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Abstract
As an advanced image editing technology, image inpainting leaves very weak traces in the tampered image, causing serious
security issues, particularly those based on deep learning. In this paper, we propose the global–local feature fusion network
(GLFFNet) to locate the image regions tampered by inpainting based on deep learning. GLFFNet consists of a two-stream
encoder and a decoder. In the two-stream encoder, a spatial self-attention stream (SSAS) and a noise feature extraction stream
(NFES) are designed. By a transformer network, the SSAS extracts global features regarding deep inpainting manipulations.
The NFES is constructed by the residual blocks, which are used to learn manipulation features from noise maps produced
by filtering the input image. Through a feature fusion layer, the features output by the encoder is fused and then fed into
the decoder, where the up-sampling and convolutional operations are employed to derive the confidential map for inpainting
manipulation. The proposed network is trained by the designed two-stage loss function. Experimental results show that
GLFFNet achieves a high location accuracy for deep inpainting manipulations and effectively resists JPEG compression and
additive noise attacks.

Keywords Forensics · Inpainting · Transformer · Convolutional neural networks

1 Introduction

Digital images, as the primary carriers of information, are
becoming increasingly important. However, with the pop-
ularization of image acquisition equipment and the rapid
development of image editing software, the proliferation of
digital image forgeries in recent years reduces the credibil-
ity of images, which has tremendously negative impacts on
society and individuals. Therefore, image forensics technolo-
gies have received increasing attention. Various forensics
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schemes have been proposed to detect common image pro-
cessing operations [1–3] andmalicious tampering operations
[4–6].

Image inpainting is a technique used to repair damaged
or missing regions based on the known content of the input
image in a visually plausible manner. Conventional image
inpainting approaches canmainly be split into twocategories:
diffusion-based [7–10] and patch-based [11–14]. Conven-
tional image inpainting methods can achieve good results
when the missing regions to be inpainted are small and when
the image structure and texture are relatively simple. How-
ever, they fail to fill the missing regions with consistent
and reasonable content, due to the lack of understanding
and perception regarding the high-level image semantics.
Recently, an increasing number of researchers are attempting
to use deep learning-based methods to obtain higher-quality
inpainting results. Many deep image inpainting methods
have been proposed, including generative adversarial net-
work (GAN)-based methods [15–18], convolutional neural
networks (CNNs)-based methods [19,20], and transformer-
based methods [21].

To detect image inpainting, the conventional methods
depend on hand-crafted features, e.g., the features based on
the similarities between image patches [22–24]. Such meth-
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Fig. 1 An example for image
tampering by image inpainting:
an original image (left) and the
inpainted image (right)

ods have some common shortcomings, such as the high com-
putational cost of feature extraction and the high false-alarm
rates in uniform image regions. At present, some attempts
have been taken to develop CNN-based methods for image
inpainting forensics [25–27]. By automatic feature extrac-
tion, the significant performance advantage is provided over
conventional methods. However, the convolution operations
for feature extraction are performed through sliding win-
dows. This only allows us to extract local manipulation fea-
tures and thus restricts the forensic performance inevitably.

Since the pixels in inpainted regions are generated by
inpainting manipulations with the known pixels, the global
relationships between pixels caused are important clues
for inpainting forensics. Transformer [28] was first pro-
posed in the domain of natural language processing and has
also achieved excellent performance on various computer
vision tasks [29–31]. Due to the use of self-attention mech-
anism, transformer can effectively model the long-distance
relationships between pixels and obtain the global feature
representation.

Based on the above considerations, we establish a new
end-to-end network for image inpainting forensics in this
paper, calledglobal–local feature fusionnetwork (GLFFNet).
The main contributions of this work are fourfold as below:

1. We develop the forensic network following the encoder–
decoder network structure to directly classify each pixel
of an image. In the network, the two-stream encoder com-
bining transformer and CNN serves as the basic feature
extraction module due to its excellent feature learning
ability. In the decoder, by performing up-sampling and
convolution operations on the features from the encoder,
a binary image of the same size as the input image is gen-
erated to indicate the location of the tampered regions.

2. We build the two-stream encoder by incorporating a
spatial self-attention stream (SSAS) and a noise fea-
ture extraction stream (NFES). The SSAS has large

and diverse receptive fields and is thus able to effec-
tively model long-range dependencies between pixels.
The NFES is used to extract local noise features from the
filtered noise maps. The generated features are further
fused by a convolutional layer.

3. We design a two-stage loss (TSL) function to evaluate
the quality of not only the final output of the decoder
but also the feature maps produced by the two-stream
encoder. By the use of TSL, the two-stream encoder is
more effectively guided to learn valid features for inpaint-
ing forensics.

4. To train and test our method, we set up datasets for image
inpainting forensics using four state-of-the-art image
inpainting methods. Extensive experiments show that the
proposed GLFFNet consistently outperforms the state-
of-the-art inpainting forensics methods.

The remainder of this paper is organized as follows. Section 2
summarizes the related works on image inpainting forensics.
Next, in Sect. 3, the architecture and details of GLFFNet are
carefully described. Then, a series of tests are performed to
evaluate the presented GLFFNet in Sect. 4. Finally, Sect. 5
concludes this paper.

