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Abstract
As one of fundamental texture classification methods, LBP-based descriptors have attracted considerable attention due to
the efficiency, simplicity, and high performance. However, most of binary pattern methods cannot effectively capture the
texture information with scale changes. Inspired by this, this paper proposes a multi-scale threshold integration encoding
strategy for texture classification. The essence of this strategy is to introduce the multi-scale local texture information in the
view of thresholding. Based on this, we propose the local multi-scale center pattern, local multi-scale sign pattern, and local
multi-scale magnitude pattern to extract and describe the multi-scale local texture information. Then, the three sub-patterns
are jointly combined to generate the final descriptor for texture classification tasks. The experimental results on three popular
texture databases significantly demonstrate that the proposed texture descriptor is very discriminative and powerful for visual
texture classification tasks.

Keywords Image texture analysis · Feature extraction · Multi-scale analysis · Texture classification

1 Introduction

Texture classification is one of fundamental tasks in image
processing and pattern recognition with wide applications,
such as medical imaging analysis [1], remote sensing [2, 3],
face recognition [4], fingerprint [5], and object detection [6].
The classical texture classification task includes two impor-
tant parts: texture feature representation and classifier design.
As texture representationmethods play a decisive role for the
texture classification task, this paper focuses on developing
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powerful feature representation methods to deal with scale
changes.

The purpose of texture representation is to extract robust
and discriminative texture features that provide key visual
cues and surface properties. Binary pattern family, one of
notable texture descriptors, has achieved great successes
on various texture analysis tasks due to its efficiency and
high performance. Despite the promising performance, it
remains a challenging task [7] to design a discriminative and
robust texture descriptor for handling various complicated
situations, such as illumination variation, image rotation,
viewpoint and scale changes.

Ojala et al. [8] proposed the local binary pattern (LBP) to
extract the local texture information by encoding the differ-
ence sign between the center pixel and local neighbors. In
the past decades, it has emerged as one of the most popular
texture descriptors depending on its promising discrimina-
tiveness and simplicity.However, it cannot efficiently address
challenging scenarios due to some inherent limitations, such
as single feature representation and single-scale encoding.

In the past decades, lots of LBP-based descriptors have
been proposed to solve various challenges in texture analy-
sis. Most of them try to enhance the texture representation
power by designing and encoding multiple sub-patterns.
The completed LBP (CLBP) [9], one of the most notable
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LBP variants, models the completed representation of local
texture by dividing the local neighborhood into three sub-
components: CLBP_S, CLBP_M, and CLBP_C. Recently,
CLBP and its variants have gathered the significant atten-
tion in texture analysis due to their satisfactory performance.
However, the sub-feature imbalance is a crucial issue to be
addressed because the CLBP_C is only 1-bit. Moreover, they
cannot effectively deal with scale variations.

The scale is one of themost important attributes for texture
images. Scale variations of texture images may degener-
ate feature representation. As the scale invariance is a very
demanding task for the texture analysis, the multi-scale
texture representation has attracted widespread attention.
Specifically, Li et al. [10] conducted scale- and rotation-
invariant texture analysis by finding an optimal scale to
improve the robustness to scale changes. Reza et al. [11]
studied the scale space theory and proposed an automatic
scale selection approach to achieve scale-invariant texture
analysis. The authors of [12] proposed a scale selective local
binary pattern to find pre-learned dominant binary patterns
in different scale spaces for texture classification. Subse-
quently, Adel et al. [13] introduced an adaptive analysis
window and proposed the adaptive median binary pattern to
address scale and illumination variations. The author of [14]
combined counting and difference representation at different
scales and presented a multi-scale counting and difference
representation for visual texture classification. However, this
method concatenated all single-scale representation at dif-
ferent scales that leaded to large feature dimension.

Recently, Wu et al. [15] proposed the joint-scale LBP to
combine micro- and macro- texture structures among differ-
ent scales and achieved striking classification performance.
However, its scale fusion depended strongly on local neigh-
borhood sampling radius and points. The author of [16]
introduced a scale selective extended LBP which built scale
spaces by Gaussian filters and calculated the multi-scale
histogram as the final feature vector. However, its feature
dimension dramatically increased with the number of scales.
The author of [17] presented a multi-scale symmetric dense
micro-block difference descriptor to capture rotation invari-
ance andmulti-scale spatial texture information. In 2019, Pan
et al. [18] developed a scale-adaptive local binary pattern to
adaptively select optimal scale neighbors for texture classi-
fication. The scale-adaptive strategy inevitably yielded extra
computation cost.

Through reviewing relative literatures, there are still two
inherent problems. First, the center pixel-based sub-pattern
usually is 1-bit, such as CLBP_C, leading to serious feature
dimension imbalance. Second, existing multi-scale schemes
suffer from thorny computational challenges. Specifically,
two categories dominate current research. One selects and/or
combines multiple binary patterns from different scale sam-
pling neighborhoods. The other one fuses multiple texture

descriptors from different scale spaces built by Gaussian fil-
ters. They all neglect the importance of encoding thresholds
and inevitably generate a rather high feature dimension.

