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Abstract
Object detection is considered as one of the most important applications of deep learning. However, the object detection
techniques lose their effectiveness and reliability when they fall victim to adversarial attacks. This big flaw has made it
challenging to fully adopt the object detection applications in important products and essential industries such as autonomous
vehicles. While the field of adversarial robustness has witnessed a great deal of achievement in building sophisticated methods
of attack and defense, themajority of thework has been focused on the task of image classification due to its simplicity in theory
and practice. In this paper, we provide an up-to-date survey of recent advancements in the field of adversarial robustness
for object detection. We review the prominent attack and defense mechanisms presented in the research community and
provide discussions and insights on their strengths and weaknesses. In addition, we review the recent literature on adversarial
robustness for applications related to autonomous vehicles, as a critical aspect of this high-impact emerging industry, in which
the robustness of models is of vital importance.

Keywords Object detection · Adversarial attack · Robust detector · Adversarial defense

1 Introduction

Deep learning has helped solvingmany crucial artificial intel-
ligence problems over the past decade, some of which were
outstanding for a long time [1]. Nowadays, deep neural net-
works (DNNs) are employed to solve complex problems in
various fields such as machine vision [2], natural language
processing [3], big data processing [4], DNA analysis [5]
and autonomous vehicles [6–9]. The rapid development and
progress of the deep learning field is rooted not only in
the high capability and performance of the deep learning
approaches, but it also stems from other factors such as the
concentrated efforts of researchers and the rapid improve-
ment of the deep learning models [10], discovering the
importance of the different deep learning applications [11],
hardware advancements [12], the increased power of the
computer processors and the graphical processing units [13],
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and the development of various software libraries and plat-
forms [14]. Today, DNNs play a vital role in our lives, which
can even overshadow our health and well-being [15]. Owing
to the high precision and the low error rate of these networks
and, thus, the amount of trust they have been able to earn,
the DNNs have been reliably employed in the sensitive areas
[16] such as health [17], face recognition [18], autonomous
flying vehicles [19], andmany other fields. The deep learning
approaches, especially those associated withmachine vision,
play a significant role in our day-to-day activities, and this
role will become even more prominent in the future [20].

Machine vision is the field in which most of the deep
learning breakthroughs are rooted [21]. Before the advent
of the deep learning, the conventional machine vision tech-
niques had a much lower performance [22], and the deep
learning concept tremendously evolved the precision of the
machine vision systems [23].DNNshelped improvemachine
perception to the point that it surpassed the natural human
vision precision in some cases [24]. After a short while, deep
learning models were employed in different machine vision
applications such as classification [25], segmentation [26],
semantic segmentation [27], face recognition [28], object
detection [29], and tracking [30].
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Fig. 1 The basic operation pipeline of an object detector

Many high-precision object detectors based on the DNN
models have been introduced in the recent years. The main
task and challenge of these object detectors is to detect the
target objects and their positions in different classes and
images [31]. Object detectors are first trained on a number of
labeled images, and then a trained DNN performs inference
on unlabeled input images. The output will be in the form
of bounding boxes and class categories for object types seen
during training [32]. Figure 1 shows a basic overview of an
object detection pipeline.

As it can be observed in Fig. 1, after passing an image
through the different layers of an object detection neural net-
work, the target objects and their positions in the input image
are detected by the object detector. The detection of objects
in video recordings is an essential task related to autonomous
vehicles, and due to the importance of this field, it has been
the subject of numerous investigations [33]. The processing
of objects in videos is a complex task, because the quality of
every frame which is isolated from a video recording deteri-
orates and needs to be boosted and enhanced independently
[34]. In certain applications, sometimes it is necessary to per-
formobject detection and object tracking simultaneously. For
this purpose, a new task called the “Video Instance Segmen-
tation” has been introduced in the field of video processing
[35].

In the last several years, many high-precision and fast
object detection models have been presented [36]. Some of
the most important object detection models include the dif-
ferent versions of the YOLO model [37], the FRCNNmodel
[38], and the SSD model [39]. These models are considered
as the generic object detectors, and their task is to detect all
objects in an image and to outline their positions bymeans of
the bounding boxes [40]. Another form of object detection is
the salient object detection, in which the detectors try to find
the visually dominant objects in an image [41].

