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Abstract
Underwater object detection (UOD) suffers from low detection accuracy because of environmental degradations, such as
haze-like effects, color distortions, and imaging noises. Therefore, we commit to resolving the issue of object detection
with compounded environmental degradations that greatly challenges existing deep learning-based detectors. We propose
a neural architecture search -based deep learning network to realize the UOD task, which can automatically discover the
scene-oriented feature representation. Our network is accomplished through a unified macro-detector and a novel mixed anti-
aliasing block (MAaB)-based search space. The macro-detector targets to learn intrinsic feature representations automatically
from underwater images containing various environmental degradations and complete the subsequent detection tasks. The
novel MAaB-based search space is proposed toward complex underwater scenes. The candidate operator MAaB has multiple
kernels and anti-aliased convolutions in a single block for boosting the contextual representation capacity and the robustness of
degraded factors. Finally, we use the differential search strategy guides the whole learning process to obtain the scene-friendly
results. Extensive experiments demonstrate that our method outperforms the state-of-the-art detectors by a large margin. More
importantly, in cases where environmental degradation is severely disturbed, our method is also superior to other popular
detectors.

Keywords Object detection · Underwater scenes · Neural architecture search · Deep learning

1 Introduction

As an exponential increase in the availability of underwa-
ter imagery currently, deep learning-based underwater object
detection (UOD) shows potentially unprecedented research
opportunities formanyhalobios [1,2].However,UODsuffers
from low detection accuracy because of various environ-
mental degradations. First are haze-like effects. The water
medium scatters the light causing low-contrast and haze-like
phenomena in the underwater photography [3]. Second are
color distortions. Wavelength absorption usually causes a
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color reduction in the captured image, which leads to bluish
or greenish underwater images [3,4]. Third is imaging noise.
Electronics and sediments affect high dimensional imaging,
causing noises in the underwater image. These environmen-
tal degradations greatly interfere with the imaging process,
which makes UOD difficult.

The main difficulty of UOD is that the structural and sta-
tistical properties of objects in the underwater image are
obstructed by various environmental degradations. There-
fore, it is necessary to design appropriate detection struc-
tures for better feature representation. In a typical deep
learning-based object detector, a backbone network plays
an important role in extracting basic features for detecting
[5–7]. Not surprisingly, if a backbone can extract more use-
ful features, its corresponding detector will perform better.
Hence, starting from AlexNet [8], more powerful backbones
have been developed, such as ResNet [9], ResNetXT [10],
MobileNetV2 [6], CBNet [5], and YOLOX [11]. While
promising, they consume expensive computational costs for
case-by-case design. In addition, since most of these exist-
ing backbones are originally designed for classification or
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general detection tasks, directly using them to extract fea-
tures for UODmay lead to suboptimal performance. Indeed,
some researchers attempt to design specific backbones for
underwater scenes [12–15]. However, these backbones heav-
ily rely on abundant architecture engineering and subtle
adjustments experiences. Besides, environmental degrada-
tion information exists in underwater images, while these
heuristic manners hardly acquire these information from
extensive images.

Recently, neural architectural search (NAS)-based meth-
ods [16–18] for computer vision tasks (e.g., classification and
general object detection) have been introduced and applied
well. The representative gradient-based architecture search
methods [7,19,20] relaxed the non-differential architecture
as a continuous weighted network for achieving differential
search. Unfortunately, primitive search space (e.g., separable
convolutions), is still a challenge to search optimal architec-
ture for extracting deep features in underwater scenes with
various degradation factors.

To alleviate the aforementioned issues, this paper focuses
on a deep learning-based method that aims to search scene-
oriented backbones (SSoB) and to embed a mixed anti-
aliasing block (MAaB)-based search space, for solving UOD
task. First,wedevelopNAS technology to discover the under-
water scene-oriented backbone. As a result, our network can
extract typical features under the interference of various envi-
ronmental degradations. Then, we formulate a novel search
space, which is more robust and stable to environmental
degradations such as haze-like effects and imaging noises.
Finally, with the MAaB-based search space, we employ the
differentiable search strategy guides search processes, gen-
erating a scene-friendly result. Thus, our contributions can
be distilled as threefold as follows:

– Different from existing heuristic backbones for UOD that
heavily depend on engineering experiences, we construct
a novel scene-oriented backbones learning model around
environmental degradations from the differential NAS
perspective.

– Toward the complex underwater scene, we propose new
blocks as the candidate operations of a search space, i.e.,
MAaB. MAaB has multiple kernels in a single block to
boost the contextual representation capacity and intro-
duces anti-aliased convolutions to enhance the robustness
of degraded factors.

– Extensive experiments are conducted on a popular under-
water dataset URPC20201. As shown in Fig. 1, our
searched scene-oriented architecture significantly out-
performs other state-of-the-art methods (including CNN-
/transformer-based detectors) by a large margin.

1 http://www.urpc.org.cn/index.html.