In view of above problems, this paper develops a multi-
scale threshold integration encoding strategy to introduce
multi-scale texture information for binary patterns in the
view of thresholding. To be specific, we divide the local
neighborhood into three sub-components including center
pixel, local magnitude, and local sign. Then, we encode
these sub-components by the proposed strategy, respectively,
and jointly combine them into a novel completed multi-
scale neighborhood encoding pattern (CMNEP) descriptor
for visual texture classification.

The contributions of this paper are as follows.
First, for the center pixel, we propose a simple and effec-

tive local multi-scale center pattern. It utilizes different scale
thresholds to encode the center pixel into multiple 1-bit
binary patterns and combines them by the multi-pattern
encoding strategy to generate the local multi-scale center
pattern.

Second, for the local magnitude and sign, we fuse dif-
ferent sampling resolutions texture information and propose
themulti-scale threshold integration encoding strategy. Then,
the localmulti-scale sign pattern and localmulti-scalemagni-
tude pattern are developed for representing multi-scale local
neighborhood information.

Third, we jointly combine the three sub-patterns to gener-
ate a completed multi-scale neighborhood encoding pattern.
It is promising to resist variations in illumination, rotation,
viewpoint, and scale.

Finally, extensive experiments on public texture databases
show the proposed descriptor achieves the top-ranked texture
classification performance.

The rest of this paper is as follow. The next section reviews
the CLBP descriptor. Section 3 details the proposed com-
pletedmulti-scale neighborhood encoding pattern descriptor.
In Sect. 4, we conduct experimental evaluations and provide
performance discussions. Finally, conclusions are given in
Sect. 5.

2 The completed local binary pattern

In this section, we briefly review the basic theory of the tra-
ditional CLBP. The CLBP [9] is one of the most successful
local texture descriptors that divides the local region into
local difference sign, local difference magnitude, and cen-
ter pixel and generates three sub-features, namely CLBP_C,
CLBP_S, and CLBP_M.

Given a radius R, a center pixel gc and corresponding
P local neighborhood pixels gp, p � 0, ..., P − 1, then the
local difference can be calculated by gp −gc, which contains
discriminative local texture information. The local difference
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can be further divided into two complementary parts: the
local difference sign and the local difference magnitude. The
local difference sign can be represented as sp � s

(
gp − gc

)
.

s(x) �
{
1, x ≥ 0
0, x < 0

is the sign function. The local difference

magnitude is denoted as mp � ∣
∣gp − gc

∣
∣, |·| is the absolute

operation.
The CLBP_S represents the local difference sign informa-

tion that contains most of local discriminative information.
It is mathematically represented by

CLBP_Sriu2R, P �

⎧
⎪⎨

⎪⎩

P−1∑

p�0
s
(
gp − gc

)
2p , if U

(
CLBP_SR, P

) ≤ 2

P + 1, otherwise
(1)

U
(
CLBP_SR, P

) � ∣∣s
(
gp−1 − gc

) − s (g0 − gc)
∣∣

+
P−1∑

p�1

∣
∣s

(
gp − gc

) − s
(
gp−1 − gc

)∣∣.

(2)

where “riu2” represents the uniform and rotation invariance
mapping. U (·) counts the times of bitwise 0/1 changes.

The CLBP_M is a significant supplement of CLBP_S that
describes the local difference magnitude information. It can
be defined as

CLBP_Mriu2
R, P �

⎧
⎪⎨

⎪⎩

P−1∑

p�0
t
(
mp , c

)
2p , if U

(
CLBP_MR, P

) ≤ 2

P + 1, otherwise
(3)

where t(x , c) �
{
1, x ≥ c
0, x < c

, c is a threshold generated by

the mean of mp from the whole texture image.
The CLBP_C contains important grayscale information

of texture images, which is obtained by

CLBP_C � t(gc, cI ), (4)

where cI is the threshold given by themean of gc in thewhole
image.

As shown in [9], combining different sub-features will
contribute to comprehensive local information representa-
tion. These sub-features can be combined with two ways,
including concatenation (such as CLBP_S_M) and joint
(such as CLBP_S/M). Further, the three sub-features can
be fused by different ways, such as CLBP_S/M/C and
CLBP_S_M/C.

The CLBP is one of the most successful LBP variants that
provides a good discovery for comprehensive texture infor-
mation representation. Recently, many extensions of CLBP
have been presented, such as CLBC [19], multi-scale CLBP
[20], SALBP [18], LDEP [21], and CLEBP [22].

In this paper, we refer to the neighborhood division from
CLBP. To make the sub-features be robust to scale changes,
we design a multi-scale threshold integration encoding strat-
egy to encode the three sub-components and propose the
completed multi-scale neighborhood encoding pattern for
visual texture classification.

3 The completedmulti-scale neighborhood
encoding pattern

In this section, we elaborate the proposed completed multi-
scale neighborhood encoding pattern in detail. First, we
analysis the motivation. Then, we propose the local multi-
scale center pattern to extract the multi-scale texture infor-
mation in center region. Finally, we develop the local
multi-scale sign pattern and local multi-scale magnitude pat-
tern based on the multi-scale threshold integration encoding
strategy. By combing the three sub-patterns, we present the
completedmulti-scale neighborhood encoding pattern to rep-
resent multi-scale local texture information.