A critical flaw of the DNNs was discovered by Szegedy
et al. [42], when they showed that these networks are

highly vulnerable against adversarial attacks. The adver-
sarial attacks are small perturbations which normally are
imperceptible to the human eye, but they can completely
mislead the DNNs [43]. Since the publishing of the findings
by Szegedy et al. [42], a significant part of the researchworks
in the field of deep learning was devoted to the adversarial
attacks/defenses [44–57].

While the field of adversarial robustness has witnessed
a great deal of achievement in building sophisticated meth-
ods of attack and defense, the majority of the work has been
focused on the task of image classification due to its simplic-
ity in theory and practice [58]. As a result, there has been
little coherent effort to survey the state-of-the-art research in
adversarial robustness of object detectors. In the real world
however, object detectors are much more adopted than clas-
sifiers, and thus dedicated studies on robustness of object
detectors are required.

Considering the significance of the adversarial robust-
ness in detector DNNs, in this paper, as seen in Fig. 2, we
review the most important articles on the subject of adversar-
ial attacks and defenses and generally adversarial robustness
in object detection.We try to show the progress of the attacks
over time in the study of attacks, and in the discussion of
defenses, the advantages and disadvantages of each method
have been presented. An overall comparison of different
adversarial attacks is carried out in Table 1 based on the
reduction of the mAP values. The mAP analysis [59] is a
method of measuring the performance of detection models.
Since most of the examined attacks can be applied on the
FRCNN, this model was considered in comparing the mAP
values.

Table 2 shows an overall comparison of the defense
techniques against the adversarial attacks. In this table, for
improving the precision, we have used the YOLOmodel and
considered the DAG attack, because most of the defense
strategies have presented their results based on this model
and type of attack.
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Fig. 2 A categorization of the methods discussed

We discuss the recent works on adversarial attacks and
defense for object detection. Problem and terminology are
discussed in Sect. 2. In Sect. 3, a general description of differ-
ent types of adversarial attacks is presented. Someof themore
prominent adversarial defenses for robustifying the DNNs in
object detection are introduced in Sect. 4. The performances
of the adversarial attacks in the field of sample application
scenarios like autonomous vehicles and face detection are
investigated in Sect. 5, and the conclusion of the paper is
presented in Sect. 6.

2 Problem formulation and terminology

Adversarial attacks include small perturbations which are
usually unrecognizable to the human eye but can be mixed
into clean images and contaminate them. As stated in intro-
duction section, these attacks are able to mislead the deep
learning models and reduce their accuracy [66]. Figure 3
shows some example images perturbed by the adversarial
attacks. As observed in this figure, the detection models have
been deceived by these perturbations to a large extent and
have made wrong detections. Let us formally give a defi-
nition of an adversarial attack. Suppose O(·) is an object
detection model and let x be a clean input image. We expect
the output to be object labels that can be displayed with a set
like L � {l1, l2, ...., ln} where n is the number of detected

objects in the input image. Normally we expect the object
detector to act according to the following equation:

O(x) → L � {l1, l2, . . . , ln}. (1)

Now suppose we add a small amount of perturbation like
ρ to the image. The output of the detector changes to:

O(x + ρ) → L � {
l1, l2, . . . , ln

}
. (2)

Experimental results show that usually L �� L . And also
in some cases L and L are mutually exclusive. That means,
in some attacks, the model is deceived in such a way that it
does not recognize even a single object in the input image.

There are numerous technical expressions pertaining to
the subject of the adversarial attacks, and we are just going
to define some of them here.