2 Related works

2.1 Underwater object detection

UOD aims at determining what and where an object is
in an underwater image. Generally, deep learning-based
detectors generally consist of four parts: a backbone that
extracts feature from an image, a neck followed backbone
that fuses multi-level features, a region proposal network
(not necessarily part) followed the extracted features that
generates prediction candidates, and a head for classification
and localization prediction. In recent years, various meth-
ods in literatures have been proposed to tackle with UOD
tasks. The common solution for UOD is to re-train existing
detectors including CNN- and transformer-based detectors.
Among them, some also attempt to redesign structures based
on these existing detectors for UOD. Here we briefly review
some of the recent detectors:

The state-of-the-art detectors can be briefly categorized
into two major branches. The first branch contains CNN-
based methods such as YOLO [21], SSD [22], RetinaNet
[23], FSAF [24], YOLOX [11], Free-Anchor [25], FoveBox
[26], Faster RCNN [27], FPN [28], Mask RCNN [29], Grid
RCNN [30], Cascade RCNN [31], and Guided Anchoring
[32]. The other branch contains transformer-based methods
such asDETR [33], Swin Transformer [34], and PVTv1 [35].
Besides, some researchers also attempt to improve the feature
extraction and representation capacity of structure based on
these popular detectors for UOD [12,14,15].

2.2 Backbone for underwater object detection

Backbone play a vital role in detectors to extract basic object
features for detection. UOD detectors generally adopt exist-
ing backbones, and most of these backbone are designed
for classification or general detection. Meanwhile, some
researchers also attempt to design specific backbones for
UOD-based existing backbones. Here we briefly introduce
these backbones:

The original works RCNN [36] and OverFeat [37] are
pioneers for deep learning-based detectors. After them,
almost all of current detectors use the pretraining and fine-
tuning paradigm, that is, directly adopt the networks that
are pretrained for ImageNet [38] classification task as their
detection backbone. For instance, VGG [39], ResNet [9],
and ResNetXT [10] are classification backbones, but they
are widely used by the state-of-the-art detectors. Recently,
CBNet [5], Darknet53 [40], and MoblieNetv2 [6] are
designed for general detection. Obviously, UOD directly
adopts these backbones may lead to suboptimal perfor-
mance. In addition, there are some works design specific
backbones for UOD [12,15]. However, these handcrafted
methods requires much manpower and computation cost.
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Fig. 1 Accuracy-speed-size
trade-off accurate models on
URPC2020 dataset for our
method and other
state-of-the-art detectors

Fig. 2 Workflow of our method. As for the searching stage, we define
a macro-detector to contain the basic backbone, FPN, and class+box.
The basic backbone contains 20 layers to be searched, and each layer
chooses a block from the MAaB-based search space. After the search-

ing stage, we can derive the final structure by selecting one of optimal
blocks at each layer. In this way, we can train this searched network,
aiming to extract scene-oriented features from underwater images

More importantly, underwater datasets contains more envi-
ronmental degradation information, but handcraftedmethods
hardly acquire these information from extensive images.

2.3 Neural architecture search

Neural architecture search is a automatic manner of learning
architectures from data distribution that outperforms human
expertise [41–43]. NAS for classification has attracted great
attention recently. Some works [44–46] adopt reinforcement
learning-based methods to use a RNN controller to generate
a cell-based structure. Some works [47–49] use evolutionary
algorithm-based manners to form architectures by mutating
current ones. To speed up searching process, some works
[7,50] adopt gradient-based paradigm to form a continuous
relaxation search space, which allow the the differentiable
optimization during the whole search phase.

Some recent works attempt to develop NAS for object
detection. Early works attempt to [16] adopt evolutionary
strategy to search a better backbone for detection tasks.

Another group of approaches [17,18,51] use reinforcement
learning algorithms to train a controller to generate poten-
tial components of detectors. Unfortunately, these two kinds
of methods are too resources demanding, causing inefficient
search. Recently, [20,52] formulate a detection supernet into
differential formwith a set of architecture and weight param-
eters, so that they can perform search in a gradient descent
manner and reduce search cost of several hours. However,
existing NAS methods have not yet been explored in the
detection of underwater environments. Besides, the search
space is designed by previously built blocks and might be
naive for complex underwater scenarios.

3 The proposed approach

3.1 The scene-oriented architecture learningmodel

Existing manually designed detection backbones mainly
depend on engineering skills. They are too resource demand-
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ing for case-by-case redesigns. More importantly, we know
that underwater images contain rich information of environ-
mental degradations. Obviously, heuristic manners hardly
acquire these information from extensive images. To over-
come these problems, from the NAS perspective, we raise
a differentiable search optimization strategy to design our
UOD backbone SSoB, which can be formulated as:

min
α

L(ω∗
α, α;Dval)

s.t ., ω∗
αu

= argmin
ωα

L(ωα, α;Dtr),
(1)

where L(·) is the loss function of detectors. Dval and Dtr

are training and validation datasets, respectively. As shown
in Fig. 2a, both ofDval andDtr contain various underwater
degradations. The search approach seeks to find a backbone
α that minimizes the validation loss L(ω∗

α, α;Dval) with
the trained weights ω∗

α . The weights ω∗
α associated with

the backbone are obtained by minimizing the training loss
L(ωα, α;Dtr).

As shown in Fig. 2b, we propose a macro-detector frame-
work to solve problem in Eq. 1. The macro-detector is
decoupled into three main principled parts, i.e., the basic
backbone, FPN, and class+box. The basic backbone, extract-
ing features of images, contains a 3 × 3 convolution with
stride of 2, four stages that contain 20 blocks to be searched,
and another 1 × 1 convolution with stride of 1. According
to practical experience, the channel of each stage is set to
{48, 192, 384, 768}, respectively. Then we send the features
into FPN to fuse these features from different stages. After
FPN, class+box is used to predict object classification and
bounding box.