3.1 Motivation

In spite of the wide popularity of CLBP and its variants, there
are two inherent drawbacks.

1. Dimensions of sub-patterns in CLBP are extremely
unbalanced. Specifically, the CLBP_C is only 1-bit,
while CLBP_S and CLBP_M have P + 2 bins in their his-
tograms. This unbalanced sub-feature dimensions limit
the performance of the fusion feature.

2. The CLBP descriptor cannot resist variations in scale. To
handle this problem, many researches introduce multi-
scale strategies, which focus on two aspects.

a. Providing multi-scale texture information by com-
bining multiple binary patterns from different scale
sampling neighborhoods.

b. Fusing multiple texture descriptors from different
scale spaces built by Gaussian filters.

However, existing multi-scale schemes inevitably lead to
serious dimension expansion.

To address the first problem, this paper proposes a (N +
1)-bit local multi-scale center pattern (N is the number of
scales), which utilizes different scale thresholds to encode
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the center pixel. It not only significantly boosts the discrimi-
nation of the center pixel-based sub-pattern during the feature
fusion processing, but also introduces multi-scale informa-
tion from the point of encoding thresholds. Section 3.2 shows
the detailed description.

For solving the second problem, we design an efficient
multi-scale threshold integration encoding strategy with a
new perspective. Compared to existing multi-scale schemes,
it has two noteworthy advantages: one is that it allows the
threshold to have the ability of multi-scale information rep-
resentation; the other one is that binary patterns encoded by
our proposed strategy have the same dimension feature vec-
tor with those without using the strategy. In light of above
idea, we encode the local sign and magnitude and propose
the localmulti-scale sign pattern and localmulti-scalemagni-
tude pattern, respectively. In Sects. 3.3 and 3.4, we elaborate
these in detail.

3.2 Local multi-scale center pattern

The traditional CLBP uses the mean of the whole image as
the threshold to encode the center pixel and provides a 1-bit
binary code, named CLBP_C. However, on one hand, the
too small feature dimension fails to provide enough discrim-
inative information. It is hard to be an individual feature to
represent the texture image. On the other hand, it fails to
encode multi-scale grayscale information.

In this section, we propose a local multi-scale center pat-
tern (LMCP) based on the multi-scale threshold integration
encoding strategy. As shown in Fig. 1, instead of a single
threshold for center pixels, we encode the center pixel by
four different scale thresholdswhich represent different scale
texture information around the center pixel.

Given a center pixel gc, and R1, R2, ..., RN are radiuses
of different scale sampling circles. For each scale sampling
circle, the corresponding Pi local neighborhood pixels are
gRi , p, p � 0, ..., Pi − 1,i � 1, ..., N . We define the multi-
scale threshold as follows:

threi �

⎧
⎪⎪⎨

⎪⎪⎩

thre0 , i � 0

1
Pi

Pi−1∑

p�0
gRi , p, i � 1, . . . , N

(5)

Specifically, we define the original threshold thre0 as
the mean of all pixels in the whole image. To improve
the discriminative power, for each sampling scale, we use
the mean value of circular neighbors as the correspond-
ing encoding threshold. threi , i � 1, 2, · · · , N is the
multi-scale sampling neighborhood threshold that contains
different sampling neighborhoods texture information. Then,
based on the multi-pattern encoding strategy [42], these N+1
different scale thresholds threi , i � 0, ..., N are utilized to

encoding the center pixel gc, respectively, that generate the
(N + 1)-bit LMCP code. The LMCP is denoted as:

LMCP �
N∑

i�0

t(gc, threi )2
i . (6)

It is interesting to notice that when N � 0, the LMCP
is equivalent to the original CLBP_C. In this paper, we set
N�3, and the different sampling circles are (R1, P1) �
(1, 8), (R2, P2) � (2, 16), and (R3, P3) � (3, 24). Then
we generate a 4-bit LMCP code and the dimensions of the
LMCP feature vector is 16.

Figure 1 gives the illustration of LMCP. It not only rep-
resents the grayscale information of center pixel, but also
extracts the texture information of different scale sampling
neighborhoods. Compared with the traditional CLBP_C, the
LMCP eliminates the feature imbalance problem and capture
more discriminative multi-scale local texture information.

3.3 Local multi-scale sign pattern

The local difference sign contains important information
about the local texture structure. For most LBP variants,
they utilize a fixed threshold, the center pixel, to encode the
sign component. This strategymakes the texture featuremore
prone to be disrupted by complex scenarios and fails to cap-
ture multi-scale texture structure.

Motivated by above problems, we build an efficient multi-
scale threshold integration encoding strategy and propose
the local multi-scale sign pattern (LMSP). The multi-
scale threshold integration encoding strategy introduces
different sampling resolutions texture information into the
binary encoding, which significantly improves the robust-
ness against scale variations.

Given a center pixel gc andN sets of corresponding neigh-
boring pixels gRi , p, p � 0, . . . , Pi − 1, i � 1, . . . , N . We
compute different scale threshold for local difference sign as
follows:

threSi �

⎧
⎪⎪⎨

⎪⎪⎩

threS0 , i � 0

1
Pi

Pi−1∑

p�0
gRi , p, i � 1, . . . , N

. (7)

Here, we define the threS0 is the value of center pixel.
threi , i � 1, 2, · · · , N is the multi-scale neighborhood
threshold.

