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Abstract
Smoothing the multiscale, irregular, and high contrast textures while maintaining structures with small details is challenging
for the existing texture filtering methods. In this paper, we put forward a novel edge guidance-based texture filter with an
adaptive kernel scale scheme to address these challenges. The texture edges are identified by a texture edge detector first.
Then, based on the texture edges, a variable per-pixel smoothing scale is selected to construct the scale map, which is used to
guide the filtering. In the end, a novel pixel-selected filter is designed as post-processing to optimize the filtered images. The
experimental results compared with the state-of-the-art methods show that our method has a better performance in suppressing
different forms of textures while maintaining the main structure. In addition, our method can be applied well in a variety
of image processing applications including: detail enhancement, inverse halftoning, virtual contour restoration and texture
image segmentation.

Keywords Guided filtering · Texture filtering · Adaptive kernel scale scheme · Texture edges · Pixel-selected filter

1 Introduction

Texture filtering aims to remove textural details in an image
while preserving structure edges as well as possible, which
is essential and powerful operation in a variety of application
such as detail enhancement [1], visual abstraction [2], image
segmentation [3], edge detection [4], tone mapping [5], opti-
cal flow estimation [6] and illumination estimation [7]. The
texture image is composed of structures and textures. Human
vision can easily distinguish structures and textures of an
image from a complex background. However, in the field of
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computer vision, extracting important structures from images
with textures or complex backgrounds is still a challenging
task.

In recent years, texture filtering algorithms have been
broadly studied and some effective techniques are pro-
posed, such as bilateral filter [8], guided filter [9], weighted
least squares filter [10], iterative global optimization filter
[2], edge selective joint filtering [11,12], Bayesian model
averaging [13], patch geodesic paths filter [14], superpixel-
guided smoothing [15], weighted guided image filter [16]
and weighted median filter [17]. Although these filters have
shown their excellent performance in many applications,
most of these filters have no satisfactory performance on
the following aspects. First, existing texture filtering algo-
rithms are insufficient to maintain details such as slender
structures and corners, as shown in Fig. 1a. Second, it is still
a challenge on certain images to handle high-contrast and
irregular texture patterns, as shown in Fig. 1b, c. A clear dif-
ference in gradient between texture and structure pixels is
required. When the gradient of the texture is stronger than
the gradient of the structure pixel, some gradient-based tex-
ture filteringmethodswill fail, i.e., a large number of textures
with strong gradients will be preserved, and structures with
small gradients will be suppressed. Besides, some methods
can only handle periodically changing textures and have cer-
tain restrictions on texture types. Finally, for an image with
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multi-scale textures, as shown in Fig. 1d, the existing meth-
ods with a signal filter unavoidably lead to a certain degree of
blurring effects in the image structures and texture residues
for textures with large scales.

We address these challenges by constructing an edge guid-
ance scale map to improve texture filtering. Texture filtering
often involves image smoothing, which smooths out textures
by averaging the pixel values around each pixel, while this
indiscriminate filtering usually results in the loss of impor-
tant structural information, such as structures. An effective
solution to this problem is that the filtering scales of the pixels
on the structures should be given small values to avoid blur-
ring them out, while the filtering scales of the pixels on the
textures should be given larger values to smooth out textures
as much as possible.

In this paper, a texture filtering algorithm based on edge
perception is proposed. First, texture edges are extracted
by a texture edge detector, whose central idea is to use
pixel-neighborhood statistics to distinguish structures from
textures. Second, under the guidance of the texture edges,
a scale map is constructed and then mean filtering within
a circular neighborhood with a scale from the scale map is
performed on the input image to get a coarse filtered image.
Finally, a novel pixel-selected filter with a fixed-size window
is used to optimize filtering results.

The rest of this paper is as follows. In Sect. 2, some other
related works are reviewed briefly. In Sect. 3, the proposed
filtering method is introduced, the scheme of texture edge
extraction, the conception and construction of the scale map
and the post-processing method. The performance of the
new method is evaluated by carrying out various contrast
experiments between the proposed method and state-of-the-
art methods in Sect. 4, and we show the effects of the new
method in some applications. Finally, we provide a summary
in Sect. 5.

