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Abstract
The currentmainstreamvisual question answering (VQA)models onlymodel the object-level visual representations but ignore
the relationships between visual objects. To solve this problem, we propose a Multi-Modal Co-Attention Relation Network
(MCARN) that combines co-attention and visual object relation reasoning. MCARN can model visual representations at both
object-level and relation-level, and stacking its visual relation reasoningmodule can further improve the accuracy of themodel
on Number questions. Inspired byMCARN, we propose twomodels, RGF-CA and Cos-Sin+CA, which combine co-attention
with the relative geometry features of visual objects, and achieve excellent comprehensive performance and higher accuracy
on Other questions respectively. Extensive experiments and ablation studies based on the benchmark dataset VQA 2.0 prove
the effectiveness of our models, and also verify the synergy of co-attention and visual object relation reasoning in VQA task.

Keywords Computer vision · Visual question answering · Co-attention · Visual object relation reasoning

1 Introduction

With the development of natural language processing and
computer vision, which are the core areas of general intelli-
gent behavior, multi-modal learning that breaks the bound-
aries of language and vision and bridges them has received
extensive attention in recent years. Multi-modal learning
task involves image caption [1,2], visual question answering
(VQA) [3–13], image-text matching [14,15], cross-modal
retrieval (CMR) [16–18], etc. All these tasks require mod-
els to understand the visual information contained in images
and the textual information contained in texts simultane-
ously. The difference is that VQA also requires models to
have common sense knowledge and reasoning ability. Given
a visual image and a natural language question related to
the image, VQA requires the model to understand both the
image and the question simultaneously, and use common
sense knowledge and a certain degree of reasoning to predict
the correct answer. Besides being the benchmark of gen-
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eral artificial intelligence, VQA also plays a significant role
in various fields [19,28]. For example, VQA methods can
be applied to medical imaging to enable automatic medical
diagnosis; VQA systems can be used for aided navigation to
help visually impaired users; VQA models contribute to the
construction of surveillance video automatic query systems;
other fields involving human–machine interaction, such as
education, can be more intelligent by infusing VQA technol-
ogy.

Introducing attention mechanisms into VQA task has
become a widely used approach. Attention mechanism was
first successfully applied to the field of natural language pro-
cessing [29], which improved the performance of machine
translation models. Given a group of elements, an attention
module can effect an individual element through the aggre-
gation weight automatically learned driven by task goal. In
VQA task, visual attention networks [30–32] help models
selectively focus on the visual information most relevant to
answering the input questions. Similarly, textual attention,
which can help models to focus on question key words and
phrases, is also very important to the cross-modal learning
task VQA. Now, most advanced VQA methods [33,34] use
co-attention combining visual attention and textual atten-
tion to focus the models on the question key words and the
image regions that are most relevant to predicting the correct
answers. On the other hand, the computer vision commu-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00371-022-02695-9&domain=pdf
http://orcid.org/0000-0001-6193-1341


5784 Z. Guo, D. Han

nity has recognized that modeling the relationships between
visual objects is crucial to improving the performance of
VQA and object recognition models [35,36]. Therefore,
some researchers have introduced visual relation reasoning
[37–40], which is one of the latest advances in cross-modal
learning of visual representations, into VQA models and
achieved good results. A visual relation reasoning module is
trained together with deep neural networks. It helps models
to complete downstream tasks bymodeling and reasoning the
positional relationships, semantic relationships and implicit
relationships between the visual objects of the input images
to generate visual relation representations.