For exploiting multi-scale sign information, we design
a multi-scale threshold integration encoding strategy for
combining different sampling scale thresholds to generate
the multi-scale threshold for the sign component, which is
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Fig. 1 The illustration of the local multi-scale center pattern

defined as:

threS � 1

N + 1

N∑

i�0

threSi . (8)

Then, threS is used to encode the sign component, called
multi-scale neighborhood sign threshold. Then the proposed
local multi-scale sign pattern can be mathematically repre-
sented as follows:

LMSPriu2 �

⎧
⎪⎨

⎪⎩

PN−1∑

p�0
s
(
gRN , p − threS

)
2p , if U (LMSP) ≤ 2

PN + 1, otherwise

.

(9)

As elaborated in (8), the multi-scale threshold integration
encoding strategy introduces multi-scale representation for
the LMSP in the view of threshold. In this way, the LMSP can
represent multi-scale and discriminative texture information
at the same time without increasing the feature dimension.

Note that, whenN� 0, the LMSP is equivalent to the original
CLBP_S.

Take N � 3 as example, Fig. 2 gives the illustration of
LMSP. It isworth to noting that ifwe select the sameencoding
neighborhood, the CLBP_S and LMSP would have the same
feature dimension. The CLBP_S only represents single-scale
local texture information, but theLMSPcarriesmultiple scale
sampling neighborhoods information. Thanks to the multi-
scale threshold integration encoding strategy, the proposed
LMSP provides the multi-scale texture representation with
low feature dimension.

3.4 Local multi-scale magnitude pattern

As elaborated in [9], the local difference magnitude is an
important complementary information for sign component.
In this section, we design a local multi-scale magnitude pat-
tern (LMMP) based on the multi-scale threshold integration
encoding strategy to strengthen the discriminative ability
and robustness for scale changes. Benefited from the pro-
posed multi-scale threshold integration encoding strategy,

Fig. 2 The illustration of local
multi-scale sign pattern
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the LMMP significantly improves the multi-scale analysis
ability with the same dimension of the CLBP_M.

For a center pixel gc and N sets of corresponding neigh-
boring pixels gRi , p, p � 0, ..., Pi − 1, i � 1, ...N ,
the local difference magnitude component is represented as
mRi , p � ∣∣gRi , p − gc

∣∣.We represent different scale threshold
for local magnitude component as follows.

threMi �

⎧
⎪⎪⎨

⎪⎪⎩

threM0 , i � 0

1
Pi

Pi−1∑

p�0
mRi , p, i � 1, . . . N

. (10)

Here, threM0 denotes the mean of mRN , p from the whole
texture image.

With the multi-scale threshold integration encoding strat-
egy, the multi-scale neighborhood magnitude threshold is
represented as

threM � 1

N + 1

N∑

i�0

threMi . (11)

Then the local multi-scale magnitude pattern is encoded
by threM , which is described as

LMMPriu2 �

⎧
⎪⎨

⎪⎩

PN−1∑

p�0
s
(
mRN , p − threM

)
2p , if U (LMMP) ≤ 2

PN + 1, otherwise

.

(12)

Similar to the LMSP, the LMMP capture discriminative
andmulti-scale localmagnitude informationwithout expend-
ing the feature dimension. Take N�3 as an example, Fig. 3
shows illustratively how the LMMP builds.

To obtain multi-scale and discriminative feature represen-
tation, we combine the LMCP, LMSP, and LMMP jointly,
and generate the completedmulti-scale neighborhood encod-
ing pattern (CMNEP), as shown in Fig. 4. In the CMNEP
descriptor, the sub-feature CMNEP_C is equal to LMCP,
CMNEP_S is equal to LMSP, and CMNEP_M is equal to
LMMP. Then, the final fusion feature vector is represented
as CMNEP_SMC.

Main differences between CMNEP and CLBP are four-
fold. First, CMNEP_C adopts different scale thresholds to
encode the center pixel and generates a (N + 1)-bit binary
pattern. CLBP_C only uses the mean of the whole image
to encode the center pixel and obtains a 1-bit binary pattern
without multi-scale analysis power. Second, in CMNEP_S,
the encoding threshold is generated by our proposed multi-
scale threshold integration strategy. In CLBP_S, the thresh-
old is the center pixel, which represents single-scale texture
information. For CMNEP_M and CLBP_M, we can find
similar conclusions. Third, in CMNEP_SMC, CMNEP_C
provides a proper feature dimension, which avoids the
imbalance problem during the feature fusion. However, in
CLBP_SMC, CLBP_C is too short to offer discriminative
information carried by the center pixel, which leads to the
imbalance among sub-patterns. Fourth, benefited from the
multi-scale threshold integration strategy, CMNEP have an
enticing scale-adaptive ability. But CLBP cannot deal with
scale variations.

3.5 Distancemeasure

For the fair comparison, the proposed texture descriptor and
all competitors adopt the same classifier for experimental
evaluations.