3.2 MAaB-based search space

To begin with, according to the latest NAS method [7,20],
we configure to define a block as the smallest module. To this
end, the macro-detector searching space comprises a layer-
level search, which allows us to explore the whole network
from a block perspective. We adopt the fundamental routine
to design the layer-wise search space: a search space includes
a number of candidate blocks (operations). Each layer to be
searched can choose a different block from candidate blocks.

How to construct a layer-level search space plays a vital
role in NAS technique, existing NAS-based approaches for
classification or general detection [7,20] are mainly designed
primitive operators (e.g., separable convolutions), and these
unsophisticated operators may pose a touch issue for opti-
mizing the backbone architectures. For this purpose, we
consider requirements of contextual representation capacity
and degradation robustness in underwater scenes for con-
structing our search space. The search space is consisted of

novel blocksMAaBwhich is specifically designed for under-
water scenes.

There are twomain aspects to consider for extractingmore
typical features from complex underwater scenes. For one
thing, a backbone needs to extract multi-scale features as
much as possible. Many approaches [53,54] choose to fuse
features after backbones, while this means more layers are
needed. For another thing, detecting objects from cloudy
images requires high robustness of a detector. However,
common downsampling operations (such as the convolu-
tion with stride 2, MaxPooling) do not have the capacity
to anti-alias, which may cause damage to robustness [55]. To
overcome these issues, we design the MAaB blocks inspired
by [55,56]. MAaB has multiple different sizes of kernels in
one block, which can easily fuse multi-scale features with-
out extra layers. Besides, it introduces anti-aliased operations
(i.e., Convblupool) in a block, which can enhance the robust-
ness of degraded factors. Figure 2c show the structure of
MAaB block, which is composed of several convblurpool
with stride 2 and one 1 × 1 convolution with stride 1. For
an input, it is split into N groups along channel axis. Then
each group is processed by an independent convblurpool.
The outputs of these parallel branches are concatenated and
then fused by the final 1 × 1 convolution to reduce output
channels. If the input and output have the same dimension,
we use a skip operation to add them.

Convblupool [55] is an convolution operation with a nor-
malized Guassian filter with stride 2 to downsample an input.
The Convblupool use blur kernels. In the paper, we set N
to [1,2,3] to construct our search space. N = 1, there is
one convblurpool with blur kernel Triangle-3, Binomial-5,
or Binomial-7. N = 2, there are two convblurpool operation,
and their kernel sizes are [Triangle-3,Binomial-5], [Triangle-
3,Binomial-7], or [Binomial-5,Binomial-7]. N = 3, there
are three convblurpool operations, and their kernel sizes are
[Triangle-3,Binomial-5,Binomial-7]. In detail, the value of
Triangle-3, Binomial-5, and Binomial-7 are [1, 2, 1], [1, 4, 6,
4, 1], and [1, 6, 15, 20, 15, 6, 1]. The weights are normalized,
and the filters are the outer product of the following vectors
with themselves. Specifically, the eight candidate blocks are
given in the following. Note that we have a popular block
called ”skip,” which allows us to reduce the depth of the
backbone network.

• Triangle-3, group=1, MAaB (T3)
• Triangle-5, group=1, MAaB (B5)
• Triangle-7, group=1, MAaB (B7)
• Triangle-3, Binomial-5, group=2, MAaB (T3-B5)
• Triangle-3, Binomial-7, group=2, MAaB (T3-B7)
• Triangle-3, Binomial-7, group=2, MAaB (B5-B7)
• Triangle-3, Binomial-5, Binomial-7, group=3, MAaB
(T3-B5-B7)

• Skip
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3.3 The differentiable search algorithm

We adopt the differentiable manner proposed in [19] to solve
Eq.(1). In searching phase, the output of each intermediate
layer is computedwith aweighted sumbased on all candidate
blocks. For backbones, the output of i-th layer is formulated
as

xi =
∑

b∈B

exp(αb
i )∑

b′ ∈B exp(αb′
i )

b(xi−1), (2)

where xi is the output of the ith layer, αb
i is the parameter

for block b(·), and it can be simply perceived as the scores
of b-th block in ith layer. And B denotes the search space as
described in the above subsection. The continuous relaxation
of Eq.(2) makes the entire problem Eq.(1) differentiable to
both weights and architecture parameters, so we can search
the backbone in an end-to-end manner. In the training phase,
we choose a block with highest scores for each layer to build
our backbone.

At last, the loss function used in Eq. (1) is defined as
follows:

L(αu,ωαu) = Ldet (αu,ωαu) + γL f lo(α) (3)

The first term Ldet(·) denotes the loss of detectors, which is
the classification and localization loss. As underwater detec-
tors are often deployed to mobile CPUs, we introduce the
second term to guarantee detection efficiency. Lflo(·) indi-
cates FLOPs of the backbone part and can be decomposed as
linear sum of each operations. The two terms are weighted by
a balancing parameter γ . It is clear that the loss function (3)
is differentiable due to the continuous relaxation of Eq.(2).
Thus {αu,ωαu} can be optimized jointly using SGD.

4 Experiments

4.1 Experimental configurations

We conduct experiments on URPC2020 dataset which con-
sists of 6575 underwater images. The dataset is split into
trainval set with 5260 images and test set with 1315 images.
The dataset has 4 object categories including echinus,
holothurian, scallop, and starfish. We analyze our method
by numerous comparison experiments. For all experiments,
the input image is resized to the default size of the respective
methods, and implementation is based onmmdetection 2 and
Pytorch framework.