Inspired by previous studies [41,42], we believe that mod-
eling the relationships between the visual objects of the input
images is as important as focusing on salient image regions
to help models provide semantic-rich and fine-grained visual
features for downstream tasks. However, even advanced co-
attention mechanisms can only learn object-level semantics,
and they ignore the complex but semantically informative
relationship clues contained in images. To solve this problem,
we propose a Multi-Modal Co-Attention Relation Network
(MCARN) to model visual representations at both object-
level and relation-level. In the co-attentionmodule,MCARN
focuses the model on question key words and significant
image regions by learning the self-attention of questions and
images and the question-guided visual attention. The visual
relation reasoningmodule inMCARNis also based on abasic
attention module. In addition to the original feature-based
attention weight, the visual relation reasoning module adds
a new geometry weight to model the relative geometry rela-
tionships between the visual objects contained in the input
images. Extensive experiments and ablation studies based on
the benchmark dataset VQA 2.0 [8] prove the effectiveness
of our models, and also verify the synergy of co-attention
and visual object relation reasoning in VQA task. The major
contributions of this paper are summarized as follows:

(1) We propose a Multi-Modal Co-Attention Relation Net-
work (MCARN) to model visual representations at both
object-level and relation-level.

(2) On the basis of MCARN, we stack its visual relation
reasoning module to further improve the accuracy of the
model on Number questions.

(3) Extensive experiments and ablation studies performed
on a benchmark VQA dataset demonstrate the feasibility
and effectiveness of our models.

The rest of this paper is organized as follows: We first
review the research progress of VQA in Sect. 2. Section3
introduces the overall framework and technical details of
MCARN. The experimental settings, experimental results
and further analysis are given in Sect. 4. Finally, we conclude
our work and give the future research direction in Sect. 5.

2 Related works

2.1 Visual question answering (VQA)

The goal of VQA is to answer the input natural language
questions according to the content of the input visual images.
It is quite a challenging task, since it requiresmodels to under-
stand and reason over both textual and visual content, and
may require external common sense knowledge. A general
VQA model is mainly composed of a vision part, a ques-
tion understanding part and an answer generation part. In the
vision part, most VQAmodels use deep convolutional neural
networks to extract the image features. Early VQA studies
used VGG [43] or ResNet [44] to extract grid features from
the input images, but such grid features could not accurately
reflect the boundaries of visual objects. Now, most advanced
VQA methods adopt Faster R-CNN [45], which combines
region proposal network (RPN) and Fast R-CNN [46], to
extract regional image featureswithmore precise boundaries.
In the question understanding part, VQA models use GloVe
[47] or other word embedding methods to embed the input
question words into word vectors, and then use recurrent
neural networks such as Long Short-Term Memory (LSTM)
[48] or Gated Recurrent Unit (GRU) [49] to encode the ques-
tion word vectors at sentence-level to obtain the question
features. In the answer generation part, VQA models fuse
the image features and the question features by multi-modal
feature fusion methods and feed the fused features to the
answer decoder to generate the correct answers. Early VQA
models used simpler methods such as concatenation, addi-
tion and element-wise multiplication to combine the image
features with the question features. Some recent studies have
proposed more complex multi-modal feature fusion meth-
ods, such as bilinear-pooling-based methods [50,51], which
can reflect the relationship between features of two different
modalities at an effective computational cost.

2.2 Attentionmechanisms

Encoding semantic-rich and fine-grained representations
from textual questions and visual images is important to
improve the performance of VQA models. However, the
methods described above are based on global features. Such
global features are difficult to help VQA models to focus
on question key words and significant image regions that are
more important for the models to predict the correct answers,
and may introduce noise. Therefore, many researches have
introduced various attention mechanisms into VQA task to
focus themodels’ attention on significant local features. Shih
et al. [31] proposed a visual attention mechanism, which
maps regional image features and textual features into a
shared space, and uses inner product for relevance compari-
son. Zhang et al. [52] developed a hierarchical convolutional
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self-attention encoder to capture the question-aware video
context features. On the other hand, textual attention, which
can help models to better understand textual questions by
focusing on question key words, is also very important to
VQAmodels.With the application and development of atten-
tion mechanisms, co-attention combining visual attention
and textual attention has become the most popular atten-
tion method used in advanced VQA studies. Lu et al. [34]
proposed a hierarchical co-attention model, which focuses
attention on different segments of the input questions and
different regions of the input images, and can model the
questions at three levels to capture information of differ-
ent granularities. After this, Nguyen et al. [33] designed a
co-attention mechanism that could be stacked to form a hier-
archical structure to achieve dense multi-step interactions
between image-question pairs. Recently, Yu et al. [41] pro-
posed a deep modular co-attention network consisting of a
series of self-attention and guided-attention units to realize a
stackable dense co-attention model with better performance.