Fig. 3 The illustration of local
multi-scale magnitude pattern
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Center pixel

2R

1R

3R

R3

Local neighborhood

local difference signlocal difference magnitude

Multi-scale threshold integration encoding strategy

Local Multi-scale Center Pattern
CMNEP_C

Local Multi-scale Sign Pattern
CMNEP_S

Local Multi-scale Magnitude Pattern
CMNEP_M

Completed multi-scale neighborhood encoding pattern
CMNEP_SMC

Fig. 4 The illustration of CMNEP descriptor

More especially, this paper uses the nonparametric nearest
neighbor classifier with χ2 distance to measure the dis-
similarities between training data and sample images. The
histograms of the sample image and training image are
described as HS and HT , respectively. Then the χ2 distance
between the sample feature vector and the training feature
vector is defined as

D
(
HS , HT

)
�

M∑

i�1

(
HS
i − HT

i

)2

HS
i + HT

i

, (13)

whereM is the total number of bins in the histogram vector.
I refers to the ith bin in the corresponding histogram.

4 Experimental evaluation

To investigate the effectiveness of the proposed CMNEP,
we conduct comprehensive experiments in publicly avail-
able databases (including Outex [23], UMD [24], and UIUC
[25] database) to evaluate the proposed CMNEP descriptor
in comparison with some classical texture descriptors and
recent state-of-the-art texture classification methods.

Figure 5 shows some texture samples from Outex, UIUC,
and UMD database. Table 1 reports the summary of all
databases used in our experiments.

4.1 Experimental evaluation on Outex database

In this section, we evaluate the rotation and illumination
invariance of the proposed CMNEP descriptor on Outex
database (including Outex_TC10 and Outex_TC12). It has
24 classes with 200 samples each. The texture images are
collectedunder three illuminations (“inca,” “t184,” and “hori-
zon”), and nine directions (0°, 5°, 10°, 15°, 30°, 45°, 60°,
75°, 90°). We use the TC10 test suit to evaluate the rotation
invariance of the CMNEP descriptor and TC12 (including
Outex_TC12_000 andOutex_TC12_001) is used to test rota-
tion and illustration invariance of the CMNEP descriptor.

To evaluate the texture classification performance on
Outex database, we conduct a set of experiments to compare
sub-features and fusion features from the proposed CMNEP
and CLBP. Figures 6, 7, and 8 shows classification accura-
cies of different sub-features (including S and M) and fusion
features (containing S/C, M/C, S/C_M, M/C_S, and S/M/C)
for CMNEP andCLBPwith (R, P)� (3, 24). Tomake it more
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Fig. 5 The texture examples from Outex, UIUC and UMD database

Table 1 The summary texture database

Texture database Outex UIUC UMD

Image content Materials Materials Objects

Total images 4320(TC10),
9120(TC12)

1000 1000

Texture classes 24 25 25

Imaging
Environment

Controlled Wild Wild

Illumination
changes

√ √ √

Rotations
changes

√ √ √

Viewpoints
changes

√ √

Scale changes
√ √

visible, we adopt the blue bar and orange bar to represent the
CMNEP and CLBP descriptor, respectively.

It is observed that all sub-features and fusion features
of the CMNEP are higher than those of CLBP, which is
benefited by the proposed multi-scale threshold integration
encoding strategy. For example, the CMNEP_S andCLBP_S
have the same dimension. However, the CMNEP_S provides
a 1.04%, 3.12%, and 6.96% performance increase compared
to the base CLBP_S on TC10, TC12_000, and TC12_001,
respectively. For CMNEP_MandCLBP_M, the results come
to similar conclusions.

Moreover, the CMNEP’s fusion features also yield bet-
ter results than those of CLBP. As shown in Fig. 6, the
CMNEP_S/C performs better that the CLBP_S/C on TC10.
The CMNEP_S/C_M also significantly outperforms the
CLBP _S/C_M. Particularly, the CMNEP_S/M/C achieves
the best result of 99.71% on TC10, which is higher than the
CLBP_S/M/C by 0.78%. Similarly, as shown in Figs. 7 and

8, we can reach same conclusions compared with other types
of fusion features on TC12_000 and TC12_001.

These conclusions indicate that the proposed multi-scale
threshold integration encoding strategy helps the binary
pattern to capture multi-scale texture information by encod-
ing threshold, which significantly enhances the texture
feature representation and boosts the robustness against
images rotation and illumination variance. It is worth noting
that our multi-scale threshold integration encoding strat-
egy can be easily extended to more general binary pattern
methods.

To further verify the superiority of the proposed CMNEP
descriptor, Table 2 reports the classification accuracies of
the CMNEP descriptor and other competitors. As shown
in Table 2, the CMNEP descriptor achieves the best per-
formance in both TC10 (99.71%) and TC12 (98.63% for
TC12_000 and 98.61% for TC12_001). The detailed analy-
sis is as follows. On TC10, compared with some classical
LBP variants, the proposed CMNEP improves the classi-
fication accuracy significantly. For instance, our method
outperforms the baseline LBP by 4.64%. It is also higher
than CLBP and CLBC by 0.78% and 1.93%, respectively.
Moreover, it also performs favorably against many state-of-
the-art texture descriptors. For instance, the best classifica-
tion result of the CMNEP descriptor have 0.33%, 0.13%,
and 0.31% improvements over SALBP, FbLBP, and CLSP,
respectively.