SSoB searching.Wefirst initialize the basic backbonewith
kaiming_init. Then we search the backbone on URPC2020

2 https://github.com/open-mmlab/mmdetection.

trainval set. We use SGD optimizer with a batch size of 2
images, and search for 12 epochs. In each iteration,we update
ωα and α alternately. We set learning rate, momentum and
balancing parameter γ being 0.04, 0.9 and 0.01, respectively.

Detection training.We choose blocks with highest scores
for each layer to build SSoB. We first pretrain SSoB on Ima-
genet for 150 epochs. Then we fine-tune the whole detector
on URPC2020 trainval dataset for 24 epochs with SGD opti-
mizer, and 1× schedule. We set the initial learning rate being
0.04 which is divided by 10 at the 7th and 10th epoch. The
weight decay , momentum and batch size are 0.0001, 0.9 and
2, respectively.

4.2 Main results

Comparisons with handcrafted methods We replace the
backbone in FPN [28] with other excellent backbone, i.e.,
Darknet53, ResNetXT101, andMobileNetv2, and form three
competitors accordingly. As shown in Table 1. SSoB sur-
passes these competitors by a large margin with less param-
eters. Specifically, SSoB is 6.8% higher on AP compared
to the Darknet53 based detector with less than one half of
the parameters. Compared with ResNetXT101, the similar
excellent phenomenon is also existed. In addition, we out-
perform MobileNetv2 by 9.1% on AP with less parameters.
These experimental results demonstrate that ourmethods can
design a better backbone than handcrafted methods.

Comparisons with NAS-based methods. As shown in
Table 2, we compare SSoB with detectors that adopt NAS
based model. FBNet [7] is searched on ImageNet dataset
for classification tasks, and we directly apply it as the
backbone of a detector. Unfortunately, its performance on
detection is disappointing. NS-FPN [17]and hit detector [20]
are designed for detection tasks, and we thus re-search the
architecture on URPC2020. NAS-FPN aims to discover a
new feature pyramid architecture for detectors while leaving
the backbone unchanged. Our method outperforms NAS-
FPN by 4.3% with less parameters and FLOPs. Hit detector
discovers architectures for all components (i.e. backbone,
neck, and head) of detectors while its search space is con-
sisted of common blocks (such as separable block). Our
method also surpasses hit detector. These experiment results
indicate that it is important to design specific backbones with
efficient search space toward underwater scenes in an detec-
tor.

Comparisons with state-of-the-art methods. We com-
pare our methods with other state-of-the-art methods on
URPC2020, the results are summarized in Table 3. SSoB
only applies simple data augmentation and 1X training
scheme, which achieves 47.5% AP without bells and whis-
tles. Our method has fewer parameters and performs better
than CNN-based detectors. Specifically, CSAM and FERNet
are designed for UOD tasks. Both develop sophisticated deep

123

https://github.com/open-mmlab/mmdetection


5204 W. Yuan et al.

Table 1 Comparisons with
handcrafted models on dataset
URPC2020

Model # Params # FLOPs AP AP50 AP75 APs APm APl

Darknet53 [40] 50.7M 124.8G 40.7 76.3 39.0 15.0 36.4 45.0

ResNetXT101 [10] 60.8M 134.9G 43.1 78.5 42.7 22.8 40.0 48.5

MoblieNetv2 [6] 25.8M 58.7G 38.4 73.3 36.0 14.8 34.2 42.4

SSoB 23.3M 74.1G 47.5 82.8 50.3 25.2 42.2 52.8

The best result is in bold

Table 2 Comparisons with
NAS-based methods on dataset
URPC2020

Model Modified # Params # FLOPs AP AP50 AP75

B N H

FBNet-C [7] � - - 25.4M 109.5G 33.7 68.1 28.5

NAS-FPN [17] - � - 89.6M 125.3G 43.2 79.3 42.2

Hit detector [20] � � � 38.2M 105.3G 44.2 77.8 45.9

SSoB � - - 23.3M 74.1G 47.5 82.8 50.3

B: Backbone, N: Neck, H: Head The best result is in bold

Table 3 Comparison with
state-of-the-art methods on
URPC2020

Model Backbone # Params # FLOPs FPS AP AP50 AP75

Free-anchor [25] ResNetXT101 56.4M 134.9G 2.9 44.4 80.0 44.6

FoveaBox [26] ResNet101 57.4M 131.6G 5.3 43.2 79.3 42.8

YOLOX [11] YOLOX-l 54.2M 92.2G 7.2 46.7 81.2 49.4

Grid RCNN [30] ResNetXT101 122.0M 255.9G 2.6 43.5 78.4 44.1

Cascade RCNN [30] ResNet50 68.9M 170.3G 5.8 45.0 78.8 47.5

CSAM [14] DarkNet-53 66.4M 165.5G 5.5 46.4 79.2 41.1

FERNet [12] VGG16 232.5M 326.6G 3.2 44.2 76.7 42.3

PVTv1 [35] PVT-Medium 52.4M 100.3G 3.1 44.5 80.1 44.7

DETR [33] ResNet50 41.3M 43.6G 4.4 22.8 55.5 13.3

SSoB Searched 23.3M 74.1G 6.7 47.5 82.8 50.3

The best result is in bold

architectures to improve the feature representation capacity.
SSoB outperforms them by a large margin. For AP, SSoB is
1.1% higher than CSAM and 3.3% than FERNet. In addi-
tion, SSoB also outperforms transformer-based methods.
Although DETR has fewer FLOPs than SSoB, SSoB out-
performs DETR by 24.7% in AP, 27.3% in AP50, and 37.0%
in AP75. DETR fails to detect small objects very well, so its
performance is poor on underwater datasets with numerous
small object. These experiment results further demonstrate
that ourmethods can design a better architecture than existing
popular detectors.

we also compare the proposed methods in terms of speed,
as shown in Table 3. Our method can achieve 6.7 FPS, which
is similar to YOLOX. Compared with other methods, our
method can be well qualified for real-time detection tasks.