2.3 Visual relation reasoning

Recently, visual relation reasoning has been introduced
into VQA task to help models better answer questions
and images that require logical understanding ability and
achieved impressive results. Santoro et al. [38] designed
a dedicated module to calculate the relationship between
entities to help deep learning architectures deal with tasks
requiring rich relation reasoning. Perez et al. [53] proposed
a general-purpose conditioning method based on conditional
information for visual reasoning requiring multi-step and
high-level processes. Yu et al. [54] designed a visual relation
reasoning module to reason the pair-wise and inner-group
visual relationship between visual objects to enhance visual
representations at relation-level.

3 Multi-modal co-attention relation
networks

MCARN combines deep modular co-attention with visual
relation reasoning to guide the model to achieve visual
relation reasoning and correctly answer the textual ques-
tions related to the input images. The overall framework
of MCARN is shown in Fig. 1. We first introduce how to
extract image features and question features from the input
visual images and the input textual questions. Then the co-
attention module and the visual relation reasoning module
will be introduced. Finally,we employ a simple feature fusion
method to fuse the extracted multi-modal features and feed
the fused features into a classifier to complete the prediction
of the answers.

3.1 Image and question representations

We use Faster R-CNN [45] (based on ResNet-101) pre-
trained onVisual Genome [55] to extract image features from
the input visual images the same as MCAN [41]. Faster R-
CNN adopts bottom-up mechanism to represent the input
images as regional image features. Bymean-pooling the con-
volutional feature from its detected region, we represent the
i-th visual object as a feature xi ∈ R

2048. Based on the con-
fidence threshold we set to the probabilities of the detected
regions, the extracted regional image features are represented
as a feature matrix X ∈ R

i×2048, where i ∈ [10, 100] is the
number of the visual objects.

For the input textual question, we first tokenize it into
words and limit its maximum length to 14. Then, we use
the 300-D GloVe word vectors [47], which have been pre-
trained on a large-scale corpus, to embed each question word
into a word vector. By doing so, we obtain a word embedding
sequence of sizew×300 of the input textual question, where
w ∈ [1, 14] is the number of the question words. Finally, we
use a single layer LSTMwith 512 hidden units to encode the
word embedding sequence and obtain the question features
Y ∈ R

w×512.

3.2 Co-attentionmodule

The co-attention module in MCARN is based on scaled dot-
product attention [56]. Its inputs include queries and keys of
dimension k, and values of dimension v. For ease of calcula-
tion, we set k and v to the same value d. Scaled dot-product
attention first calculates the dot products of the queries with
the keys, divides each by

√
d and then feeds the results into

a softmax function to obtain the weights on the values. In
practice, the queries, keys and values are packed together
into matrices Q, K and V. The result calculated by Q and K
represents the attention. The attended feature is obtained by
weighted summation over V with respect to the attention:

attention (Q,K,V) = softmax

(
QKT

√
d

)
V (1)

Similar to reference [56], we adopt multi-head attention to
perform the attention function in parallel.We concatenate the
attended features and project them to obtain the final values:

multi_head (Q,K,V) = concat (head1, head2, ..., headH)WMH

(2)

headp = attention (QWQ
p ,KWK

p ,VWV
p ) (3)

where H is the number of the attention heads, p ∈ [1, H ],
WQ

p , WK
p , W

V
p and WMH are projection parameter matri-

ces, and headp is the output of the p-th scaled dot-product
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Fig. 1 The overall framework of Multi-Modal Co-Attention Relation Networks (MCARN)

Fig. 2 The calculation steps of
scaled dot-product attention and
multi-head scaled dot-product
attention matmul

scale
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Q V

scaled dot-product attention multi-head scaled dot-product attention

K

attention head. By using multi-head attention, MCARN
can focus on information from different representation sub-
spaces at different positions. Figure2 shows the calculation
steps of scaled dot-product attention and multi-head scaled
dot-product attention.