Literally, the expression “adversarial perturbations” refers
to the disturbances that are embedded into a clean image to
turn it into an adversarial example [66]. As a perturbed ver-
sion of a clean image, an adversarial example is intended to
mislead or deceive a machine learning technique such as a
DNN [67]. In the literature related to adversarial attacks,
the expression “adversarial training” refers to a method
of network training by means of the images perturbed by
such attacks [68]. At a high level, adversarial attacks can
be divided into several types: ‘targeted’ or ‘untargeted’
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Fig. 3 Some examples of clean
images and those perturbed by
adversarial attacks, and the
outcomes of the DNNs used to
detect objects within these
images. After perturbation, the
network is not able to detect the
objects anymore

attacks and ‘black-box’ or ‘white-box’ attacks. The untar-
geted attacks do not care about the final label and the misled
labels; they just want to deceive an object detection model.
What is important in the untargeted attacks is that objects get
wrong labels [69], while the targeted attacks want to deceive
a model so that it designates a particular label for a spe-
cific object. In fact, the targeted attacks are devised for a
certain class of objects [70]. As mentioned earlier, there are
different methods for adversarial defense as well. Generally,
these defensive techniques can be divided into ‘one-shot’ and
‘iterative’methods. Theone-shotmethods produce the adver-
sarial disturbances by performing a one-shot computation
(e.g., a one-time computation of a model’s loss gradient to
generate a perturbation [71]), whereas the iterative methods
perform the computations several times in order to generate
a single disturbance. This operation is usually more costly
than the one-shot procedure [72]. In general, these are the
most common terminologies used in the literature published
on the subject of the adversarial attacks, and we are going to
use these expressions in the following sections.

3 Different types of attacks on object
detection

In this section, we review the most common and frequently
used adversarial attacks introduced in the field of object
detection.We review the effects of these attacks on numerous
datasets and models. An adversarial attack is considered to
be more effective if it has a higher fooling rate and is able
to reduce the accuracy of a model to a greater extent [73]. In
the following subsections, we will explore these attacks.

According to [45], there are three tasks in the object
detectors: detecting an object, forming a bounding box, and
allocating a label to the bounding box. In one training sample
�
x we have n bounding boxes that refer to objects in the train-

ing sample. The objectness score
�

Ci ∈ [0, 1][0, 1] which
determines the presence of an object in an image, can be
obtained by minimizing a binary cross-entropy (LBCE) [74].
The objectness loss can then be formulated as:

(3)

Lobj(
�
x ; O , W )

�
n∑

i�1

[Li LBCE(1,
�

Ci ) + (1 − Li )LBCE(0,
�

Ci )].

In Eq. (3) it is assumed that Li � 1 if there is an object in
the ith candidate bounding box and Li � 0 if the ith boundary
box does not have any objects.

Regressing the bounding boxes: (
�
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y
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i )
denote the center, width, and height of the bounding box i
and are obtained by minimizing a sum of box coordinates
least square error (LSE) as follows:
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And finally, the object-type classification loss term is
defined as:

Lclass(
�
x ; O , W ) �

n∑

i�1

Li

C∑

c�1

LBCE(p
c
i ,

�
p
c

i ) (5)
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where K-class probability vector
�
pi � (

�
p
1
i ,

�
p
2
i , ...,

�
p
k

i )
approximates the label of a box.

Thus, the overall loss function of the deep detector intro-
duced by Chow et al. [45], is formulated by combining
Eqs. (3), (4), and (5):

(6)

Lobject - detector(
�
x ; O , W ) � Lobj(

�
x ; O , W ) + Lbbox(

�
x ;

O , W ) + Lclass(
�
x ; O , W )

3.1 The targeted adversarial objectness gradient
attacks (TOG) series of attacks

In this series of attacks, six attacks have been introduced by
Chow et al. [45], who also made the relevant software avail-
able to the public. An evaluation of the obtained results shows
that the TOG attacks have done well in different cases and
were able to reduce the accuracy of the consideredmodels on
a variety of datasets. Here, we will touch briefly on the math-
ematical approaches used by the various models and also
explain the attack strategies. The algorithm implemented in
the TOG attacks is relatively simple.

The TOG carries out its adversarial attacks by reversing
the training process. Chow et al. [45] are able to generate the
x ′ images as the adversarial examples by using the following
equation:

x ′ �
∏

x ′, ε

[

x ′
t−1 − αTOG�

(
∂L∗(x ′

t−1; O
∗, W )

∂x ′
t−1

)]

(7)

Here, αTOG denotes the learning rate of the attack, and
�(.) is the sign function. By strategically manipulating L∗
and finding the auxiliary target O∗, not only does the TOG
support the random and arbitrary attacks, but it also gener-
ates 3 types of exclusive targeted attacks in order to fool its
victims.We survey these attacks in the following subsections.