2 Related works

Image inpainting forensics is a challenging problem because
inpainted regions are perceptually identical to untouched
regions. There has been less research on the problem so far.
The existing inpainting forensicsmethods can be divided into
two categories: conventional and deep learning based.

2.1 Conventional forensics Methods

Most of conventional methods are based on the premise that
the generated image patches are very similar to the reference
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patches. Early, Wu et al. [32] designed a fuzzy membership
function of patch similarity measured by the zero-connected
length (ZCL) to identify inpainted regions. The disadvan-
tage of this approach is that the suspicious region needs to
be selected manually in advance. Bacchuwar et al. [33] pro-
posed a forensics method based on jump block matching.
The method reduces the computational cost, but suffers from
a high false-alarm rate in uniform image area.

In [34], a two-stage search method based on a weight
transformation was proposed to accelerate the search for sus-
picious patches and filter false-alarm patches using region
relations. Although both the false-alarm performance and
computational efficiency are improved by themethod relative
to previous approaches, the detection accuracy is restrained
due to the use of the approximately similar patch search.
Zhang et al. [35] used the center pixel mapping method to
search similar patches and fragment splicing operations to
remove false-alarm patches, thereby further improved the
detection effect of inpainting.

Zhao et al. [36] detected tampered regions by calculating
and segmenting the average sum of the absolute difference
images between a tampered image and its JPEG-compressed
versions. However, this is only applicable in the context of
JPEG compression. Liu et al. [37] designed marginal den-
sity and neighboring joint density features for forensics to
the combinations of inpainting, compression, filtering, and
resampling operations. However, this method has shortcom-
ings similar to those of [36].

Conventional forensics methods depending on patch sim-
ilarity have several apparent shortcomings. First, they often
suffer from the high computational cost since the necessary
patch search process is very time-consuming, especially for
large images. Second, a high false-alarm rate is inevitably
caused in uniform image regions (such as sky and grass)
where many image patches are very similar. Finally, the
patch similarity is easily destroyed by some common post-
processing operations, like JPEG compression, causing the
weak robustness.

2.2 Deep learning-basedmethods

Deep learning-based approaches have been studied on image
forensics, including median filter detection [38], copy–move
forensics [39], JPEG compression forensics [40], generic
image manipulation detection [41], face tamper detection
[42], and video forgery detection [43]. As for image inpaint-
ing, Zhu et al. [26] proposed an encoder–decoder network
based on aCNN to locate the region tampered by patch-based
inpainting. Furthermore, Li et al. [25] designed a residual net-
work (ResNet)with a high-pass filtering layer for the forensic
task. The above two networks only take use of local features
extracted by cascaded convolution operations.

In [44], the image forensics was accomplished for patch-
based image inpainting by integrating a long-short term
memory (LSTM) network and CNN. The LSTM network is
in favor of eliminating the influence of false-alarm patches.
Liu et al. [27] proposed progressive spatio-channel correla-
tion network (PSCC-Net) to realize both imagemanipulation
detection and localization. Recently, Wu et al. [45] proposed
image inpainting detection network (IID-Net), where the fea-
ture extraction block was automatically designed by neural
structure search (NAS) algorithm. However, the detection
performance is unsatisfactory for the inpainted regions of
small size.

Some research efforts have been made to solve the foren-
sic problem by object detection technologies. Wang et al.
[46] first developed the Faster R-CNN [47] with ResNet-101
[48] as the backbone network to locate the inpainted image
regions. The work in [49] used Mask R-CNN [50] instead
of Faster R-CNN, and improved the RPN network to learn
multi-scale features for the multi-task inpainting forensics.
However, the main issue is that the shape of the inpainted
regions cannot be recognized by such methods.

In principle, the existing CNN-based inpainting forensics
methods extract localmanipulation features by convolutional
operations, but the long-distance relationships between pix-
els are neglected. This evidently restricts the performance of
image inpainting forensics. Facing the issue, we develop an
end-to-end forensics network combining transformer with a
CNN. To the best of our knowledge, this is the first attempt
to investigate transformer for forensically determining the
presence or location of image manipulations.

3 Method

In this section, the global–local feature fusion network,
abbreviated as GLFFNet, is presented. GLFFNet is built
based on the encoder–decoder network structure, since the
encoder–decoder networks are widely used for a number
of pixel-wise image classification tasks and produce good
results. The architecture of GLFFNet is illustrated in Fig. 2.
As shown in Fig. 2, given a color image, we first encode it
into feature maps by a two-stream encoder, and then send
the obtained features into the decoder to generate the final
forensic results.We elaborate the designed network structure
and loss function in the following.

3.1 Two-stream encoder

The designed encoder contains two branches: a spatial self-
attention stream (SSAS) and a noise feature extraction stream
(NFES). SSAS learns the global manipulation features
from inpainted color images by well-designed transformer.
Such features represent the texture difference between the
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Fig. 2 The architecture of the global–local feature fusion network (GLFFNet)

inpainted regions and the untouched image regions. NFES
is formed by a set of residual blocks, which accepts the
noise maps generated by the spatial rich model (SRM) for
the extraction of local manipulation features. The use of
SRM helps eliminate the semantic information and expose
the manipulation traces. Then, a cross-domain feature fusion
is performed on the extracted features to obtain the compre-
hensive and valid manipulation features.