Yu et al. [41] proved that the encoder-decoder model
is steadily superior to the stacking model. Therefore, we
also adopt the encoder-decoder structure to construct the
co-attention module in MCARN. The co-attention module
takes the regional image features X and question features
Y as inputs to learn the self-attention of the input images
and the input questions as well as the question-guided
visual attention. We denote the L-layer co-attention mod-
ule as Encoder-DecoderL. As shown in Fig. 3, it learns the
self-attended question features YL and the attended image
features XL through L layers Encoder-Decoder.

TheL-th Encoder-Decoder is shown in Fig. 4. Specifically,
an Encoder consists of amulti-head scaled dot-product atten-
tion layer and a pointwise feed-forward layer. Themulti-head
scaled dot-product attention layer takes the question features
as input to learn the self-attention of the input questions,
and the pointwise feed-forward layer takes the output of the

Encoder

Encoder

···

Y
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Encoder
YL-1

YL

Decoder

Decoder

···

X

X1

Decoder
XL-1

XL

Fig. 3 The co-attention module in MCARN
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Fig. 4 The L-th
Encoder-Decoder
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multi-head scaled dot-product attention layer as input and
adopts two fully connected layers to further transform the
attended features. The purpose of Encoder is to reconstruct
the question features according to the normalized similarity
between each sample and other samples. A Decoder consists
of two consecutive multi-head scaled dot-product attention
layers and a pointwise feed-forward layer. The first multi-
head scaled dot-product attention layer takes the output of
Encoder and the regional image features as inputs to learn the
question-guided visual attention, and the second multi-head
scaled dot-product attention layer takes the output of the first
multi-head scaled dot-product attention layer as input to learn
the self-attention of the input images. Similar to Encoder,
Decoder aims to reconstruct the image features according to
the normalized cross-modal similarity between two groups
of samples. In addition, we apply residual connection [44]
and layer normalization [57] after each multi-head scaled
dot-product attention layer and each pointwise feed-forward
layer to stabilize training. In Encoder-DecoderL, the input
of the first Encoder is Y, the input of each other Encoder is

the output of the previous Encoder, and the output of the last
Encoder isYL. The input of the first Decoder isX andYL, the
inputs of each other Decoder are the output of the previous
Decoder and YL, and the output of the last Decoder is XL.

3.3 Visual relation reasoningmodule

The visual relation reasoning module in MCARN is also
based on scaled dot-product attention, and Fig. 5 shows the
specific calculation steps. The features of visual objects con-
sist of their appearance features and geometry features. In
this paper, the appearance features of visual objects refer to
the attended image features XL output by the co-attention
module, and the geometry features are 4-dimensional visual
object bounding boxes denoted by G. Given the input set
{(xLn ,Gn)}in=1 of i visual objects, the visual relation reason-
ing module calculates the relationship between each visual
object and other visual objects to obtain the relation features
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Fig. 5 The calculation steps of
the visual relation reasoning
module XL
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R(n) =
∑
m

ωmn ·
(
WV · xLm

)
(4)

where WV corresponds to values V in Eq.1. The relation
weight ωmn represents the influence of other visual objects
on the object, and its calculation method is as follows:

ωmn = ωmn
G · exp(ωmn

X )∑
k ωkn

G · exp(ωkn
X )

(5)

The appearance weight ωmn
X is calculated as a dot product

according to Eq.1:

ωmn
X = WK xLm

(
WQxLn

)T
√
d

(6)

where WK and WQ correspond to K and Q in Eq.1, which
project the appearance features xLm and xLn into the subspace
to calculate their matching degree. The dimension of the pro-
jected features is d, and the geometry weight ωmn

G is given by
the following formula:

ωmn
G = max {0,WG · εG(Gm,Gn)} (7)

where εG represents the method [56] used to embed the
geometry features of the two visual objects into high-
dimensional representations and the dimension of the embed-

ded features is 64. MCARN adopts 4-dimensional rela-
tive geometry features (log( |um−un |

gm
),log( |bm−bn |

hm
),log( gngm ),

log( hnhm ))
T as the geometry features of visual objects, where

u, b, g and h are, respectively, the abscissa and ordinate of
the center point of visual object bounding boxes as well as
the width and height of visual object bounding boxes.WG is
used to transform the embedded features into scalar weights
and we trim the scalar weights at 0 to restrict the relationship
between visual objects to a certain geometry relationship.
The visual relation reasoning module simultaneously mod-
els Nr relationships, and these multiple relation features are
added with the appearance features after being concatenated
to achieve feature enhancement:

xLn = xLn + concat
[
R1(n), ...,RNr (n)

]
(8)

3.4 Multi-modal feature fusion and classification

By modeling the co-attention and learning the relationship
between visual objects, we obtain the image featuresXL and
the question features YL . The image features contain rich
object-level and relation-level information, and the question
key word features are also given greater weight. Now, we use
a two-layer MLP consisting of two fully connected layers
to calculate the attended features x and y. Taking x as an
example, the calculation method is as follows:

αX = softmax
(
MLP(XL)

)
(9)
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x =
i∑

j=1

αX
j x

L
j (10)

where αX is the attention weight of image features. The
attended image features x can be obtained by multiplying
image features by their corresponding attention weight. Sim-
ilarly, we can obtain the attended question features y through
the above method.

Wedesign a simple linearmulti-modal feature fusion func-
tion to calculate the fused feature z:

z = layernorm
(
WT

x x + WT
y y

)
(11)

where WT
x and WT

y are linear projection matrixes, and layer
normalization is used to facilitate optimization. Finally, we
project the fused feature z into a vector s and feed s into a
sigmoid function to predict the correct answer, where s ∈ R

A

and A is the number of the most common answers of the
training set.

4 Experimental studies

All the experiments are conducted on the benchmark dataset
VQA 2.0 [8]. VQA 2.0 is based on Microsoft COCO image
data [58] and attempts to minimize the effectiveness of learn-
ing data bias by balancing the answers to each question.
VQA 2.0 is divided into the train set (82,783 images and
443,757 question-answer pairs), the validation set (40,504
images and 214,354 question-answer pairs) and the test set
(81,434 images and 447,793 question-answer pairs). The test
set is further divided into the test-dev set and test-standard set
to evaluate VQA models online. Following previous work,
we train ourmodels on the train set and the validation set, and
we also add a subset of VQA samples from Visual Genome
[55] to facilitate training. We report the experimental results
on the test-dev set and the test-standard set of theVQA evalu-
ation server. The accuracies of the models are classified into
four categories based on the type of the questions and the
answers: Yes/No, Number, Other and Overall.

4.1 Experimental settings

During the experiments, we employ zero-padding to fill X
and Y to their maximum sizes to set the number of the visual
objects and the number of the question words as invariants,
i.e. i=100 and w=14. To solve the underflow problem dur-
ing training, we use −∞ before every softmax layer to mask
the padding logits. The dimension of the scaled dot-product
attention layer is 512, i.e. d=512. The number of the atten-
tion heads H is set to 8 and the dimension of the output of
each head is d/H=64. The layer L of Encoder-DecoderL is set

Table 1 Experimental results of MCARN on the test-dev set of VQA
2.0

Nr Yes/No (%) Number (%) Other (%) Overall (%)

4 86.69 53.83 60.74 70.65

8 86.84 54.28 60.78 70.78

16 87.07 54.40 60.66 70.83

32 86.95 54.43 60.70 70.80

to 6 and the structure of its feed-forward layers is FC(4d)-
ReLU-dropout(0.1)-FC(d). The structure of theMLP used to
calculate the attended features is FC(d)-ReLU-dropout(0.1)-
FC(1). ReLU [57] is the activation function and dropout [59]
is used to prevent overfitting. The number of the relation
features modeled by the visual relation reasoning module
Nr ∈ {4, 8, 16, 32}. The dimension of the fused feature z
is 1024, and the number of the most common answers A is
3129. We use Adam solver [60] (β1=0.9, β2=0.98) to train
our models, set the batch size to 64 and adopt binary cross-
entropy (BCE) as the loss function. The warm-up learning
rate is set to min(2.5te−5, 1e−4), where t is the current epoch
number starting from 1.