(a) The TOG-untargeted attack This is a type of random
attack which tries to deceive the detection models in a way
that they are unable to correctly detect the objects in various
classes. This type of attack does not target an exact class of

objects. Also, the aim of this attack is not to use a wrongful
technique, and such a mistake may occur due to the conceal-
ing of an object from an object detector, the allocation of the
wrong label or the fabrication of a particular detection [75].

(b) The TOG-vanishing attack The main goal of this tar-
geted attack is to create some noise in an image so that an
object detector would be unable to detect and recognize any
of the object classes in that image [76]. In fact, the main
objective in this attack is to have an empty detection vector
at the output of an object detector.

(c) The TOG-fabrication attack Contrary to the TOG-
vanishing attack, the main objective of the TOG-fabrication
attack is to add incorrect detections to the output detection
vector. In this type of attack, at a detector’s output, one can
see an image with a lot of wrongly detected objects.

(d) The TOG-mislabeling attack In this attack, the existing
positions of the objects in an image are correct, and they are
detected correctly, but the object detector chooses the wrong
labels for the images.

The outcomes of the TOG attacks on the example images
and the performance of the object detector confronting these
attacks are illustrated in Fig. 4.

3.2 The DAG attack

The DAG attack, with the full name of Dense Adversary
Generation attack, has been devised for the object detec-
tion and semantic segmentation tasks [46]. According to the
authors, this attack has a high transferability and is quite
effective on numerous datasets and architectures. The algo-
rithm for generating this type of attack is a simple one. In
order to generate a DAG attack, the following procedure
should be carried out:

Suppose
�
x is an image that contains n desired objects to be

detected as D � {d1, ...., dn}. Each desired object has been
designated with a real class label of ln ∈ {1, 2, ..., C} where
C indicates the number of classes. The values of L will be
assigned according to L � {l1, l2, ...., ln}.

For a specific task in aDNN,wewill use fln (X , dn)∈R
c to

show the classification score vector (before normalizing the
maximum smooth function) on the nth target of

�
x . In generat-

ing an adversarial example, we shouldmake the prediction of

car person

No attack TOG - vanishing TOG - fabrication TOG - mislabeling

zebra

cat

cat

zebra
person

airplane

person

Fig. 4 The outcomes of the TOG attacks on the considered images
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all the target objects erroneous, i.e.,∀n, ARGmaxc{ fc(X +r ,
dn)} �� ln . Here, r indicates an adversarial perturbationwhich
has been added to the image

�
x . Thus, an adversarial label l

′
j

is assigned for each target object and adversarial label vector
L ′ � {l ′1, l ′2, ...., l ′n} is a set of adversarial labels. Therefore,
the relevant loss function for all the targets will be

loss(X , D, L , L ′) �
N∑

n�1

[ fln (X , dn)− fl ′n (X , dn)] (8)

The value of loss can be minimized by causing an error
in the prediction of each target object. This can be done by
lowering the confidence level of the original correct class
fl ′n (X + r , dn) and raising the confidence level of the consid-
ered incorrect class (the adversarial type) fl ′n (X + r , dn).

In this approach, the gradient descent algorithm is
employed to optimize the results. In the mth iteration, the
current image (probably, after adding several perturbations)
is displayed as Xm and the set of the correctly predicted tar-
get objects, i.e., the set of active targets, is obtained by mean
of Dm � {dn|argmaxc{ fc(Xm + dn)} � ln}. Then, the gradi-
ent is computed based on the input data, and the sum of all
the perturbations, which we call rm , is determined. Thus, the
final perturbation will be obtained as

r �
∑

rm (9)

The DAG attack is demonstrated in Fig. 5.

3.3 The composite evaporate attack

This is a black-box type of attack and it can conceal the class
of the target objects from an object detector without knowing
anything about the network [47]. Figure 6 shows the overall
strategy of the Evaporate attack.

