. For visualization purposes, we reconstruct mesh models using
[39]. The models are rendered using flat shading

the main focus of our method, and whose error contribution
is dominant. Figure 18 shows the mesh reconstruction of the
Dragon point cloud results using [39], where we can see that
the RIMLS reconstruction presents the same bumpy artifacts
as those shown in Fig. 17. In addition, we can see how APSS
oversmooths the sharp feature regions. Ourmethod preserves
and enhances sharp features and does not introduce bumpy
artifacts.

As mentioned previously, the features of RockerArm are
not sharp. The RIMLS method achieved the best result for
this case, and the CNVT was the worst regarding Dp. Our
algorithm enhances the smooth features, generating sharp
regions that are not present on the underlying surface. This
effect may be expected, depending on the application. For
example, a shape-compression algorithm may prefer well-
defined transitions between piecewise smooth regions for
surface splitting. Although we can tune other parameters to
obtain better results regarding Dp and a smoother surface,
we use default parameters to demonstrate their robustness
against different examples.

Except for DFP, the rest of the data-driven methods do
not use specific processing for sharp features. As a result,
when compared to feature-preserving methods, they did not
achieve good numerical results in our test cases. Figure 19
shows a visual comparison of data-driven methods on the
Octahedron. We can see that our method outperforms these
other methods in preserving sharp features. In addition, note
that the other methods do not completely remove the noise.
Similarly, Fig. 20 shows the results for Armadillo, where
we can see how our method better preserves the details
and removes noise efficiently. Data-driven methods strongly
depend on the generality of the training dataset. Despite
their efforts to learn how to reconstruct surface details,
conventional geometry-processing methods work better for
restoring sharp features.

To evaluate our method against impulsive noise, we cor-
rupted synthetic point clouds using it. For each synthetic
point cloud, 50% of the points are corrupted using σ =
0.5lro. For all methods, we used the same parameters as
those used for the Gaussian noise test cases. Table 4 lists the
corresponding Dp and RMSMτ results. We can see similar

behavior in Table 3, showing that our method is also robust to
this type of noise. Figure 21 shows the casting results, where
we can see how our method also preserves the sharp fea-
tures and curved regions in the presence of impulsive noise.
The APSS, RIMLS, and MRPCA oversmooth the sharp fea-
tures, whereas the CNVT made feature points converge to
edges that were not present on the underlying surface. Our
method successfully removes both types of noise-Gaussian
and impulsive-without the need for separate parameter tuning
for each.

In addition to the synthetic examples, we visually evalu-
ated our method on real scans of objects with sharp features.
In this case, we compared ourmethod toMRPCA andCNVT
because they handle sharp features better. We also included
the results of [43] (FPF) for the iron point cloud provided by
the authors. In the case of MRPCA, we use the same param-
eters described in the paper for the Shutter and the Iron, and
(k = 30, σ = 15, r = 12), (k = 30, σ = 15, r = 3), and
(k = 30, σ = 15, r = 3), for the tool, Gargoyle, and Build-
ing, respectively. We used the same parameters described
in the paper for Gargoyle and the following parameters for
the other point clouds in the case of the CNVT. Shutter:
(τ = 0.25, ρ = 0.9, p = 20). Iron: (τ = 0.25, ρ = 0.9,
p = 50). Tool: (τ = 0.25, ρ = 0.9, p = 10). Building:
(τ = 0.25, ρ = 0.9, p = 20).

Figure 22 shows the denoising results of the shutter point
cloud. We can see that MRPCA generates a clean point
cloud; however, it shrinks the surface and generates noisy
and blurred edges. CNVT preserves edges better, but it accu-
mulates several points close to them, resulting in gaps. Our
method produced well-defined edges while leaving no gaps.
Furthermore, our method can recover the flat surface in front
of the object’s base, which other methods ignore. It is worth
noting that both the CNVT and our method retain a high
degree of fidelity to the surfaces represented by the input
point cloud.