2 Related work

Many researchers have proposed many effective nonlin-
ear image smoothing methods to solve image smoothing
problems. These approaches are mainly considered as edge-
preserving smoothing and structure-preserving smoothing
[18,19]. Edge-preserving smoothing can retain the edge
of image while filtering the image information. Structure-
preserving smoothing aims to reduce the texture information
and preserve the main-structure of image. Most structure-
preserving smoothing methods are improved from edge-
preserving filtering methods. Bilateral filtering (BLF) [20]
is a classic average-based filtering method and it has been
applied to a variety of computational photography applica-
tions. However, for multi-scale image decompositions, the
method may lead to some halo artifacts due to the ongoing

coarsening process. Anisotropic diffusion model [21] pre-
serves mainly image structures while eliminating noise and
texture. Guided filter (GF) [9] can preserve the edge bet-
ter rather than result in gradient reversals. In addition, many
novel edge-preserving filters [22–24] have achieved better
results.

State-of-the-art texture filtering methods can generally be
classified into two categories, i.e., the traditional methods
and learning-basedmethods. The traditionalmethods include
local texture filtering methods and global texture filtering
methods.

Local texture filtering is based on local features of the
image, including average-based filtering and patch-based fil-
tering. Karacan et al. [25] proposed a patch-based texture
filtering method that uses a covariance matrix as a patch
descriptor to distinguish local structures and textures, gener-
ating a better performance in distinguishing salient structures
and texture. However, the method has the drawback that the
performance is sensitive to the scale of the image feature.
Zhang et al. [26] proposed the rolling guidance filter (RGF),
which is based on the iteration of fast convergence to real-
ize the rolling guided texture filtering. The implementation
is simple and easy to understand. However, image structures
will be blurred with the increasing of iteration numbers. By
introducing a patch-shift mechanism to the bilateral filter,
Cho et al. [5] proposed a bilateral texture filter (BTF), which
significantly improves the texture filtering effect. However,
the method may filter out small structures and the jagged
edges are produced simultaneously. Lin et al. [27]made some
improvements to the patch-offset method and improved joint
bilateral filter to preserve small structures. Instead of patch
shift, smaller patches are used to represent pixels located at
structure edges, and original patches are still used to repre-
sent the texture regions. In addition, a windowed inherent
variation is adapted to distinguish textures and structures for
detecting structure edges. Although the method of [27] is
slightly better than [25], there is no standard practice for
threshold selection and only two fixed scales of the filter ker-
nel are used in themethod of [27]. In addition, there are some
other local filtering methods proposed, such as adaptive tex-
ture filtering methods [28] and local-optimization filtering
methods [29,30].

The global texture filtering methods are based on the idea
of global optimization that seeks an optimal smoothed image
by minimizing its difference from the input image and some
smoothing constraints simultaneously, thus achieving the
goal of suppressing the textures and highlighting the struc-
tures of the given image. Total variation (TV) regularization
[31] can effectively remove textures while preserving large-
scale edges but may filter out important structures. Farbman
et al. [10] adopt a weighted least square-based optimiza-
tion framework to smooth images. The L0 image smoothing
method [32] uses L0 gradient as smoothing constraint and can
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Fig. 1 Images with
different-pattern textures. a
Small details. b High contrast. c
Irregular change. d Multiple
scales

(b) high-contrast textures(a) small details (c) irregular textures (d) multiscale textures

Fig. 2 Texture filtering results
and comparison on the “Unicorn
and Phoenix” mosaic image.
Compared with previous
methods, ours effectively filters
out multiple-scale textures from
the input image, while
preserving structure edges and
small-scale salient features, such
as corners, without
over-sharpening and
over-blurring artifacts

(a) Input (b) RegCov (c) CLRP (d) FSAS

(e) TF (f) BTF (g) GFIS

(l) Ours(i) ILSM (j) SGIF (k) EBLF

(h) VDCNN

preferentially smooth pixels with a small gradient. The L0

image smoothingmethod is simple in themodel and performs
well in texture removal. It has beenwidely used in image pro-
cessing such as defogging and image enhancement.However,
there are still problems in maintaining the image detail struc-
ture and removing large scale textures in the image. After
further research, Xu et al. [4] proposed a related total vari-
ation (RTV)-based method, which is improved based on the
TVmodel and considers the differences between textures and
structures in termsof repeat patterns. TheRTVmethodmakes
texture filtering effect greatly improved and can handle cer-
tain strong gradient textures. However, the parameter setting
is an important factor for it to remove textures with strong
gradients, even at the expense of blurring structure withweak
gradients. Ham et al. [33] formulated the image filtering as a
nonconvex minimization problem and designed an iterative
smoothing way under the dynamic and static guidance, yet
it is difficult to obtain its termination conditions. The above-

mentioned methods usually adopt one or two fixed filtering
scales, leading to the difficulty in balancing the structure pre-
serving and texture smoothing, and thus blur structures or
remain details frequently emerging in their results. The ideal
solution is that the texture region can have a larger filter-
ing scale and smaller filter scales are used on structures and
narrow corners to avoid fuzzy appearance.