The attacks generated in the Evaporate method are itera-
tive in nature [53], and they will be repeated in a next steps
if the obtained images in the previous steps are not good
enough. In this approach, an attack is initiated by obtaining
the adversarial example x ′ through the following optimiza-
tion equation:

min
x ′ L(x ′) � d(x ′, x) − δ(D(x ′)) (10)

Here, d(x ′, x) denotes the MSE distance, and δ(D(x ′))
indicates an adversarial criterion. The value of the criterion
will be zero when the conditions of a satisfactory attack are
satisfied, and it can go down to—∞ when such conditions
are not met. According to [47], this attack has been able to
fool the YOLOv3 model 84% of the time.

Fig. 5 Demonstration of the
DAG attack

Fig. 6 The overall design of an
Evaporate attack
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Fig. 7 A demonstration of the
RAP attack

3.4 The DeepFool attack

This type of attack is carried out by adding a minimum num-
ber of perturbations. In this method, a clean image is fed into
an iterative algorithm which adds some perturbations to it in
every step. Eventually, by reaching a fooling threshold, the
iterative algorithm is stopped. This algorithm is repeated to
the point that an object detector changes its decision with
respect to the original detection. This attack can be a univer-
sal attack and is used in many types of DNNs [48].

3.5 The RAP attack

This attack, which is called the Robust Adversarial Perturba-
tion, is a black-box type of attack. This attack is also designed
based on the solution of an optimization equation, and it will
go on until the intended effect is achieved. In this scheme,
the proposal-based object detectors and the instantaneous
segmentation algorithms are attacked by adding minimal
adversarial noises to an input image. In this approach, with
an input image and a pre-trained RPN, a special objective
function is designed, and then a technique based on the itera-
tive gradients is employed to optimize the objective function
with respect to the input image [49].

In this method, the generation of the adversarial perturba-
tions has been considered as an optimization problem. The
outcome of this attack is displayed in Fig. 7.

3.6 The generative adversarial training (GAT)
method

This method is designed based on accurate identification
of weaknesses and strengths of the target network. This
algorithm is designed to be able to repeatedly eliminate
the weaknesses of the adversarial example and improve its
strengths to make the adversarial example more efficient.

In the course of each training step, the GAT scheme learns
to produce the best perturbation for each input. Simulta-
neously, a classification network is trained by the GAT to

correctly classify the original and the adversarial examples
[50]. The loss function of the GAT method is expressed as

LF � α · J (θ f , x , y) + (1 − α) · J (θ f , x + G(
), y), (11)

where

J (θ f , x , y) � − log F(X ; θ f )y (12)

Typical values of α and k could be 0.5 and 1.0, respec-
tively. Also, F is a classifying network. The schematic of this
technique is illustrated in Fig. 8.

4 The different types of defense

4.1 The adversarial trainingmethod

In this approach, the adversarial training [54] is employed
as a defensive mechanism against the adversarial attacks.
The basic strategy of this method is to use the perturbed
images to train a network. Zhang et al. [50] have presented
the following formula as an adversarial training method for
achieving robust object detectors.

min
θ
[ max
x̄∈Scls∪sloc

L( fθ (x̄), yk , bk)] (13)

in which

scls � {x |arg max losscls( f (x), {yk})}
x∈sx

(14)

sloc � {x |arg max lossloc( f (x), {bk})}
x∈sx

(15)

As one of the first attempts to robustify object detectors
against the adversarial attacks, this method has been able
to achieve good results. Zhang et al. [51] have tested this
technique on the PASCAL VOC and MS COCO datasets.
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Fig. 8 The GAT method

Amirkhani and Karimi [65] also tested this method on differ-
ent architectures, and on the average, it was able to improve
the adversarial accuracy of the models by about 20%.

4.2 The ADNetmethod

The detection strategy of this method is based on the adver-
sarial detection network (ADNet). The ADNet learns the
detection abilities from the input images in a hierarchical
fashion. In this process, the input images pass through the
convolutional and the composite layers. The first convolu-
tional layer has 6 ability maps of size 5 × 5 and a step size
of 1. Next, the ADNet performs the secondary sampling by
using a 2 × 2 size filter and a step size of 2. Then, there is a
second convolutional layer with 16 feature maps of size 5 ×
5 and a step size of 1. In this layer, only 10 of the 16 feature
maps are connected to the 6 feature maps of the preceding
layer. The fourth layer in the proposed network is again a
medium cumulative layer with a 2 × 2 size filter and a step
size of 2. This is similar to the second layer, except that it has
16 feature maps. The fifth layer is a fully connected convo-
lutional layer with 120 feature maps of size 1 × 1. Each of
the 120 elements in the FC5 is connected to all the 400 nodes
(5 × 5 × 16) in the fourth layer. The sixth layer is a fully
connected layer with 84 neurons. Finally, we have one fully
connected SoftMax output layer with 2 possible values cor-
responding to the perturbed images or the original images.
Our convolutional layers use the “ReLU” activation function
and the “Adam” optimization algorithm.