4.2 Ablation studies and analysis

This section mainly discusses the effects of the number of
the relation featuresNr and different variants of visual object
relation modeling with the co-attention module on the per-
formance of VQA models.

4.2.1 The number of the relation features Nr

As shown in Table 1 and Fig. 6, we explore the effects of the
number of relation features Nr ∈ {4, 8, 16, 32} on the perfor-
mance of MCARN. The maximum value of each column is
shown in bold. The experimental results show that with the
increase in Nr, the accuracy of the model roughly increases
first and then decreases. When Nr=16, MCARN achieves the
highest overall accuracy of 70.83%. It is worth noting that
with the increase in Nr, the accuracy of MCARN on Num-
ber questions keeps improving and has not reached the peak,
which proves that modeling the relation features of visual
objects helps the model to correctly answer Number ques-
tions. SceneGCN [61] and v-VRANet [54], which combine
visual reasoning methods, are far less accurate than MCAN
[41], which introduces co-attention. Therefore, in Fig. 6, we
only compareMCARNwith the advanced co-attentionmodel
MCAN. It can be seen from Fig. 6 that MCARN outper-
forms MCAN on all types of questions when the appropriate
parameter Nr is selected. The above experimental results
demonstrate the effectiveness of combining co-attentionwith
visual relation reasoning in VQA task.
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Fig. 6 The Yes/No, Number,
Other and Overall accuracies of
MCARN and MCAN on the
test-dev set of VQA 2.0

Table 2 Experimental results of MCARN-1 on the test-dev set of VQA
2.0

Nr Yes/No (%) Number (%) Other (%) Overall (%)

4 86.91 53.58 60.79 70.73

8 86.75 53.49 60.74 70.63

16 86.91 53.21 60.57 70.58

32 86.73 53.30 60.65 70.56

To verify the effectiveness of the learnable geometry
weight ωmn

G , we conduct experiments on a model named
MCARN-1 whose geometry weight is set as 1 and the results
are shown in Table 2. By comparing with Table 1, it can be
seen that when Nr values are the same, MCARN performs
better than MCARN-1 on all types of questions except when
Nr=4, which indicates that the learnable geometry weight
can improve the performance of VQA models. When Nr=4,
we believe that the advantage of MCARN-1 over MCARN
is that compared with the learnable geometry weight with
fewer relation features, the fixed geometry weight is more
conductive to the training and optimization of the model. In
addition, the accuracy of MCARN is always higher than that
of MCARN-1 on Number questions regardless of Nr, which
further proves the effectiveness of the learnable geometry
weight in improving the counting ability of VQA models.

4.2.2 Stacked visual relation reasoning modules

Considering that the inputs and outputs of the visual relation
reasoning module have the same dimension, we design a
model named MCARNS that stacks two consecutive visual
relation reasoning modules. In MCARNS, the input of the
latter visual relation reasoning module is the output of the
former visual relation reasoning module, and other parts and
parameter settings of the model are the same as MCARN.
We test the effects of the number of relation features Nr on
the performance of MCARNS and the results are shown in
Table 3 and Fig. 7. The maximum value of each column is
shown in bold. To make a fair comparison, we must use the
same number of relation features Nr in experiments. It can
be seen that although the accuracy of the model decreases
after stacking the visual relation reasoning modules, when
Nr=8,MCARNSstill has advantages overMCANwhichonly
infuses co-attention. By comparing with Table 1 and Fig. 6,
it can be found that stacking the visual relation reasoning
modules on the basis of MCARN can further improve the
accuracy of themodel onNumber questions, but itwill reduce
the accuracy of the model on the other two types of question
and the overall performance of themodel. This proves that the
stacked visual relation reasoning modules can help MCARN
to achieve more complex reasoning. In future studies, we
will explore how to better combine multiple stacked visual
relation reasoning modules with co-attention mechanisms.
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Fig. 7 The Yes/No, Number,
Other and Overall accuracies of
MCARNS and MCAN on the
test-dev set of VQA 2.0