For TC12, the proposed CMNEP also achieves signifi-
cantly and consistently performance superiority compared
to other competitors. For TC12_000, the CMNEP gets the
best classification accuracy (98.63%), which achieves an
improvement of 13.59%, 3.31%, 4.63%, and 1.80% over
LBP, CLBP, CLBC, and CRLBP. Furthermore, it also out-
performs the recent SALBP, FbLBP, CLSP, and CMPE
by 1.69%, 3.88%, 0.32%, and 0.37%, respectively. Similar
findings can be found for TC12_001. More precisely, the
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Fig. 6 The classification accuracy of CMNEP and CLBP on Outex_TC10
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Fig. 8 The classification accuracy of CMNEP and CLBP on Outex_TC12_001

CMNEP can reach the best result of 98.61%, which signifi-
cantly surpasses the results achieved by some traditional LBP
variants, such as LBP, CLBP, andCLBC. It also keeps a supe-
riority of 1.83% to the recent FbLBP, 1.30% to CLSP, and
0.69% to CMPE. These results firmly demonstrate that the
proposed CMNEP is not only robust to rotation variance but
also stable to illustration variance. Therefore, the proposed
multi-scale threshold integration encoding strategy plays an
essential role in extracting robust and discriminative texture
information.

4.2 Experimental evaluation on UIUC database

The UIUC database consists of 25 different classes and each
class has 40 texture samples with the resolution of 640×480.
The texture images are collected under different scales and
viewpoints. In this experiment, we randomly choose differ-
ent numbers of texture images (20, 15, 10, and 5) per class for
training, and the rest images are used for test sets. The classi-
fication results are reported over 50 random training/testing
splits.
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Table 2 Classification accuracy
(%) on Outex database Methods (R, P) Test suits

TC10 TC12_000 TC12_001

LBP [8] (3,24) 95.07 85.04 80.78

LTP [27] (3,24) 98.64 92.59 91.52

BRINT [26] (3,24) 96.04 94.49 94.35

CLBP [9] (3,24) 98.93 95.32 94.53

CLBC [19] (3,24) 98.78 94.00 93.24

AECLBP [28] (3,24) 99.19 96.83 95.05

CDLF [29] (3,24) 99.11 95.65 95.25

MRELBP [30] (3,8) 98.23 97.73 96.25

CRLBP [31] (3,24) 99.48 97.57 97.34

SCLBP_TC [32] (3,24) 99.45 96.68 98.25

CRDP3D_2 [33] (3,24) 98.52 95.46 94.14

AGLBP [34] (3,16) 99.22 97.84 97.38

SLGP_CR_RR [35] – 97.79 84.17 83.82

CLTP [36] (3,24) 99.17 95.67 94.28

FbLBP [37] (3,24) 99.58 96.00 94.75

EMCLBP [41] (3,24) 99.61 96.37 95.32

CLBP (Multi-scale) [9] (1,8) + (2,16) + (3,24) 99.14 95.18 95.55

CLBC (Multi-scale) [19] (1,8) + (2,16) + (3,24) 99.32 94.98 95.51

SALBP (Multi-scale) [18] – 99.38 96.94 96.06

CJLBP (Multi-scale) [15] – 99.30 96.57 96.20

CLSP (Multi-scale) [38] (3,24) 99.40 98.31 97.31

CMPE (Multi-scale) [42] (3,24) 99.95 98.26 97.92

CMNEP_SMC (Our multi-scale
method)

(3,24) 99.71 98.63 98.61

To verify the effectiveness of the proposed CMNEP in
promoting texture classification accuracy, we firstly compare
it with the base CLBP on UIUC database. Figure 9 shows
the classification results of different sub-features and fusion
features from CMNEP and CLBPwith respect to the number
of training samples.

It can be seen that classification accuracies of CMNEP
andCLBP increasemonotonicallywith respect to the number
of training samples. The CMNEP’s sub-features and fusion
features perform much better than those in CLBP. Specif-
ically, the CMNEP_S and CLBP_S have the same feature
dimension (26 bins with (R, P)� (3, 24)), but the CMNEP_S
outperforms the CLBP_S by 11.98%, 12.56%, 12.84%, and
13.21% corresponding to 20, 15, 10, and 5 training samples,
respectively. Similarly, the CMNEP_M is also higher than
CLBP_M with different training samples.

Moreover, fusion features of our CMNEP achieve sig-
nificantly and consistently better performance compared
to CLBP. For example, the CMNEP_S/C_M provides
7.98%, 6.64%, 10.27%, and 13.12% improvements over
CLBP_S/C_M corresponding to 20, 15, 10, and 5 training
samples. As shown in Fig. 9g, the CMNEP_S/M/C reaches

the best classification result of 95.69% with 20 training
samples, which is much higher than the CLBP_S/M/C by
4.50%. Similar conclusions can be made for other fusion
features. It is clear that the proposed CMNEP always outper-
forms the base CLBP, which demonstrates that the proposed
multi-scale threshold integration encoding strategy is very
discriminative and powerful for enhancing the classification
accuracy. The reason is that the proposed multi-scale thresh-
old integration encoding strategy introduces the multi-scale
local texture information into the binary pattern threshold.