A desirable characteristic of the ADNet method is that it
can fool deep models in the test phase [55]. Functioning as a
separate module, it is able to detect the adversarial examples

independently of a considered model; it can also act as a hid-
den component of an overall intelligent system. This makes
the ADNet inherently strong against the attacks on itself.
Note that this feature of the ADNet is contrary to most of
the existing decision networks that have to rely on the inter-
nal states of a network during the test phase, which makes
them exposed to a potential attackers. It is also worth not-
ing that these methods are also incapable of dealing with the
pixel-level attacks.

The only dependency of the ADNet is on a considered
network during the training phase, in which the adversary
examples for amodel are produced by attacking themodel. In
this work, the ResNet has been employed to train the ADNet.
However, any other network or group of networks could be
used to train the ADNet and to further improve its ability of
detecting the adversarial examples [52].

4.3 The JPG compressionmethod

This method has demonstrated that by reducing the data vol-
umeof images via converting them to the JPGfiles, the effects
of the adversarial attacks on the detection ability of theDNNs
can sometimes be eliminated. Of course, this approach alone
cannot be considered as a complete defensive strategy [56].
The authors of this paper have pointed out that most of the
image classification datasets contain the images in the JPG
format. In view of this observation, they have studied the
effects of the JPG compression on the perturbations gener-
ated by the FGSM [63]. They have reported that the JPG
compression technique can significantly reverse the loss of
the classification accuracy for the FGSM perturbations [63].
That being said, heavy compression itself can reduce the per-
formance of neural networks.
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Fig. 9 A brief review of the
adversarial attacks in the
autonomous vehicles

4.4 The parseval networks

Cisse et al. [64] have presented the Parseval networks as
a defensive method against the adversarial attacks. These
networks use a Lipschitz constant. Since a network can be
considered as a combination of functions, it can be robus-
tified against the small input perturbations by keeping the
Lipschitz constant small for these functions. Theyhavedevel-
oped this method by controlling the position norm of the
network weight matrices and parameterizing them by means
of the hard Parseval frameworks; thus, they have called their
method, the Parseval networks.

4.5 Gabor convolutional layers

Amirkhani and Karimi [65] recently proposed a new method
in order to robustify the object detectors against adversarial
attacks based on Gabor convolution layers. In this method,
the images are first decomposed into their own RGB chan-
nels. Then they enter a Gabor filter bank. Due to its high
ability to extract low-level image features, Gabor filters can
increase network robustness at this stage. The authors of
this study have been able to provide considerable improve-
ments on the performance of object detection models against
images infected with adversarial attacks. In [65], five robust
models of object detection against adversarial attacks are pre-
sented and these models have been evaluated using different
attacks. The method presented in this paper has been able to
improve the performance of object detectors against adver-
sarial attacks up to 50%.

5 The application scenarios

5.1 Adversarial robustness in autonomous vehicles

Because of the vital importance of object detection in
autonomous vehicles, we will discuss it separately in this
section.

5.1.1 Adversarial attacks in autonomous vehicles

In autonomous vehicles, by adding small intangible pertur-
bations, deep learning models are fooled into making wrong
detections and predictions [65]. In self-driving car applica-
tions, depending on the capability of an attacker, these attacks
are divided into the white-box and the black-box attacks. In
the white-box attacks, the attackers have all the informa-
tion about the model being attacked. This information may
include the training and the validation data, themodel’s archi-
tecture and all its parameters, the way the model is trained,
and the status of the model’s gradient during training [77].
Conversely, the black-boxmodels have no information about
the models [78]. The adversarial attacks in the autonomous
vehicles are briefly reviewed in Fig. 9. In general, there are
two types of adversarial attacks: the fleeing attacks and the
poisoning attacks. The fleeing or deceptive attacks occur dur-
ing the inferenceprocess, and the poisoning attacks takeplace
during the model training. These attacks were initially tested
on classifier models.