Recently, convolutional neural networks (CNNs) have
also shown great potential in edge-preserving filtering. Li et
al. [34] proposed aCNN-based joint filter,whose architecture
includes three sub-networks. The first two sub-networks are
used to extract the features and then the features responses
are concatenated as inputs for the third sub-network to
reconstruct the filtered output. However, the dependencies
modeled by them are quite implicit. In general, the neu-
ral network parameters of deep image smoothing operators
should be trained under strong supervisionwith explicit train-
ing data. However, this explicit supervision would make the
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smoothed images processed by deep operators only have
one xed style. For this problem, Kim et al. [35] proposed
a deep variational prior based on CNNs and combined it
with an iterative smoothing process by using an alternat-
ing direction method of multiplier algorithm and its modular
structure. There is no public and widely accepted dataset
for an objective comparison of different edge-preserving
smoothing algorithms, to solve this problem, Zhu et al. [36]
proposed a benchmark by establishing a new dataset and a
baseline model based on deep CNNs. A new weighted L1

loss andweighted L2 losswas introduced to train the baseline
model on the dataset. The learning-based algorithmic often
outperforms traditional methods by large margins, while the
training based on large quantities of data still limits their
works.

3 Proposedmethod

In this section, we will introduce the proposed edge guid-
ancefiltering,whichmainly includes the following four parts:
color quantization, texture edge extraction, scale map con-
struction and pixel-selected filter, which are shown in Fig. 3.
At first, the input image is processed by our proposed edge
guidance filter, using the scale map as the scale guide image
to create a coarse filtered image. Next, a novel pixel-selected
filter is applied to the coarse filtered image, and the final
filtered image is achieved at the given iteration.

Input Image

Color-quantized 

Image

Final Texture 

Edges

Joint 

Filtering

Scale Map

Coarse filtered image

Output Image

Pixel selected

Filtering

Fig. 3 Overall process and intermediate images of our edge guidance
filtering

3.1 Color quantization

To extract the texture edge of the image, color quantization
should be carried out first. Color quantization is a method
of combining similar colors in an image into the same color.
Color quantization can reduce the complexity of the image
color,make the texture feature information of the imagemore
explicit and make it possible to use the local histogram of the
image to describe the texture feature. In this paper, mean-
shift algorithm [37] is adopted to achieve color quantization
of the image.

The mean-shift algorithm is an iterative process using
the mean-shift vector. Given n sample points of Rd in d-
dimensional space, for any point x in the space, the basic
form of its mean-shift vector is defined as:

Mh = 1

J

∑

xi∈SJ
(xi − x) (1)

where, i = 1, · · · , n, SJ is a d-dimensional sphere with a
radius h, J indicates that among these n sample points xi , J
points fall into the SJ region.

The process of color quantization using the mean-shift
algorithm is as follows: In the 3-dimensional color space
(note that the RGB and LAB color space can both be used
here, but we prefer RGB color space since it can be directly
used without color space conversion), choose K pixels as
the centers and h as the radius to make K spheres. For every
sphere, each pixel that falls inside the sphere will produce
a vector, i.e., xi , which starts at the center and ends at the
pixel. K mean-shift vectors can be obtained from equation
(1). Then using the end pixels of these mean-shift vectors as
the centers make K new spheres and repeat the above steps
to get mean-shift vectors. Repeated in this way, the mean-
shift algorithm can converge to the colors with the K highest
probability density, which is the color palette. Pixel mapping
is performed by setting the colors of all pixels that fall in
each sphere to the color of its center pixel.

The parameter K is the color number after color quanti-
zation and it decides the abilities to distinguish colors. As
shown in Fig. 4, the more color bins, the stronger the abil-
ity to distinguish colors is. The image in Fig. 4 is a more
extreme example, and K = 20 is adopted in most cases of
our experiments, which is big enough to distinguish most
common colors.

3.2 Texture edge extraction

We believe that the key to achieve structure extraction is
to extract accurate structure edge information, that is, tex-
ture edge information of the image. Martin [38] provides
an effective edge detection operator Pb detector,Pb detec-
tor can basically realize the edge detection of texture. In this
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Fig. 4 Filtered results of our
edge guidance filter with
different color bins K . Colors
with smaller difference can be
distinguished as K increases

Input K=10 K=20 K=40

paper, we have improved the Pb detector to improve its effect
on texture edge detection, and the improved Pb detector is
described as follows.