4.3 Performance analysis

Searching space analysis.Figure 3 plots the heatmaps toward
the final searched backbone. Visual inspection shows that

Fig. 3 The heatmaps of final candidate operators (i.e., α), where 20
layers to be searched of the backbone are plotted orderly. yellow boxes
indicate the final choice
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Table 4 Comparison of performance of SSoB on different detectors.
(URPC2020)

Model Backbone AP AP50 AP75

Cascade RCNN [30] ResNet50 45.0 78.8 47.5

SSoB 46.9 80.7 48.0

YOLOX [11] YOLOX-l 46.7 81.2 49.4

SSoB 47.2 81.6 50.1

FoveaBox [26] ResNet101 43.2 79.3 42.8

SSoB 45.5 80.2 47.8

Ours SSoB 47.5 82.8 50.3

The result of detectors with SSoB is in bold

multi-kernel (such as T3-B5-B7, B5-B7) operations occupy
the main position in the first 12 layers, which indicates that
the first half of the backbone paying more attention to extract
more image information. For the rear 8 layers, single-kernel
(such as T3, B5, and B7) operations are got relatively high
scores, and it demonstrates that the rear half of the backbone
relaxes the requirements for feature intensity. In addition,
almost all blocks have been selected, and it demonstrate that
single- and multi- kernel are necessary for construction of
underwater backbones.

Various detectors. To validate the generalization ability
of SSoB, we combine SSoB with different detectors. We
select popular detectors like Cascade RCNN, YOLOX, and
FoveaBox in this analysis. As demonstrated in Table 4, per-

formances of these detectors are improved prominently (for
AP, 1.9% in Cascade RCNN, 0.5% in YOLOX, and 2.3%
in FoveaBox). SSoB shows the strong generalization capac-
ity on different detectors. However, the best performance
is achieved by our original methods. The search process is
based on a macro-detector. Therefore, the searched network
combined with other detectors may result in suboptimal per-
formance.

The robustness of SSoB on other datasets. In order to ver-
ify that SSoB also has an effective performance improvement
on other datasets, we carry out comparative experiments with
currently proposed methods. The comparative experiments
are carried out on the experimental dataset UODD [14] pro-
posed by CSAM. UODD contains 3 types of underwater
objects, i.e., holothurian, echinus,and scallop. We take 2560
images for training and 502 images for testing. As shown
in Table 5, the detection accuracy of SSoB comprehensively
outperforms these detectors. For instance, SSoB surpasses
FoveaBox by 5.1%, YOLOX by 1.9%, Grid RCNN by 2.8%,
Cascade RCNN by 1.6%, and CSAM by 1.6% in AP.

Finally,we also compare the proposedmethods in terms of
speed, as shown inTable 5.Ourmethod can achieve 12.0FPS,
which is similar to YOLOX. Compared to other methods, our
method can be well qualified for real-time detection tasks.

Study on various environmental degradations Figure 4
exhibits some qualitative examples of various environmental
degradations. For color distortions, most popular backbones
fail to complete detection, there are error and missed detec-

Table 5 The comparison results
on UODD dataset

Model Backbone AP AP50 AP75 FPS

FoveaBox [26] ResNet101 45.6 85.1 43.5 7.3

YOLOX [11] YOLOX-l 48.8 86.3 51.7 12.3

Grid RCNN [30] ResNetXT101 47.9 85.8 52.1 6.6

Cascade RCNN [30] ResNet50 49.1 87.9 52.1 10.0

CSAM [14] DarkNet-53 49.1 88.4 48.3 10.4

SSoB searched 50.7 89.7 53.8 12.0

The result of detectors with SSoB is in bold

Fig. 4 Some qualitative
examples on URPC2020. The
example from top to bottom is
haze-like effects, color
distortions, and imaging noise,
respectively. Both error and
missed detection are marked
with a red dotted box
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Fig. 5 Examples of
visualization of the feature maps
on URPC2020. The example
from top to bottom is haze-like
effects, color distortions, and
imaging noise, respectively

tion phenomena in these backbones. However, our SSoB
completes the detection task very well. For haze-like effects
and imaging noise, some and our methods can complete the
detection task very well. Some methods still have error and
missed detection phenomena, for example, MobileNetV2
and Darknet53 have missed detection. The qualitative results
demonstrate that SSoB can overcome the obstacles that
degradation poses to feature extractions. Figure 5 shows
the feature visualization results of various environmental
degradations. For color distortions, the feature response of
MobileNetV2 and Darknet53 is relatively weak. For haze-
like effects and imaging noise, the amplitude of feature
response of Darknet53, ResNetXT101, and MobileNetV2
is attenuated inconsistently. But on various environmental
degradations, our SSoB significant boots the feature response
on discriminative region while suppressing the interference.
These feature response results further demonstrate that SSoB
does perform well on various environmental degradations.