The white-box methods White-box attacks are designed
with full knowledge of the target model and its parameters.
For example, three different white-box methods for produc-
ing the adversarial examples are introduced below:

(a) The Gradient-Based Method: In this method, all the
attacks such as those in [79] and [80] are based on the Fast
Gradient SignMethod (FGSM). In these methods, the adver-
sarial examples are created directly by increasing the value
of the cost function gradient for every pixel of an original
image.

(b) The Optimization-Based Methods: These tech-
niques ([81] and [82]) generate the adversarial examples by
solving an optimization problem such as the following equa-
tion.

argmin α

∣∣∣
∣∣∣x − x

′ ∣∣∣
∣∣∣
p
+ L(Jθ , c(x

′
)) (16)

In the first part of this equation, L denotes the distance
between the original and the adversarial images and the sec-
ond part is the cost function restriction of the adversarial
image [83].
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(c) The Generative Methods: These types of attacks
([84]) exploit the advantages of the generative methods to
produce the adversarial examples. These techniques create a
generative model ς by optimizing the following function.

L � Lγ + αLς (17)

In this equation, Lγ represents the cross-entropy cost
function for the adversarial examples and the target object
class, and Lς indicates the degree of similarity between the
adversarial examples and the original images.

The black-boxmethod In the black-box attacks, the attack-
ers have no information about the model being attacked; they
can only feed an input to the model and then evaluate its
output [85]. Three example approaches that are used in the
black-box attacks to generate the adversarial examples are as
follows:

(a) The TransformationMethod: It has been shown that
the adversarial examples that are produced for a model by
this approach are more effective than those generated by the
other methods [82]. Therefore, in this approach, the attackers
can use the input/output results to create a model similar to
the target model and then apply the white-box techniques
to generate the adversarial examples for this model. They
can then use these adversarial examples to attack the target
model.

(b) The Score Method: In this approach, the score of
the gradient output can be estimated by knowing the target
model results and accuracy and, based on this information,
the adversarial examples can be generated [86].

(c) The Decision Method: In this approach, a model’s
final results are used to generate the adversarial examples
with large random perturbations. Then the perturbations are
reduced in magnitude so that they go along with the char-
acteristic of the adversarial examples, i.e., the intangible
perturbations.

It is worth noting that the black-box attacks are more real-
istic than the white-box ones. The white-box attacks need the
full information about the driving models of the autonomous
vehicles, which is not available for most of the commercial
vehicles.

In [87], a real-world adversarial attack on the traffic
signs is implemented. Zhang et al. [88] presented a physi-
cal camouflage for an adversarial attack that was similar to
the camouflage in the simulation programs. This technique
performed as good as the detectors in leading towrong detec-
tions. A perturbed stop sign in [89] could not be detected by
the best detectors, such as the one in [90]. A technique called
the DeepBillboard has been formulated in [91], which causes
a deviation in the steering of the autonomous vehicles from
their original paths by creating adversarial advertising bill-
boards. This attack causes a maximum deviation of 26.44° in
the steering of a vehicle. In [92], an end-to-end drivingmodel
was attacked by means of the adversarial perturbations in the
driving environment. This attack caused the vehicle to crash
in the CARLA simulator. A decision method for producing
the adversarial textures for attacking the autonomous vehi-
cle systems was introduced in [93]. This method leads to the
wrong detection in these vehicles.

5.1.2 Adversarial defenses in autonomous vehicles

There are numerous defensive methods against the adver-
sarial attacks on classification models. However, many of
these approaches cannot be applied to the regression models
used in autonomous vehicles. Figure 10 illustrates a break-
down of the defensive techniques for the adversarial attacks
in autonomous vehicles.

In the following, we will review some of the defensive
techniques against the adversarial attacks in the autonomous
vehicles.