Figure 23 shows the results for the iron point cloud,where,
as in the other figures, the point color of the noisy point cloud
maps the directionof the input normals. Thenoisy point cloud
presents some outlier normals owing to the limitations of the
method used to estimate the input normals. In this case, the
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Table 4 Denoising results using
impulsive noise

Method Metric Arma. Cast. Cube Drag. Fand. Octa. Rock.

APSS Dp 0.08462 0.00017 0.01952 0.10261 0.00790 0.00210 0.07670

RMSMτ 0.41846 0.68993 1.21323 0.61602 0.70473 1.16284 1.56538

RIMLS Dp 0.07333 0.00014 0.02009 0.09219 0.00746 0.00188 0.09052

RMSMτ 0.47149 0.77999 0.88884 0.63939 0.75351 0.71856 1.56600

MRPCA Dp 0.09189 0.00022 0.01991 0.10950 0.00608 0.00111 0.08151

RMSMτ 0.52812 0.87811 0.47087 0.62150 0.44516 0.30937 1.56590

DFP Dp – – 0.02881 – 0.00898 0.00155 0.10911

RMSMτ – – 0.68116 – 0.62392 0.37165 1.34044

CNVT Dp 0.11571 0.00045 0.01258 0.20728 0.01371 0.00067 0.33049

RMSMτ 0.94103 0.97949 0.53649 0.99562 0.92752 0.01773 1.56674

PCNET Dp 0.13294 0.00027 – 0.17473 0.00936 0.00304 0.11642

RMSMτ – – – – – – –

PFILTER Dp 0.22340 0.00025 – 0.32101 0.00643 0.00129 0.09045

RMSMτ – – – – – – –

SCORE Dp 0.14118 0.00029 0.02740 0.17324 0.01219 0.00299 0.16904

RMSMτ – – – – – – –

Ours Dp 0.08321 0.00012 0.01065 0.10241 0.00486 0.00073 0.10471

RMSMτ 0.59775 0.48930 0.01755 0.73721 0.24345 0.02377 1.56888

The best results are highlighted in bold

Fig. 21 Results obtained on the Casting point cloud, which is corrupted with impulsive noise. The point color maps the direction of the normals

Fig. 22 Results obtained on the Shutter point cloud. The point color maps the direction of the normals

FPF does not properly remove the noise and does not enhance
the edges. CNVT preserves some edges, whereas the others
are blurred. In addition, the points that presented outlier nor-
mals were not treated. MRPCA generates piecewise smooth
regions, even for curved regions, as shown in the first zoomed

view. Although these regions enhance the features, the edges
and corners are noisy and blurry. Our method works with
flat and curved regions while maintaining sharp edges and
corners. However, as shown in the second zoomed-in view,
our method is also sensitive to normal outliers.
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Fig. 23 Results obtained on the Iron point cloud. The point color maps the direction of the normals

Fig. 24 Results obtained on the Tool point cloud. The point color maps the direction of the normals

The results for the tool point cloud are shown in Fig. 24,
where we can emphasize the importance of precise sharp
feature detection introduced in our denoising algorithm. The
figure focuses on a point cloud region that presents two par-
allel sharp feature curves that are successfully recognized
and reconstructed by the proposed method and MRPCA.
However, in the CNVT result, both curves converge to a sin-
gle curve generating undesired gaps and an incorrect shape.
This phenomenon occurs because all points of the lateral face
are classified as edge points by the CNVT. In contrast, the
proposed sharp feature detection method can recognize both
sharp feature curves and the flat region between them.

The Gargoyle point cloud shown in Fig. 25 presents fea-
tures at different scales. We apply our method using different
values of rr , which determine the size of the regular neigh-
borhoods. We can see that for rr = 2.0, the method better
preserves small features such as those located close to the
neck. We blurred them when using rr = 3.0 because more
areas than needed were used to compute the anisotropic
neighborhoods. Thus, rr allows us to control the level of
detail that needs to be recovered. For all the included rr
values, we can see that our method preserves the sharp fea-
tures better thanMRPCA and CNVT. In addition, the surface
presents several holes because it is a partial scan. Ourmethod
tends to preserve the hole boundaries because the point dis-
placements are based on local surface projections without
including attractive or repulsive behavior.