Table 3 Experimental results of MCARNS on the test-dev set of VQA
2.0

Nr Yes/No (%) Number (%) Other (%) Overall (%)

4 86.53 54.68 60.43 70.53

8 86.81 54.51 60.52 70.67

16 86.69 54.17 60.46 70.55

32 86.54 54.89 60.57 70.62

4.2.3 Relative geometry features of visual objects

We design two co-attention models, RGF-CA and Cos-
Sin+CA, which utilize the relative geometry features of
visual objects to further explore the effects of the relative
position information between the visual objects contained
in the input images on the performance of VQA models.
Specifically, we concatenate the 2048-dimensional regional
image features with the 4-dimensional relative geometry fea-
tures of the 100 visual objects as the 2448-dimensional input
image features of RGF-CA, and other parts and parameter
settings of the model are the same as MCAN. We also try to
project the 400-dimensional relative geometry features into
512 dimensions, then add them to the input image features
of Decoder and take them as the new input image features.
However, the effect of this method is not ideal, and we will
not list it in the experimental results. Cos-Sin+CA takes
the high-dimensional relative geometry features of visual
objects embedded into 64 dimensions in Eq.7 as the input
of the visual part, and other parts and parameter settings of

the model are the same as MCAN. Specifically, we project
the 6400-dimensional relative geometry features of the 100
visual objects into 512 dimensions, then add them to the input
image features of Decoder and take them as the new input
image features.

The above two models only use the co-attention mech-
anism of encoder-decoder structure without introducing
the visual relation reasoning module, and the experimental
results are shown in Table 4. Themaximumvalue of each col-
umn is shown in bold. It can be seen that the relative geometry
features of visual objects can also improve theperformanceof
VQA models. Among them, RGF-CA with simpler relative
geometry features has better comprehensive performance
and Cos-Sin+CA with embedded high-dimensional relative
geometry features achieves the best results on Other ques-
tions.

4.3 Comparison with advancedVQAmodels

Table 5 shows the experimental results of our models and
the advanced VQA single models on the test-dev set and the
test-standard set of VQA 2.0. The maximum value of each
column is shown in bold.Among them,BUTD[62] is amodel
combining regional image features with question-guided
attention,which considers the natural basis of attention. BAN
[63] is a bilinear attention network, which takes into account
the bilinear interactions betweenmulti-modal inputs to make
full use of the given textual information and visual infor-
mation. BAN+Counter combines BAN with Counter [64],
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Table 4 Experimental results of
MCAN, RGF-CA, Cos-Sin+CA,
MCARN and MCARNS on the
test-dev set of VQA 2.0

Model Yes/No (%) Number (%) Other (%) Overall (%)

MCAN 86.82 53.26 60.72 70.63

RGF-CA 86.94 53.60 60.90 70.80

Cos-Sin+CA 86.97 53.07 60.98 70.79

MCARN(Nr=16) 87.07 54.40 60.66 70.83

MCARNS(Nr=8) 86.81 54.51 60.52 70.67

Table 5 Experimental results of
our models and the advanced
VQA single models on the
test-dev set and the test-standard
set of VQA 2.0

test-dev test-standard
Model Yes/No (%) Number (%) Other (%) Overall (%) Overall (%)