Let p is a pixel on a color-quantized image where the
color is divided into K bins. The circular region of pixel
p with a radius of r is divided into two regions of equal
size by a line passing through pixel p at an angle of θ . The
texture descriptor of these two regions is represented by gθ,r

and hθ,r , respectively. gθ,r and hθ,r are two vectors used to
represent color histograms within the regions. The variant of
the Pb detector with arbitrary orientation is described as the
histogram difference, which is computed by

G (p, r , θ) = −ln

⎛

⎝
∑

k=1,··· ,K

√
gθ,r (p, k) hθ,r (p, k)

⎞

⎠ (2)

where, k denotes the index of color bins.
Using Liu’s method [39], we use eight equidistant angles

for θ from 0◦ to 157.5◦, and the texture edge detector mPb
withmultiple orientations θ andmultiple scales r is expressed
by

mPb (p, θ) =
∏

r∈�

∑

θ

G (p, r , θ) (3)

where� = {r1, r2, · · · , rm} is the set of radii. Different radii
sets will lead to different filtering effects. As shown in Fig.
5, a set of bigger radii can ensure the filtering of large-sized
textures.

mPb can be used to obtain the possibility of texture
edge, and by combining with the gradient edge of the orig-
inal image, accurate texture edge detection results can be
obtained. The extraction process is shown in Fig. 6.

3.3 Scale map construction andmultiscale filtering

For a given image I , it can be decomposed into two parts,
i.e., the structure S and texture T , which can be expressed by

I = S + T (4)

In this paper, we use circular mean filter to compute the
structural component of pixel p as:

S (p) =
∑

q∈C(p,ρ) u pq I (q)
∑

q∈C(p,ρ) u pq
(5)

where, C (p, ρ) denotes a circular neighborhood with radius
ρ centered at pixel p, pixel q is within C (p, ρ) and its coor-
dinates are given by

(
xq − xp

)2 + (
yq − yp

)2 ≤ ρ2 , u pq

denotes the location relationship between pixel p and pixel
q in the circular neighborhood C (p, ρ), and its values can
be expressed by

u pq =

⎧
⎪⎨

⎪⎩

1,
(
xq − xp

)2 + (
yq − yp

)2
< ρ

s,
(
xq − xp

)2 + (
yq − yp

)2 = ρ

0,
(
xq − xp

)2 + (
yq − yp

)2
> ρ

(6)
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Fig. 5 Filtered results of our
edge guidance filter with
different radii sets �. Textures
with bigger scales are removed
as rm increases

 ={4,7, ,31}={3,5, ,21} ={1,2, ,10}Input

Fig. 6 Extraction process and
intermediate images of texture
edges

Input Image

Color-quantized 

Image

Initial Texture 

Edges

Final Texture 

Edges

Gradient Edges

Hadamard 

Product

(a) (b) (c)

p p pρ ρ ρ 

Fig. 7 Circular neighborhoods with different radius. a ρ = 2, b ρ = 3,
and c ρ = 4

where, s denotes the value of the pixel not completely falling
into C (p, ρ). The pixel’s u pq is equal to the area within
C (p, ρ). The radius ρ is the filtering scale of the circular
mean filter. Figure 7 shows examples of circular neighbor-
hoods with different radii.

In order to filter out textures as much as possible while
preserving the image structure, filters with different scales
are needed. Intuitively, for the texture edge part of the image,
a small-scale filter is needed to avoid blurring structures,
while for the texture part, a large-scale filter is needed to
smooth out the texture. Based on the texture edges extracted
by the mPb detector, we now can construct the scale map
by setting the filtering radii. We design a set of filtering radii
� = {R1, · · · , Rn} to control the texture scale to be removed.
Every radius is equally spaced in � and subscript n denotes
the number of radii, which is set to a fixed value of 10. R1

and Rn is the minimum and maximum value, respectively.
As shown in Fig. 8c, for pixels right on texture edges, the

(a) (b) (c)

Fig. 8 Diagram of scale map. a Input image. b Scale map. c Close-ups

filtering radii are set to the minimum radius R1. For pixels
near texture edges, the filtering radii are set to R2, and so on,
until the farthest pixels have the maximum radius Rn . That
is to say, the closer a pixel is to the texture edge, the smaller
the filtering radius is. When a pixel is far away from each
texture edge, the filtering radius is set to Rn . In addition, for
pixels in the texture region, the filtering radii are also set to
Rn .