5 Conclusion

In this paper, we propose an automatically scene-oriented
feature extraction module for solving the UOD task. Based
onNAS technology,we fully discover the potential and inher-
ent information of different underwater images; thus, our
backbone can comprehensively extract deep features. Mean-
while, we also formulate a MAaB-based search space that
can further improve the performance of our methods. Both
qualitative and quantitative experimental results demonstrate
that our SSoB has great superiority over the state-of-the-art
methods.

Declarations

Conflict of interest We declare that we have no financial and personal
relationshipswith other people or organizations that can inappropriately

influence our work, there is no professional or other personal interest of
any nature or kind in any product, service and/or company that could be
construed as influencing the position presented in, or the review of, the
manuscript entitled, ”SSoB: Searching a Scene-Oriented Architecture
for Underwater Object Detection.”

References

1. Pang, Y., Wu, C., Wu, H., Yu, X.: Over-sampling strategy-based
class-imbalanced salient object detection and its application in
underwater scene. Vis, Comput (2022)

2. Mhala, N.C., Pais, A.R.: A secure visual secret sharing (vss)
schemewith cnn-based image enhancement for underwater images.
Vis. Comput. 37, 2097 (2021)

3. Liang, P., Dong, P., Wang, F., Ma, P., Bai, J., Wang, B., Li, C.:
Learning to remove sandstorm for image enhancement. Vis, Com-
put (2022)

4. Lin, R., Liu, J., Liu, R., Fan, X.: Global structure-guided learn-
ing framework for underwater image enhancement. Vis, Comput
(2021)

5. Liu, Y.,Wang, Y.,Wang, S., Liang, T., Zhao, Q., Tang, Z., Ling, H.:
Cbnet: a novel composite backbone network architecture for object
detection. In: The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI. pp. 11 653–11 (2020)

6. Sandler, M., Howard, A.G., Zhu, M., Zhmoginov, A., Chen, L.:
Mobilenetv2: inverted residuals and linear bottlenecks. In: IEEE
Conference on Computer Vision and Pattern Recognition, CVPR.
(2018), pp. 4510–4520

7. Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., Tian, Y.,
Vajda, P., Jia, Y., Keutzer, K.: Fbnet: hardware-aware efficient con-
vnet design via differentiable neural architecture search. In: IEEE
Conference on Computer Vision and Pattern Recognition, CVPR.
pp. 10 734–10 (2019)

8. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification
with deep convolutional neural networks. Commun. ACM 60(6),
84–90 (2017)

9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for
image recognition. In: IEEE Conference on Computer Vision and
Pattern Recognition, CVPR. pp. 770–778 (2016)

10. Xie, S., Girshick, R.B., Dollár, P., Tu, Z., He, K.: Aggregated resid-
ual transformations for deep neural networks. In: IEEEConference
on Computer Vision and Pattern Recognition, CVPR. pp. 5987–
5995. (2017)

11. Ge, Z., Liu, S.,Wang, F., Li, Z., Sun, J.: YOLOX: exceedingYOLO
series in 2021. In: CoRR. vol. abs/2107.08430, (2021). [Online].
Available: https://arxiv.org/abs/2107.08430

123

https://arxiv.org/abs/2107.08430


SSoB: searching a scene-oriented architecture for underwater… 5207

12. Fan, B., Chen, W., Cong, Y., Tian, J.: Dual refinement underwa-
ter object detection network. In: Computer Vision - ECCV - 16th
European Conference, Glasgow, UK, August 23–28,: Proceedings.
Part XX 12365(2020), 275–291 (2020)

13. Lin, W., Zhong, J., Liu, S., Li, T.H., Li, G.: ROIMIX: proposal-
fusion among multiple images for underwater object detection. In:
IEEE International Conference on Acoustics, Speech and Signal
Processing, ICASSP. pp. 2588–2592 (2020)

14. Jiang, L., Wang, Y., Jia, Q., Xu, S., Liu, Y., Fan, X., Li, H., Liu,
R., Xue, X.,Wang, R.: Underwater species detection using channel
sharpening attention. In: ACMMultimedia Conference, pp. 4259–
4267 (2021)

15. Liu, C.,Wang, Z., Wang, S., Tang, T., Tao, Y., Yang, C., Li, H., Liu,
X., Fan, X.: A new dataset, poisson gan and aquanet for underwater
object grabbing. IEEE Trans. Circuits Syst. Video Technol. 32(5),
2831–2844 (2022)

16. Chen, Y., Yang, T., Zhang, X., Meng, G., Xiao, X., Sun, J.: Det-
nas: backbone search for object detection. In: Advances in Neural
Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems, NeurIPS. pp. 6638–6648. (2019)

17. Ghiasi, G., Lin, T., Le, Q.V.: NAS-FPN: learning scalable feature
pyramid architecture for object detection. In: IEEE Conference on
Computer Vision and Pattern Recognition, CVPR. pp. 7036–7045.
(2019)

18. Wang, N., Gao, Y., Chen, H., Wang, P., Tian, Z. Shen, C., Zhang,
Y.: NAS-FCOS: fast neural architecture search for object detec-
tion. In: IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR. pp. 11 940–11. (2020)

19. Liu, H., Simonyan, K., Yang, Y.: DARTS: differentiable archi-
tecture search. In: 7th International Conference on Learning
Representations, ICLR. (2019)

20. Guo, J., Han, K., Wang, Y., Zhang, C., Yang, Z., Wu, H., Chen, X.,
Xu, C.: Hit-detector: Hierarchical trinity architecture search for
object detection. In: IEEE/CVF Conference on Computer Vision
and Pattern Recognition, CVPR. pp. 11 402. (2020)

21. Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only
look once:Unified, real-time object detection. In: IEEEConference
on Computer Vision and Pattern Recognition, CVPR. pp. 779–788
(2016)

22. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.E., Fu,
C., Berg, A.C.: SSD: single shot multibox detector. In: Computer
Vision - ECCV 2016–14th European Conference, Amsterdam, The
Netherlands, October 11–14,: Proceedings. Part I 9905(2016), pp.
21–37. (2016)

23. Lin, T., Goyal, P., Girshick, R.B., He, K., Dollár, P.: Focal loss
for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell.
42(2), 318–327 (2020)

24. Zhu, C., He,Y., Savvides,M.: Feature selective anchor-freemodule
for single-shot object detection. In: IEEEConference on Computer
Vision and Pattern Recognition, CVPR. pp. 840–849. (2019)

25. Zhang, X., Wan, F., Liu, C., Ji, R., Ye, Q.: Freeanchor: learning to
match anchors for visual object detection. In: Advances in Neural
Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems, NeurIPS. pp. 147–155. (2019)

26. Kong, T., Sun, F., Liu, H., Jiang, Y., Li, L., Shi, J.: Foveabox: Bey-
ound anchor-based object detection. IEEE Trans. Image Process.
29, 7389–7398 (2020)

27. Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards
real-time object detection with region proposal networks. In:
Advances in Neural Information Processing Systems 28: Annual
Conference on Neural Information Processing Systems, NeurIPS

28. Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie,
S.J.: Feature pyramid networks for object detection. In: IEEE Con-
ference on Computer Vision and Pattern Recognition, CVPR. pp.
36–944. (2017)

29. He, K., Gkioxari, G., Dollár, P., Girshick, R.B.: Mask R-CNN.
IEEE Trans. Pattern Anal. Mach. Intell. 42(2), 386–397 (2020)

30. Lu, X., Li, B., Yue, Y., Li, Q., Yan, J.: Grid R-CNN. In: IEEE
Conference on Computer Vision and Pattern Recognition, CVPR.
pp. 7363–7372. (2019)

31. Cai, Z.,Vasconcelos,N.:CascadeR-CNN:delving into highquality
object detection. In: IEEE Conference on Computer Vision and
Pattern Recognition, CVPR. pp. 6154–6162. (2018)

32. Wang, J., Chen, K., Yang, S., Loy, C.C., Lin, D.: Region proposal
by guided anchoring. In: IEEE Conference on Computer Vision
and Pattern Recognition, CVPR. pp. 2965–2974. (2019)

33. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A.,
Zagoruyko, S.: End-to-end object detection with transformers. In:
Computer Vision - ECCV - 16th European Conference, Glasgow,
UK, August 23–28. Proceedings, Part I(12346), 213–229 (2020)

34. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo,
B.: Swin transformer: hierarchical vision transformer using shifted
windows In: IEEE/CVF International Conference on Computer
Vision, ICCV. pp. 9992–10 002. (2021)

35. Wang,W., Xie, E., Li, X., Fan, D., Song, K., Liang, D., Lu, T., Luo,
P., Shao, L.: Pyramid vision transformer: A versatile backbone for
dense predictionwithout convolutions. In: IEEE/CVF International
Conference on Computer Vision, ICCV. pp. 548–558 (2021)

36. Girshick, R.B.,Donahue, J., Darrell, T.,Malik, J.: Rich feature hier-
archies for accurate object detection and semantic segmentation.
In: IEEEConference on Computer Vision and Pattern Recognition,
CVPR. pp. 580–587 (2014)

37. Sermanet, P., Eigen,D., Zhang,X.,Mathieu,M., Fergus,R., LeCun,
Y.: Overfeat: integrated recognition, localization and detection
using convolutional networks. In: 2nd International Conference on
Learning Representations, ICLR. (2014)

38. Deng, J., Dong,W., Socher, R., Li, L., Li, K., Fei-Fei, L.: Imagenet:
a large-scale hierarchical image database. In: IEEE Computer
Society Conference on Computer Vision and Pattern Recognition
CVPR

39. Simonyan, K., Zisserman, A.: Very deep convolutional networks
for large-scale image recognition. In: 3rd International Conference
on Learning Representations, ICLR. (2015)

40. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement.
CoRR. vol. abs/1804.02767, (2018). [Online]. Available: http://
arxiv.org/abs/1804.02767

41. Liu, R., Ma, L., Zhang, J., Fan, X., Luo, Z.: Retinex-inspired
unrolling with cooperative prior architecture search for low-light
image enhancement. In: IEEEConference on Computer Vision and
Pattern Recognition, CVPR. pp. 10 561–10 570. (2021)

42. Xu, Y., Xie, L., Zhang, X., Chen, X., Qi, G., Tian, Q., Xiong,
H.: PC-DARTS: partial channel connections for memory-efficient
architecture search. In: 8th International Conference on Learning
Representations, ICLR. (2020)

43. Ma, L., Jin, D., Liu, R., Fan, X., Luo, Z.: Joint over and under
exposures correction by aggregated retinex propagation for image
enhancement. IEEE Signal Process. Lett. 27, 1210–1214 (2020)

44. Cai, H., Chen, T., Zhang,W., Yu,Y.,Wang, J.: Efficient architecture
search by network transformation. In: Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence, AAAI. S. A.
McIlraith and K. Q. Weinberger, Eds., pp. 2787–2794. (2018)