To further highlight the performance of the proposed
CMNEP, Table 3 lists the classification accuracies obtained
by it and other competitors.

In comparison with other LBP variants, the proposed
CMNEP descriptor outperforms all competitors in terms
of classification accuracy. More concretely, with 20 train-
ing images, the proposed CMNEP descriptor has accuracy
improvements of 31.64%, 14.21% and 4.50% over LBP,
LTP, and CLBP, respectively. In addition, compared with
some successful CLBP-basedmethods, it also provides com-
petitive performance improvement. For example, the pro-
posed CMNEP outperforms the LQC_C(6)N(4), AECLBP,
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Fig. 9 The comparative classification results of CMNEP and CLBP with respect to the number of training samples on UIUC
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Table 3 Classification results on UIUC database

Number of training images (R, P) 20 15 10 5

LBP [8] (3,24) 64.05 60.05 54.25 44.59

LTP [27] (3,24) 81.48 79.30 73.28 62.03

CLBP_S/M/C [9] (3,24) 91.19 89.21 85.95 78.05

CLBC [19] (3,24) 91.39 90.10 86.45 79.75

CRLBP(α � 8) [31] (3,24) 92.83 90.55 88.02 80.54

CRLBP(α � 1) [31] (3,24) 93.31 92.03 89.47 81.90

BRINT [26] (3,24) 86.39 83.77 79.33 70.34

AECLBP [28] (3,24) 92.18 90.22 87.08 79.69

AELTP [28] (3,24) 82.16 79.36 72.77 63.45

CRDP [33] (3,24) 84.39 81.02 76.03 65.53

CLTP [36] (3,24) 94.40 91.52 88.93 82.97

LQC_C(2)N(4) [40] (3,24) 92.94 90.39 87.54 81.64

LQC_C(6)N(4) [40] (3,24) 93.17 90.91 88.13 81.77

CDLF [29] (3,24) 92.90 91.18 87.34 81.78

CDLF_S/M/C_AHA [29] (3,24) 93.77 92.83 88.80 82.11

FbLBP [37] (3,24) 94.17 92.58 89.51 81.79

EMCLBP [41] (3,24) 92.99 91.29 88.11 80.47

CJLBP (Multi-scale) [15] – 95.13 93.80 91.11 84.49

CLSP (Multi-scale) [38] (3,24) 94.50 92.82 90.01 81.52

CMPE (Multi-scale) [42] (3,24) 94.89 93.52 90.18 82.73

CMNEP_SMC (Our multi-scale method) (3,24) 95.69 94.43 92.15 85.51

EMCLBP, andCDLF_S/M/C_AHAby2.52%, 3.51%, 2.7%,
and 1.92%.

Moreover, its classification accuracy is also much higher
than recent LBP variants, such as FbLBP, CJLBP, CLSP,
and CMPE. For example, the best classification accuracy of
proposedCMNEP is 95.69%with 20 training samples,which
is higher than the best result of 94.17% of FbLBP with the
same training samples. The CMNEP also outperforms the
CJLBP by 0.56%. In addition, our CMNEP descriptor could
even outperforms the CLSP published in 2020 and CMPE
published in 2021 by 1.19% and 0.80%, respectively. These
results verify the effectiveness of the proposed multi-scale
threshold integration encoding strategy in promoting texture
classification accuracy.

In addition, the proposed CMNEP also achieves impres-
sive classification resultswhen the number of training images
reduce to 15, 10, and 5. For example, compared with the base
CLBP, the proposed CMNEP achieves 5.21%, 6.20%, and
7.46% improvement corresponding to the training numbers
for each texture class set as 15, 10, and 5, respectively. It is
notable that the CMNEP has the extremely prominent superi-
ority with the small training samples. Specifically, in the case
of 5 training samples, the CMNEP achieves an improvement
of 5.76%, 3.61%, 5.82%, and 2.54% compared to CLBC,
CRLBP (α � 1), AECLBP, and CLTP, respectively.

Furthermore, the proposed CMNEP performs favorably
against many recent binary pattern methods when the num-
ber of training images reduce to 15, 10, and 5. For example,
the difference in classification result between the CMNEP
and the CLSP published in 2020 are 1.61%, 2.14%, and
3.99%with corresponding to 15, 10, and 5, respectively. The
CMNEP also achieves an improvement of 0.91%, 1.97%,
and 2.78%, respectively, over the classification accuracies of
CMPE published in 2021. Similar conclusions can be found
for other competitors.

In summary, the proposed CMNEP descriptor signifi-
cantly improves the classification performance on UIUC
database. It is demonstrated that the proposed multi-scale
threshold integration encoding strategy can substantially
increase the multi-scale information representation and the
discriminative power of the binary pattern method.