BUTD [62] 81.82 44.21 56.05 65.32 65.67

BAN [63]+Counter [64] 85.42 54.04 60.52 70.04 70.35

MCAN [41] 86.82 53.26 60.72 70.63 70.90

MUAN [65] 86.77 54.40 60.89 70.82 71.10

SceneGCN [61] 82.72 46.85 57.77 66.81 67.14

v-VRANet [54] 83.31 45.51 58.41 67.20 67.34

MCARN(Nr=16) 87.07 54.40 60.66 70.83 71.16

MCARNS(Nr=8) 86.81 54.51 60.52 70.67 70.91

RGF-CA 86.94 53.60 60.90 70.80 71.17

Cos-Sin+CA 86.97 53.07 60.98 70.79 71.17

a neural network component that allows robust counting in
object proposals to further improve the accuracy of themodel
on Number questions. MCAN [41] and MUAN [65] are
both VQA models that introduce co-attention mechanisms
to model the dense inter-modal interactions and intra-modal
interactions. SceneGCN [61] proposes a Scene Graph Con-
volution Network, which performs VQA task by jointly
inferring the semantic relationships and attributes of visual
objects. v-VRANet [54] proposes a visual relation reason-
ing module to infer the visual relationships between visual
objects under the guidance of the input questions. It can be
seen from Table 5 that our models achieve the best results on
all types of questions on the test-dev set and the highest over-
all accuracy on the test-standard set. Specifically, MCARN
using only one visual relation reasoning module achieves
the highest accuracy on Yes/No questions. For Number
questions, MCARNS stacking two visual relation reasoning
modules achieves the highest accuracy. For Other questions,
it is a better choice to combine the high-dimensional relative
geometry features of visual objects with the attended image
features. All the above experimental results demonstrate the
effectiveness of our models and the importance of modeling
visual representations at both object-level and relation-level
in VQA task.

4.4 Attention visualization

As shown in Fig. 8, in this section, we compare the attention
visualization results of our model with MCAN for specific

image instances to enhance the interpretability of our model.
The three input questions in the figure belong to the Yes/No
type, the Number type and the Other type from top to bottom.
For the first input instance, although the MCAN model cor-
rectly focuses on the black clad snowboarder, the model also
divides its attention to other image regions that do not con-
tain the black clad snowboarder, while our MCARN model
successfully focuses only on the image regions related to
answering the input question. For the second input instance,
the MCAN model not only fails to focus on all the frames,
but also diverts attention to wrong image regions, such as the
image region containing the chair, while ourMCARNmodel
correctly focuses on all the image regions containing frames.
For the last input instance, both MCANmodel and MCARN
model obtain correct attention visualization results, but the
attentionmap ofMCARNmodel ismore compact, which can
help the model to predict the correct answer more accurately.

5 Conclusion

The current mainstreamVQAmodels only model the object-
level visual representations but ignore the relationships
between visual objects. To solve this problem and effec-
tively use the position information of visual objects and their
relative geometry relationships in VQA task, we propose a
Multi-ModalCo-AttentionRelationNetwork (MCARN) that
combines co-attention and visual object relation reasoning.
MCARN uses the co-attention module to learn the textual
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Fig. 8 The attention
visualization results of MCAN
and MCARN

Question: Does this appear to be a photo of multiple exposures of the black clad snowboarder?

Question: How many frames are on the wall?

Question: What are these animals?
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features and object-level visual representations that are more
critical for predicting the correct answers, and further uti-
lizes the visual relation reasoningmodule tomodel the visual
representations at relation-level. On the basis of MCARN,
we stack its visual relation reasoning module to further
improve the accuracy of the model on Number questions.
Inspired byMCARN, we propose two models, RGF-CA and
Cos-Sin+CA, which combine co-attention with the relative
geometry features of visual objects, and achieve excellent
comprehensive performance and higher accuracy on Other
questions respectively. Extensive experiments and ablation
studies based on the benchmark dataset VQA 2.0 prove the
effectiveness of ourmodels, and also verify the synergy of co-
attention and visual object relation reasoning in VQA task.
In future studies, we will explore more effective geometry
feature representations of visual objects and how to better
combine multiple stacked visual relation reasoning modules
with co-attention mechanisms.
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