Figure 26 shows the results for the building point cloud
obtained using a LiDAR sensor. The three methods are sen-
sitive to the noise generated by the distance bias error. This
noise produces false salient regions, which are taken into
account by the three methods. As a result, rough surfaces

were generated for the building’s lateral wall. Although this
noise cannot be completely removed, it is effectively mini-
mized. In the case of CNVT, we use a few filtering iterations
to avoid the introduction of artifacts like gap generation
and excessive point agglomeration. Therefore, the CNVT
results present some noise. MRPCA generates rounded edge
regions, whereas our method tends to generate sharp edge
regions. Furthermore, our results present fewer bumpy arti-
facts than MRPCA on the front wall of the building. In this
example, we can also see that our result presents a certain
fidelity to the input point cloud, thereby preserving the hole
boundaries.

Figure 27 shows a visual comparison of the LOP-based
EAR [36] and GPF [45] on the 12 and Cube2 point clouds.
For both methods, we use the parameters provided in [45].
Our method was applied to the following pipeline: First, we
denoise the input point cloud using (next = 2, nint = 5). Sec-
ond, we applied EAR upsampling using the same parameters
as in [45]. Third, to correct upsampling issues, we denoise
the upsampled cloud point using (next = 1, nint = 5, δcc =
3lμ, τo = 4lμ). It is observed that EAR produces noisy edges
and GPF rounded edges. Furthermore, GPF expands the sur-
face represented by the point cloud, resulting in undesirable
curved regions.Ourmethodgenerates cleanpoint cloudswith
sharp features in the first step of the pipeline. These point
clouds better approximated the ideal surface than the results
of the EAR and GPF. However, some applications require
dense and uniform sampling, such as the mesh reconstruc-
tion algorithm introduced by [8]. Thus, by applying EAR
upsampling to our denoising results, we obtained densely
and uniformly distributed point clouds. Because the normals
that our method estimates are not consistent on the edges,
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Fig. 25 Results obtained on the Gargoyle point cloud. For visualization
purposes, we use the original triangulation of the noisy data as in [71].
The models are rendered using flat shading

that is, they can represent any of the shared faces, the EAR
upsampling method can introduce artifacts. As a result, we
used our method to remove them in a second filtering step,
yielding high-quality point clouds suitable for a variety of
applications that require dense and uniform sampling.

Figure 28 shows the results for the block point cloud
corrupted with different noise intensities to demonstrate the
robustness of our algorithm against different levels of noise.
Our method yielded consistent results for different cases.
Note that we only increased the number of external itera-
tions next while the noise level increased, and the rest of the
parameters remained the same.

Our method can be used to remove geometric textures if
we use sufficiently large regular neighborhoods and a certain

normal field smoothness. Using the Mug mesh model, we
sampled 140K points via Poisson disk sampling (MeshLab
[14] implementation). We then used our method to remove
the geometric texture from the sampled point cloud using
the following parameters: (nint = 1, next = 1, k = 75, rr =
4, nns = 10, σnn = 0.8, σns = 2lμ, nfp = 50, τo = 4lμ).
Figure 29 shows the result.

Figure 30 shows the limitations of the proposedmethod. In
the presence of high noise levels, ourmethod can create unde-
sired artifacts such as those shown in Fig. 30a. Because of the
noise, our method assumes small salient flat regions around
the true surface. Furthermore, our method cannot denoise
point clouds with multiple high-intensity outliers, as shown
in Fig. 30b. Although the points closest to the target surface
are denoised, our method uses outliers to create several float-
ing islands around the object. When working with this type
of noise, we recommend using an outlier removal algorithm
as a pre-processing operation.