The parameter� affects the filtered results of our method.
R1 affects the pixels near texture edges, and a smaller R1

introduces less edge blurring. Rn controls themaximumscale
of textures to be removed, a bigger Rn leads to more aggres-
sive texture removal and smoother results. In this paper, we
set � = {1, 2, · · · , 10}, which is suitable for images with
sizes of around 480 × 320 pixels. For images with high res-
olutions, such as HD, 2K and 4K, we can set R1 = 1 and the
value of n in � to be proportional to the image resolution. In
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addition, the image resolution also affects the setting of � in
Eq. (3), whose value also should increase proportionally to
the image resolution.

3.4 Pixel-selected filter

Throughmeanfilteringguidedby scalemap, the textureswith
large scales or strong gradients can be removed. However,
there are still some residual textures near texture edges,which
are shown as the coarse filtered image in Fig. 3. In order
to perfect the filtering effect, we propose a novel modified
post-processing method based on Liu’s method [40], which
is essentially a pixel-selected mean filter.

In natural pictures, the color distribution in the LAB color
space has a better separation degree than in the RGB space,
so we convert the image to the LAB color space for post-
processing. The proposed pixel-selected filter is essentially
a self-guided mean filter, and the filtering result of pixel p is
computed by

S′ (p) =
∑

q∈N (p,w) wpq I (q)
∑

q∈N (p,w) wpq
(7)

where, N (p, w) is a squared patch around centered pixel p
with w pixels on its side, I (q) is the value of pixel q in the
input image, and wpq denotes the weight of pixel q in the
filter.

wpq = 1

1 + edpq−d0
(8)

where dpq is the L2 norm between pixel p and pixel q in the
LAB color space, and d0 is a threshold.

As shown in Fig. 3, the result of the pixel-selected filter
is assigned to the input image for the next iteration. Finally,
the smoothed image is achieved at the given iteration.

For the pixel-selected filter, compared to BLF, it is a sim-
pler, faster and effective edge preserve filteringmethod, there
are three parameters, i.e., the patch scale w, distance thresh-
old d0 and iteration time nitr . Patch scale w determines how
large the scale of textures is to be smoothed. The larger the
patch scale is, the larger the textures are removed while more
structures could be damaged. However, if the patch scale is
too small, the textures cannot be smoothed enough. Since tex-
tures with large scales have filtered out by our edge guidance
filter, the patch scale set to 3 is suffice for most cases. The
pixel-selected filter is adjusted by the other two parameters:
d0 and nitr , whose results are shown in Fig. 9.

Observation on the filtered results from left to right shows
the role of thenitr .Asnitr increases, the texture regionwill be
more flattened. While some noise with a bigger patch cannot
be filtered out. This problem can be solved by increasing
parameter d0. The filtered results from top to bottom show the

(i) nitr=10, d0=0.25(h) nitr=5, d0=0.25(g) nitr=1, d0=0.25

(f) nitr=10, d0=0.2(e) nitr=5, d0=0.2(d) nitr=1, d0=0.2

(c) nitr=10, d0=0.1(b) nitr=5, d0=0.1(a) nitr=1, d0=0.1

Fig. 9 Filtered results of our pixel-selected filterwith varied parameters

effect of the d0. As d0 increases, more noise can be smoothed
while the texture edges are blurred inevitable. In practice,
we give d0 a value from the set {0.1, 0.2, 0.3} and ntir a
value from the set {3, 5, 7, 9}, which can often produce the
desired results, according to specific images and applications.

4 Experiments and applications

4.1 Experiments and evaluations

To evaluate the performance of the new method, a series
of contrast experiments were conducted with the state-of
the-art texture filtering methods, including region covari-
ance filter (RegCov) [25], fast scale-adaptive bilateral texture
smoothing (FSAS) [8], customized low-rank prior model
filter (CLRP) [41], treefiltering (TF) [29], bilateral texturefil-
tering (BTF) [5], generalized framework for edge-preserving
and structure-preserving image smoothing (GFIS) [18,19],
real-time image smoothing via iterative least squares (ILSM)
[22], semi-global weighted least squares in image filter-
ing (SGIF) [23], embedding bilateral filter in least squares
for efficient edge-preserving image smoothing (EBLF) [24]
and CNN-based method (VDCNN) [36]. The parameters
of all the methods being compared in the experiments are
provided by the authors in their papers. Our method has
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Fig. 10 Visual comparisons
with the state-of-the-art texture
filtering methods. a Input image,
b RegCov [k = 19, σ = 0.2,
Model1], cCLRP [γ = 1.6,
β = 1e − 5,niter = 200,
ModelB], d FSAS [λ = 4,
k = 30, niter = 2], e TF
[σ = 0.01, σs = 3], f BTF
[k = 2, niter = 5], g GFIS
[λ = 0.5, niter = 10], h
VDCNN [layers = 20 k = 3], i
ILSM[niter = 10, λ = 1], j
SGIF [niter = 5, σR = 2], k
EBLF [σs = 15, σr = 0.05],
and l Ours [� = {1, 2, . . . , 20},
d0 = 0.13, nitr = 5]