45. Liu, C., Zoph, B., Neumann,M., Shlens, J., Hua,W., Li, L., Fei-Fei,
L., Yuille, A.L., Huang, J., Murphy, K., “Progressive neural archi-
tecture search,” in Computer Vision - ECCV 2018–15th European
Conference, Munich, Germany, September 8–14,: Proceedings.
Part I 11205(2018), 19–35 (2018)

46. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable
architectures for scalable image recognition. In: IEEE Conference
on Computer Vision and Pattern Recognition, CVPR. pp. 8697–
8710. (2018)

123

http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1804.02767


5208 W. Yuan et al.

47. Real, E. Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolu-
tion for image classifier architecture search. In: The Thirty-Third
AAAI Conference on Artificial Intelligence, AAAI. pp. 4780–
4789. (2019)

48. Yang, Z., Wang, Y., Chen, X., Shi, B., Xu, C., Xu, C., Tian, Q., Xu,
C.: CARS: continuous evolution for efficient neural architecture
search. In: IEEE/CVFConference on Computer Vision and Pattern
Recognition, CVPR. pp. 1826–1835.(2020)

49. Guo, Z., Zhang, X., Mu, H., Heng, W., Liu, Z., Wei, Y., Sun, J.:
Single path one-shot neural architecture search with uniform sam-
pling. In: Computer Vision - ECCV - 16th European Conference,
Glasgow,UK,August 23–28,: Proceedings. PartXVI 12361(2020),
544–560 (2020)

50. Xue, C., Yan, J., Yan, R., Chu, S.M., Hu, Y., Lin, Y.: Transferable
automl by model sharing over grouped datasets. In: IEEE Con-
ference on Computer Vision and Pattern Recognition, CVPR. pp.
9002–9011. (2019)

51. Du, X., Lin, T., Jin, P., Ghiasi, G., Tan, M., Cui, Y., Le, Q.V., Song,
X.: Sinenet: Learning scale-permuted backbone for recognition and
localization. In: IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR. pp. 11 589–11 598. (2020)

52. Xu, H., Yao, L., Li, Z., Liang, X., Zhang, W.: Auto-fpn: Automatic
network architecture adaptation for object detection beyond clas-
sification. In: IEEE/CVF International Conference on Computer
Vision, ICCV. pp. 6648–6657. (2019)

53. Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.:
Deeplab: Semantic image segmentation with deep convolutional
nets, atrous convolution, and fully connected crfs. IEEE Trans.
Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)

54. Li, H., Xiong, P., An, J., Wang, L.: Pyramid attention network for
semantic segmentation. In: British Machine Vision Conference,
BMVC. p. 285. (2018)

55. Zhang, R.: Making convolutional networks shift-invariant again.
In: Proceedings of the 36th International Conference on Machine
Learning, ICML. vol. 97, pp. 7324–7334. (2019)

56. Tan, M., Le, Q.V.: Mixconv: mixed depthwise convolutional ker-
nels. In: 30th British Machine Vision Conference, BMVC. p. 74.
(2019)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article
under a publishing agreementwith the author(s) or other rightsholder(s);
author self-archiving of the accepted manuscript version of this article
is solely governed by the terms of such publishing agreement and appli-
cable law.

Wanqi Yuan is currently an under-
graduate student in DUT-RU
International School of Informa-
tion Science & Engineering, Dalian
University of Technology. His
research interests include machine
learning and underwater object detec-
tion.

Chenping Fu received the M.S.
degree in computer science from
Liaoning University, Shenyang,
China, in 2019. She is currently
pursuing the Ph.D. degree in soft-
ware engineering with the Dalian
University of Technology, Dalian.
Her research interests include com-
puter vision, object detection, and
deep learning.

Risheng Liu (Member, IEEE)
received the B.S. and Ph.D.
degrees both in mathematics from
the Dalian University of Technol-
ogy in 2007 and 2012. He was
a visiting scholar in the Robotic
Institute of Carnegie Mellon Uni-
versity from 2010 to 2012. He
served as Hong Kong Scholar
Research Fellow at the Hong Kong
Polytechnic University from 2016
to 2017. He is currently a pro-
fessor with DUT-RU International
School of Information Science &
Engineering, Dalian University of

Technology. He was awarded the “Outstanding Youth Science Foun-
dation” of the National Natural Science Foundation of China. His
research interests include machine learning, optimization and com-
puter vision.

Xin Fan (Senior Member, IEEE)
was born in 1977. He received
the B.E. and Ph.D. degrees in
Information and Communication
Engineering from Xi’an Jiaotong
University, Xi’an, China, in 1998
and 2004, respectively. He was
with Oklahoma State University
at Stillwater, Stillwater, OK, USA,
from 2006 to 2007, as a postdoc-
toral research fellow. He joined
the School of Software, Dalian
University of Technology, Dalian,
China, in 2009. His current
research interests include compu-

tational geometry and machine learning, and their applications to low-
level image processing and diffusion tensor imaging magnetic reso-
nance image analysis.

123


	SSoB: searching a scene-oriented architecture for underwater object detection
	Abstract
	1 Introduction
	2 Related works
	2.1 Underwater object detection
	2.2 Backbone for underwater object detection
	2.3 Neural architecture search

	3 The proposed approach
	3.1 The scene-oriented architecture learning model
	3.2 MAaB-based search space
	3.3 The differentiable search algorithm

	4 Experiments
	4.1 Experimental configurations
	4.2 Main results
	4.3 Performance analysis

	5 Conclusion
	References