Our method can simultaneously deal with sharp and
smooth features. However, in some cases, the introduced
noise can generate regions that are similar to sharp edges.
Our method can interpret this noise as a sharp feature and
enhance it accordingly. Figure 30c, 30d, and30e showsexam-
ples of this issue on the RockerArm point cloud. The original
mesh model used to generate the synthetic point cloud, the
noisy point cloud with the original triangulation, and the
mesh model of our denoising result generated using [39] are
shown in these figures. Note how nonexistent sharp regions
are created in the resulting mesh. Our method is prone to
over-sharpening the input point cloud in these cases.

Finally, Fig. 30f and 30g shows that our method is sen-
sitive to topological issues. We show two surfaces that are
close to each other. Our method interprets that edge lines are
used to attract surrounding points at the intersection of these
surfaces.

9.5 Execution time

Our denoising algorithm was implemented in C++ and uses
CPLEX [15] for the numerical optimization. We measured
the execution time on a 64-bit Intel(R) Core(TM) i7-8750H
CPU 2.20 GHz with 32 GB RAM and a Windows 10 operat-
ing system. For the main denoising test cases, Table 5 shows
the corresponding times in seconds. We included partial tim-
ings, percentages of the full execution time, and the number
of executions for each step of the algorithm, including the
preparation procedure.

The computation of anisotropic neighborhoods is themost
computationally expensive step in our pipeline because sev-
eral small quadratic optimization problems must be solved.
However, because we constrained the maximum size of the
optimization problems to themaximum size of regular neigh-
borhoods, that is, k, this step presents a linear growth with
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Fig. 26 Results obtained on the Building point cloud

Fig. 27 Comparison with LOP-based methods. First row: Twelve point cloud. Second row: Cube2 point cloud. The point color maps the direction
of the normals. The letter U represents the EAR upsampling and the letter C represents the correction using our denoising method

Fig. 28 The Block point cloud corrupted with different levels of noise.
First row: noisy point clouds. Second row: our results. The point color
maps the direction of the normals. The column captions denote the
corresponding σ values

respect to the number of points. In the case of the iron point
cloud, we increased k and rr to obtain better visual results,
resulting in a considerably higher computational time com-
pared to k = 50 and rr = 3.

Fig. 29 Geometric texture removal applied on the Mug point cloud.
Left: point cloud with geometric texture. Right: texture removal result
using our method. The point color maps the direction of the normals

To deduce the computational complexity of the denoising
algorithm, we first analyzed the complexity of each step of
the algorithm. The cost of the preparation procedure can be
approximated byO(n log n)+O(nk log k), where the domi-
nant terms correspond to the spatial data structure indexation
used to estimate the k nearest neighbors (i.e., a KD-Tree) and
the local Delaunay triangulations used to define immediate
neighbors. Notice that k should be lower than n or equal
to n. The cost of the anisotropic neighborhoods computa-
tion can be approximated byO(nk3). This term represents n
quadratic optimizations of size k, assuming that the quadratic
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Fig. 30 Main limitations. First row: generation of artifacts when the
noise intensity is high. Second row: unable to process wild high-
intensity outliers. Third row: over-sharpening. Fourth row: sensitive
to topological issues

programming algorithm cost can be approximated byO(k3).
However, in our implementation, this cost was determined
by the proprietary algorithm used in the CPLEX library. The
cost of the normal filtering step can be approximated by
nnsO(nk)+nncO(nk2), where the dominant terms represent
normal smoothing and neighborhood clustering operations,
respectively. The cost of the sharp feature detection step can
be approximated byO(nk2) because a paired analysis within

the local neighborhood is required. The cost of the point-
updating step can be approximated by O(nk).

The cost of the denoising algorithm can then be approx-
imated by next (O(n log n) + O(nk log k) + O(nk3)) +
nextnint(nnsO(nk) + nncO(nk2)). Thus, the computational
complexity depends on the number of points in the point
cloud, that is, n; the maximum number of points used to
define the local neighborhoods, that is, k; and the number of
iterations used in the algorithm, that is, next, nint, nns, and
nnc.