(d) FSAS(a) Input (c) CLRP

(f) BTF (g) GFIS

(b) RegCov

(e) TF

(l) Ours(i) ILSM (j) SGIF (k) EBLF

(h) VDCNN

four parameters that need to be adjusted: the color bin
number K mentioned in Sect. 3.1, the radii set � men-
tioned in Sect. 3.2, the distance threshold d0 mentioned in
Sect. 3.4 and the iteration time nitr mentioned in Sect. 3.4.
When our method carried out the experiment in this paper,
K values are all 20, and the settings of other parameters
are described in the experimental figure notes. The code
is publicly available at https://github.com/LeonSunn/Edge-
Guidance-Filtering-For-Structure-Extraction.

We comparewith three excellent edge-preserving filtering
approaches including ILSM,SGIFandEBLF.Thesemethods
are effective in general texture filtering. However, experi-
ments show that it is difficult to smooth high contrast texture
only by edge-preserving filters. These algorithms will not be
discussed in more detail in subsequent sections.

Figure 10 shows eleven results on a texture image whose
background rock particles are textures and the graffiti is the
structure, including a portrait and letters.As shown in Fig. 10,
all the methods in the texture removal test can extract promi-
nent image structurewhilefilteringout the textures.However,
we notice that the methods of RegCov, CLRP and VDCNN
perform less well in removing background textures because
these backgrounds of filtered images are not flat. Moreover,
the methods FSAS, TF, BTF and GFIS over-blur the struc-
tural edges, and the lettersCASHin thefilteredgraffiti images
are seriously damaged and illegible. Although the TFmethod
overcomes these shortcomings, there is another problem. The
TF method tries to find the texture regions with a minimum
spanning tree to avoid using axis-aligned windows. While
this pixel-based method may mistake the region to which
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Fig. 11 Visual comparisons
with different methods on
preserving small structure
edges. a Input image, b RegCov
[k = 15, σ = 0.2, Model1], c
CLRP [γ = 1.6,
β = 1e − 5,niter = 200,
ModelB], d FSAS [λ = 4,
k = 30, niter = 2], e TF
[σ = 0.01, σs = 3], f BTF
[k = 2, niter = 5], g GFIS
[λ = 0.7, niter = 10], h
VDCNN [layers = 20 k = 3], i
ILSM [niter = 9, λ = 0.9], j
SGIF [niter = 12, σR = 2.5], k
EBLF [σs = 7, σr = 0.07], and
l Ours [� = {1, 2, . . . , 20},
d0 = 0.13, nitr = 5] (a) Input (d) FSAS(c) CLRP

(f) BTF

(b) RegCov 

(g) GFIS(e) TF

(l) Ours(i) ILSM (j) SGIF

(h) VDCNN

(k) EBLF
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Fig. 12 Results and comparison
on “Pompeii Fish Mosaic”. a
Input image, b RegCov [k = 19,
σ = 0.2, Model1], c CLRP
[γ = 1.6,
β = 1e − 5,niter = 200,
ModelB], d FSAS [λ = 4,
k = 30, niter = 2], e TF
[σ = 0.02, σs = 3], f BTF
[k = 2, niter = 5], g GFIS
[λ = 0.7, niter = 10], h
VDCNN [layers = 20 k = 3], i
ILSM [niter = 40, λ = 1], j
SGIF [niter = 10, σR = 2], k
EBLF [σs = 12, σr = 0.15],
and l Ours [� = {1, 2, . . . , 20},
d0 = 0.13, nitr = 5]

(d) FSAS(a) Input (c) CLRP

(f) BTF (g) GFIS

(b) RegCov

(e) TF

(l) Ours

(h) VDCNN

(i) ILSM (j) SGIF (k) EBLF

some pixels belong, thus producing loose edges, as shown in
Fig. 10e. By comparison, our method totally removes rock
particles while preserving the graffiti without blurring it, i.e.,
the portrait and letters in the filtered images are clear and
recognizable, as shown in Fig. 10l.