The detection-based approaches In these methods, robust
models try to detect the presence of the potential attacks.
Zheng et al. [94] have presented a detection-based method
in which an iterative algorithm detects the presence of an
attack in an input sample and tries to robustify the network
with respect to this attack. The iterative methods are inter-
esting approaches for robustifying the models against the
adversarial attacks, but their effectiveness in thewhite-box or
the image-based attacks is questionable. In some works [95,
96], the responsibility for detecting the presence of attacks
has been laid on the preprocessing systems that exist in the

Fig. 10 Different types of
defenses against the adversarial
attacks in autonomous vehicles

123



A survey on adversarial attacks and defenses for object detection… 5303

Table 1 Comparing the adversarial attacks explored in this paper

Attack name Year of
presentation

mAP reduction rate Attack objective Primary target model

TOG [45] 2020 64.73 Has both targeted and untargeted attack
series

Object detection

DAG [46] 2017 63.81 Targeted/Untargeted type of attack Semantic
segmentation

Evaporate attack [47] 2020 48.00 targeted Object detection

DeepFool attack [48] 2016 – untargeted Classification

RAP [49] 2018 62.59 targeted Object detection and
segmentation

U-DOS [60] 2021 61.2 targeted Object detection

AO2AM [61] 2021 53.3 untargeted Object detection

Bidirectional [62] 2022 55.1 targeted Object detection

autonomous vehicles, and these systems are expected to per-
form satisfactorily in detecting the adversarial attacks [97].

The training-based approaches In these approaches, like in
the training-based methods in the field of object detection,
the adversarial training technique is employed to robustify
the autonomous vehicles against the adversarial attacks [57].
In the training phase of the adversarial training process, a
combination of the clean and perturbed images is given to a
network for the training purposes, and since the network has
already been exposed to the adversarial examples, its adver-
sarial accuracy is expected to improve [98]. Yan et al. [99]
have presented an efficient training-based method. In this
approach, first, the input images are perturbed by different
adversarial attacks and then combined with the clear images,
and the new dataset thus obtained is used during the network
training.

5.2 Face recognition/detection

Face recognition is one of the most important applications of
object detection in the deep learning models. Face recogni-
tion is used in a vast spectrumof human–computer interfaces,
cameras, and biometric detectors [100]. Therefore, adversar-
ial attacks in face recognition applications are studied and
surveyed in the following subsections.

5.2.1 Adversarial attacks in face recognition

Adversarial attacks in the face recognition applications have
been investigated in many works. For example, using an
adversarial attack generating network, a method of DNNs
was presented in [101]. This technique is based on solving
an optimization problem that can be scaled and applied to
other networks as well. This method was applied specifically

Table 2 Comparing the defense techniques considered in this paper

Defense name Year of
presentation

Defense
type

Adversarial training [51] 2019 Iterative

ADNet [52] 2020 Iterative

JPG compression [63] 2016 One shot

The Parseval networks [64] 2017 One shot

Gabor convolutional layers [65] 2022 Iterative

on the FRCNN face recognition model and was able to con-
siderably reduce the precision of the network on the 300-W
dataset (the effective precision of the FRCNN was reduced
to 0.5%).

5.2.2 Defense strategies in face recognition

Different defensive techniques are also employed in the
face recognition models. For example, to prove the efficacy
of its adversarial attack, the defense strategy presented in
Sect. 4.3 has been adopted in [101]. This method, which uses
image compression to boost the resistance against adversar-
ial attacks, has been able to enhance the network precision
by 5%. Various defense strategies have been presented in this
field, and the defenses outlined in Sect. 3 can be extended to
this section as well.

6 Conclusion

This paper surveyed the adversarial attacks, defenses, and
the related research works in the fields of object detection
and autonomous vehicles. Despite the high precision of the
DNNs in various computer vision tasks, these networks are
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vulnerable against the small imperceptible input perturba-
tions and produce totally different outputs when exposed to
such disturbances. The formulation of the effective adversar-
ial attacks and appropriate defenses against these attacks has
become an important subject in the deep learning research
articles. In this review paper, we have introduced and com-
pared themost significant attacks and defenses in the fields of
object detection and autonomous vehicles. The current deep
learning techniques can be easily attacked, but owing to the
tremendous research efforts in this field, it is hoped that in the
near future, the deep learningmethods will be able to achieve
great robustness against the devised adversarial attacks.
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