10 Conclusion and future work

We introduced a new method for point cloud denoising that
includes solutions for normal estimation and feature detec-
tion problems. Numerous experiments demonstrated that our
method outperforms state-of-the-art methods in processing
point clouds with sharp features.

We presented an extension of the mesh-based anisotropic
neighborhood computation introduced in [38] to the point
clouds. This computation plays an imperative role in the
denoising algorithm because it allows us to enhance the sharp
feature regions by directly processing a set of noisy points
and normals.

Combining anisotropic neighborhood normals with the
proposed normal corrector operation allows us to avoid
strong dependence on tuning α, β, and γ , identified as a
critical task in [38]. Furthermore, as demonstrated in the
experiments, most parameters can be adjusted without jeop-
ardizing the generation of acceptable results.

We propose a novel sharp feature detection algorithm
that helps the denoising algorithm reconstruct sharp feature
regions without introducing undesired artifacts. In contrast
to other algorithms, our algorithm works in a more selective
manner, estimating thin sharp feature regions thatwork better
on the point-updating scheme proposed in [71].

Our denoising method focuses on the preservation and
enhancement of sharp features. Although we can tune the
parameters to deal with smooth features, other methods such
as RIMLS can perform better than ours.

A maximum of four clusters were used for regular neigh-
borhood clustering. This limitation has no direct impact on
the point-updating step, but it can introduce noise for nor-
mal correction and feature detection. In future work, we will
introduce a more flexible clustering algorithm that allows
us to represent a wider range of point types (e.g., nonmani-
fold corners), involving additional considerations for feature
detection.

The computational cost of the proposed denoising algo-
rithm is high, as demonstrated by the timing experiments.
Future studies should aim to implement a faster version of
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Table 5 Execution time in seconds of the proposed denoising algorithm on the main test cases

P n Preparing procedure Anisotropic Neigh. Normal filtering Feature detection Point update Full time

Exec Time Perc (%) Exec Time Perc (%) exec time perc (%) Exec Time Perc (%) Exec Time Perc (%)

Armadillo 172.9K 2 67.60 10.9 2 512.14 83.1 2 28.18 4.5 2 6.05 1.0 2 2.51 0.4 616.47

Casting 70.5K 2 28.98 10.5 2 218.63 79.5 4 20.51 7.4 4 4.95 1.8 4 2.05 0.7 275.13

Cube 1.9K 9 3.56 10.5 9 28.02 82.9 9 1.93 5.7 9 0.20 0.6 9 0.09 0.1 33.79

Dragon 151.5K 2 59.18 11.1 2 442.32 83.2 2 22.88 4.3 2 4.70 0.9 2 2.26 0.4 531.36

Fandisk 25.9K 1 4.99 7.8 1 47.68 74.5 5 9.29 14.5 5 1.35 2.1 5 0.71 1.1 64.03

Octahedron 40.2K 1 7.94 7.9 1 69.22 68.8 10 18.84 18.7 10 2.80 2.8 10 1.89 1.9 100.69

RockerArm 24.1K 1 4.59 7.1 1 47.96 74.1 3 10.17 15.7 3 1.48 2.3 3 0.53 0.8 64.73

Shutter 291.2K 2 129.55 6.9 2 1464.63 78.4 10 202.71 10.8 10 48.00 2.6 10 23.69 1.3 1868.58

Iron 161K 3 145.91 5.7 3 2055.44 80.7 15 265.00 10.4 15 61.59 2.4 15 19.84 0.8 2547.78

Tool 81.4K 1 16.60 7.8 1 162.46 76.6 5 25.99 12.2 5 4.81 2.3 5 2.34 1.1 212.19

Gargoyle 54.9K 1 11.41 8.4 1 108.04 79.4 3 13.57 10.0 3 1.94 1.4 3 1.04 0.8 136.00

this algorithm by replacing or improving the most expensive
procedures, such as anisotropic neighborhood computation.
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