To further demonstrate the effectiveness of our method in
preserving small details, Fig. 11 shows the texture removal
results of different methods on a mosaic image, which con-
tains textures and a large number of small structures, such
as the teeth of fish, and the details of shrimp. Although all
the methods can extract prominent image structures, there
are some differences in the ability to preserve small struc-
tures. For example, as shown in the enlarged box in Fig. 11b,
f, h, the methods of RegCov, BTF and VDCNN may blur
small structure edges, such as the details of shrimp, and they
smooth out some small structures, such as the teeth of fish.
In Fig. 11c, d, e, g, the methods of CLRP , FSAS, TF and
GFIS performwell in removing textures and preserving small
structures. Among all these methods, our method performs

best in preserving small structures, i.e., only our method can
both preserve all the teeth of fish and the details of shrimp,
as shown in the enlarged box in Fig. 11l.

Figure 12 shows an ancient mosaic image from Pompeii,
which contains complex structures with weak gradients and
textures with strong gradients. As shown in Fig. 12b, c, e,
the methods of RegCov, CLRP and TF cannot effectively
filter out high-contrast mosaic textures in the background.
The methods of RegCov, TF, BTF, GFIS and VDCNN have
problems of preserving fine and complex structures, such as
the big fish’s eyes and its surroundings as shown in the left
enlarged boxes in Fig. 12b, e, f, g, h. Themethods of RegCov,
TF and BTF may over-blur structural detailed edges, such as
the red stripes shown in the right enlarged boxes in Fig. 12b,
e, f.

Figure 13a shows an image of a cobblestone ground with
different texture scales at different locations due to per-
spective. Since existing texture filtering methods usually
adopt fixed-scale kernels for structure-texture separation, it
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Fig. 13 Results and comparison
on the image with multiscale
textures. a Input image, b
RegCov [k = 19, σ = 0.2,
Model1], c CLRP [γ = 1.6,
β = 1e − 5,niter = 200,
ModelB], d FSAS [λ = 4,
k = 30, niter = 2], e TF
[σ = 0.08, σs = 3], f BTF
[k = 3, niter = 5], g GFIS
[λ = 1.5, niter = 15], h
VDCNN [layers = 20 k = 3], i
ILSM [niter = 35, λ = 1], j
SGIF [niter = 30, σR = 1.9], k
EBLF [σs = 15, σr = 0.15],
and l Ours [� = {1, 2, . . . , 20},
d0 = 0.1, nitr = 5] (a) Input (d) FSAS(c) CLRP

(f) BTF

(b) RegCov 

(g) GFIS(e) TF (h) VDCNN

(i) ILSM (j) SGIF (k) EBLF (l) Ours

is a challenge for them to preserve salient but small-scale
structures when removing large-scale textures shown in the
enlarged boxes in Fig. 13b–h. The performances on sup-
pressing the large-scale textures are unsatisfactory and the
bird-like structure is destroyed to a varying extent. In con-
trast, as shown in Fig. 13l, since our method automatically
identifies the smoothing scale per pixel, small but salient
structures (bird-like structures) are well preserved evenwhen
large textures are smoothed out. This experiment demon-

strates that ourmethod outperforms othermethods in filtering
out multiscale textures.

It is still a challenge for existing methods to filter out
large-scale textures with extreme variations while preserv-
ing important structures, which are shown in Fig. 14. Since
our texture filter adopts adaptive kernel scales for structure-
texture separation, our method outperforms the other meth-
ods in this regard.
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Fig. 14 Results and comparison
on the image with large scale
textures. a Input image, b
RegCov [k = 19, σ = 0.2,
Model1], c CLRP [γ = 1.6,
β = 1e − 5,niter = 200,
ModelB], d FSAS [λ = 4,
k = 30, niter = 2], e TF
[σ = 0.15, σs = 5], f BTF
[k = 6, niter = 7], g GFIS
[λ = 2.5, niter = 20], h
VDCNN [layers = 20 k = 3], i
ILSM [niter = 10, λ = 1], j
SGIF [niter = 10, σR = 2], k
EBLF [σs = 15, σr = 0.05],
and l Ours [� = {3, 5, . . . , 21},
d0 = 0.21, nitr = 10]

(a) Input (d) FSAS(c) CLRP

(f) BTF

(b) RegCov 

(g) GFIS(e) TF

(l) Ours(i) ILSM (j) SGIF (k) EBLF

(h) VDCNN

Table 1 Quantitative comparison on the dataset. The best results are in bold. The second results are underlined