4.3 Experimental evaluation on UMD databases

Tobetter investigate the effectiveness of theCMNEPdescrip-
tor, we conduct contrastive experiments on UMD database.
The UMD database has 25 classes with 40 samples each.
The texture image has 1280 × 960 high resolution and con-
tains different challenges, such as rotation variance, different
scales, viewpoints, and lighting conditions. In this section,
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Table 4 Classification accuracy (%) on UMD database

Methods (R, P) The numbers of training samples

20 15 10 5

LBP [8] (3,24) 86.25 83.99 80.47 72.25

LTP [27] (3,24) 89.30 87.37 84.75 77.57

(5,24) 90.43 89.08 85.78 78.81

BRINT [26] (2,8) 91.87 90.92 89.38 84.91

(3,8) 92.34 90.74 90.10 85.42

(5,8) 92.96 91.92 90.32 84.63

MRELBP [30] (2,8) 93.58 92.72 91.36 88.10

(3,8) 94.30 93.85 92.87 89.31

(5,8) 94.15 93.85 92.06 87.29

CRDP [33] (3,24) 92.10 91.16 89.24 84.11

(5,24) 92.06 91.05 88.87 83.26

CLBP [9] (3,24) 92.87 92.14 90.48 87.55

(5,24) 93.16 92.61 90.85 86.76

AELTP [28] (3,24) 94.17 91.58 88.91 80.43

AECLBP [28] (3,24) 96.78 96.80 94.47 91.79

CLBPCPS (Multi-scale) [39] [(2,8); (4,8)] 93.50 92.87 91.35 88.31

CRDPCPS (Multi-scale) [39] [(2,8); (4,8)] 93.32 92.84 91.41 87.67

CLSP (Multi-scale) [38] (3,24) 97.84 97.03 95.55 90.97

(5,24) 98.49 97.24 96.39 92.00

CMPE (Multi-scale) [42] (3,24) 98.84 98.12 97.03 93.26

(5,24) 98.78 98.20 96.91 93.05

CMNEP _SMC (Our multi-scale method) (3,24) 98.96 98.59 97.68 95.07

for every class, we randomly select 20, 15, 10, and 5 images
for training, and the rest images are used for testing. Table
4 exhibits the classification accuracies of the CMNEP and
other competitors.

First, the CMNEP descriptor achieves consistently bet-
ter classification performance than other texture descriptors
in comparison. For example, the CMNEP reaches the best
classification result of 98.96% in the case of 20 training
images, which achieves improvements of 12.71%, 8.53%,
and 5.80% over the best accuracies of the traditional LBP,
LTP, and CLBP, respectively.

Second, compared with some successful CLBP-based
descriptors, the proposed CMNEP also yields significant
accuracy improvements. For example, the CMNEP outper-
forms the AECLBP by 2.18%, 1.79%, 3.21%, and 3.28%
for 20, 15, 10, and 5 training samples. It is also higher than
the CLBPCPS by 5.46%, 5.72%, 6.33%, and 6.76% corre-
sponding to 20, 15, 10, and 5 training samples, respectively.
The striking performance of the CMNEP is mainly attributed
to the powerful multi-scale threshold integration encoding
strategy that significantly improves the texture classification
performance.

Third, compared with some recent texture descriptors, the
proposed CMNEP descriptor also obtains impressive texture
classification results. For example, the CMNEP descriptor
outperforms the CLSP published in 2020 by 1.12%, 1.56%,
2.13%, and 4.10% with 20, 15, 10, and 5 training sam-
ples, respectively. It also achieves an improvement of 0.12%,
0.46%, 0.65%, and 1.81% over the CMPE in the case of 20,
15, 10, and 5 training samples. The impressive classifica-
tion results demonstrate that the discriminability of CMNEP
descriptor is more powerful than those of state-of-the-art
texture descriptors, the multi-scale threshold integration
encoding strategy promotes the multi-scale representation
and enhances texture classification performance.

Four, the proposed CMNEP descriptor also achieves the
best classification results for different number of training
images per class. Especially for the small number of training
images, the CMNEP significantly outperforms other repre-
sentative competitors. For example, theCMNEP achieves the
best classification accuracy of 95.07% with only 5 training
images, which is higher than the original CLBP by 8.31%.
It also yields significant improvements of 3.07% and 1.81%
compared to the recent CLSP and CMPE. Similar findings
canbemadewhen compared to other representationmethods.
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The main reason is that our CMNEP can extract multi-scale
details about the local neighborhood,meanwhile, itmaintains
the competitive advantage of feature dimension.

In summary, the performance superiority of the proposed
CMNEP demonstrates the proposed multi-scale threshold
integration encoding strategy contributes multi-scale and
discriminative local texture information for the descriptor
without dimension increase. The proposed strategy can be
popularized to other binary pattern methods.

5 Conclusion

This paper presents a simple and efficient multi-scale texture
descriptor, the completed multi-scale neighborhood encod-
ing pattern, for visual texture classification. The proposed
CMNEP consists of local multi-scale center pattern, local
multi-scale sign pattern, and local multi-scale magnitude
pattern. The LMCP is used for capturing the central region
texture information by applying four different scale thresh-
olds. Based on the proposedmulti-scale threshold integration
encoding strategy, theLMSPandLMMPare proposed to rep-
resent the multi-scale local neighborhood texture structure.
To achieve a complementary information representation, the
three sub-patterns are jointly fused to form the CMNEP
descriptor. Experimental results on three popular databases
show that the CMNEP is powerful discriminative and robust
to illumination, rotation, viewpoint and scale changes. In
future work, an adaptive scale selection strategy for visual
texture classification will be investigated.
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