Method RegCov CLRP FSAS TF BTF GFIS VDCNN ILSM SGTF EBLF Ours

PSNR 23.346 23.889 22.581 26.173 22.267 24.262 30.225 24.591 23.275 23.388 26.320

SSIM 0.8323 0.8569 0.8182 0.9057 0.8050 0.8734 0.9663 0.9098 0.8346 0.8761 0.9116

Table 2 Ablation study of image smoothing effects with no texture
edges, no scalemap and no pixel. The best results are in bold

PSNR SSIM

No texture edges 24.850 0.905

No scalemap 22.575 0.839

No pixel selected 24.699 0.895

All module 25.275 0.914

We compare the average PSNR and SSIM [42] of Zhu’s
dataset [36] to evaluate our method, the objective perfor-
mances of different methods are shown in Table 1. Our
method achieves the biggest PSNR and SSIM except the
VDCNN(CNN-based method), indicating its superiority in
performance.

To investigate the performance of the different parts in pro-
posed method, we test the algorithm with no texture edges,
no scalemap and no pixel selected respectively. We use the
dataset to set up the experiment. One of the testing results

comparedwith ground-truth inTable 2 and the natural images
in Fig. 15 shows the difference in respective part.

4.2 Applications

Texture filtering method is the basis of many image process-
ing applications and has a good application prospect [4], [43].

Image detail enhancement could make image details
clearer and enables us to better distinguish image details.
First, we can obtain the detail layer by subtracting the fil-
tered image from the original image. Then, we can get the
detail enhanced image by magnifying and adding back the
detail layer to the original image. Figure 16 shows examples
of detail enhancement produced by RegCov, TF and ours. If
the edges of the smoothed image are heavily blurred, there
will be halos along the blurred edges in the detail enhanced
image, as indicated by the red arrow in Fig. 16b, while, if
the edges are sharper than those in the original image, the
edges in the detail enhanced image will cause the gradient
reversals, as indicated by the yellow arrow in Fig. 16c. Our
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(a) Input (b) No edge (c) No pixel select (d) No scalemap (e) All module

Fig. 15 Ablation study. a Input images. b Image smoothing result with no texture edges. c Image smoothing result with no pixel selected. d Image
smoothing result with no scalemap. e All module

Fig. 16 Results and comparison
on detail enhancement. The
parameters set are as follows:
RegCov [k = 4, σ = 0.2,
Model1], and TF [σ = 0.1,
σs = 3]

(a) Input (b) RegCov (c) TF (d) Ours

Fig. 17 Inverse halftoning
example. a Input image. b
Close-ups. c Our filtered result

method can produce the results free of halos and gradient
reversals as illustrated in Fig. 16d.

In addition, there are some other applications of our
method. Figure 17 shows an application of inverse halftoning,
which aims to transformhalftone images composed of stipple
dots to continuous-tone images. The operation is essentially
texture filtering and our method shows a good performance
in terms of removing stipple dots while keeping important
structures. Figure 18 shows the results of virtual contour
restoration. Natural images often contain objects with no
clear boundaries, but these boundaries with large contrast
can be perceived by human visual systems. Our method can
restore these originally nonexistent edges reflecting texture
change. Some texture image segmentation results by our
filtering method are shown in Fig. 19. Our method can effec-
tively suppress different forms of textures while maintaining

the main structure, which is useful in texture image segmen-
tation.

5 Conclusion

We propose a novel texture filtering method based on adap-
tive kernel scales. Our method relies on texture edges to
separate structures from textures and to guide image smooth-
ing with multiscale filter kernels. That is, for per pixel, the
average-filtered result on its adaptive-scale circular neighbor-
hood is used to represent the pixel. The texture edges are used
to select the per-pixel filter scale that the closer a pixel is to
the texture edge, the smaller the filter scale is, and the pixels
in textural regions have the largest filter scale. This scheme
ensures that the filter scale is big enough to eliminate noise,
texture, and clutter, but small enough to preserve all structure

123



5340 B. Sun et al.

Fig. 18 Virtual contour
restoration. (top) Input images.
(middle) Our filtered results.
(bottom) Virtual contour
restoration results

Fig. 19 Texture image
segmentation. (top) Input
images. (bottom) Segmentation
results

edges and corners. Finally, we propose a pixel-selected filter
as post-processing to optimize the filtered results. To verify
the performance of this proposed method, many comparative
tests were conducted with the state-of-the-art methods. The
experimental results show that our method has a better per-
formance in filtering out complex textures while preserving
the weak main structure.
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