3.1.1 SSAS

There are three stages within SSAS, and each stage contains
two successive swin transformer blocks [30] with the struc-
ture in Fig. 3. As shown in Fig. 3, a regular transformer is
first employed,which consists of awindow-basedmulti-head
self-attention (W-MSA)module, followed by a 2-layermulti-
layer perceptron (MLP) with GELU nonlinearity in between.
A layer with layer norm (LN) is arranged before W-MSA
module and MLP, and after each of them a residual connec-
tion is performed. Let Ẑn and Zn , respectively, denote the
outputs of the W-MSA module and MLP for block n. We
can write

Ẑn = W-MSA(LN(Zn−1)) + Zn−1 (1)

and

Zn = MLP(LN(Ẑn)) + Ẑn (2)

In W-MSA module, MSA is performed within local win-
dows which are obtained by partitioning an image in a
non-overlapping manner. This causes the lack of adequate
information interactions across windows. The issue is over-
comeby the posterior block inFig. 3, called swin transformer,
which is built in the same style as a regular transformer, but
replacing W-MSA module by shifted window-based multi-
head self-attention (SW-MSA) module. Therefore, for block
n + 1, we have

Ẑn+1 = SW-MSA(LN(Zn)) + Zn (3)

and

Zn+1 = MLP(LN(Ẑn+1)) + Ẑn+1 (4)

UsingW-MSA and SW-MSA alternately in SSAS, global
manipulation features can be learned, meanwhile, the com-
putational complex can be maintained [30].

The implementation details for SSAS are given as follows.
First, patch partition is carried out on the input image of
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Fig. 3 The structure of the swin transformer blocks

size H × W , producing non-overlapping image blocks of
size M × M . Each block is treated as a “token,” and the
corresponding featuremap of size 1×1×3M2 is obtained by
concatenating its raw pixel RGB values. In our experiments,
M = 4 is taken.

Next, through a linear embedding layer, the original fea-
ture of a token is projected to an arbitrary dimension C , e.g.,
C = 96 in our simulations, and then input into two succes-
sive swin transformer blocks. The process is referred to as
“Stage 1.” The number of tokens is H

4 × W
4 and maintained

in “Stage 1.”
After Stage 1, a patch merging layer is adopted, where

the feature maps of adjacent 2 × 2 tokens are concatenated
in the channel dimension and then projected to a dimension
2C . This reduces the number of tokens by a factor of 0.25,
causing the decrease in the inference time. Then, swin trans-
former blocks are arranged for feature transformation and
the network is made to be deeper. The patch merging layer
and the swin transformer blocks together form “Stage 2.” At
last, “Stage 3” is the repetition of Stage 2, which produces
4C feature maps of size H

16 × W
16 .

Figure 2 shows the basic structure of SSAS. Notice that
information exchanging can be conducted across tokens due
to the use of Transformed blocks. Therefore, SSAS can effec-
tively represent long-range dependent relationships between
pixels as the global manipulation features. This is the main
reason why we use SSAS for feature extraction. Our simula-
tions show that SSAS brings about significant performance
improvement on the forensic task.

3.1.2 NFES

NFES is designed to extract manipulation features from the
derived input other than the target image. The reasons are
explained as follows. Image inpainting methods generally
leave very weak traces in an image, particularly those based
on deep learning. Meanwhile, CNNs tend to learn features
related with an image’s content. As a result, it is difficult
to extract valid features directly from the color image for
inpainting forensics. To remove the interference from image
content and expose inpainting artifacts, the input image is
first filtered by SRM-based filters [51] to obtain the noise
maps.

Following the suggestions in [52], we select three SRM
kernels from [51] and derive three noise maps accordingly.
As shown in Fig. 4, the selected kernels are all designed for
high-pass filters and each kernel has a size of 5×5. With the
filters, the high-frequency noise is emphasized rather than
the image content, and thus the inpainting artifacts can be
sufficiently exposed. Figure 5 demonstrates the effect of the
utilized SRM filters. We can see that the inpainting traces
become much clearer after filtering the sample images.

After the filtering module, a feature extraction network
based on a residual CNN [48] is established, as shown in
Fig. 2. First, the noise maps are sent into a convolutional
layer with 24 kernels of size 3 × 3 to derive more diverse
features. Then, four ResNet blocks are adopted to effectively
learn the inpainting features. EachResNet block contains two
“bottleneck” units. In each bottleneck unit, three consecutive
convolutional layers with kernel sizes of 1 × 1, 3 × 3, and
1 × 1, and a residual skip connection are placed. Moreover,
after each convolutional layer, a batch normalization layer
and a rectified linear unit (ReLU) layer are applied. The fea-
ture channel depth is resized by the factors of 0.5, 1, and 4
through the three convolutional layers in the first bottleneck
unit, and 0.25, 1, and 4 in the second unit. The channel reduc-
tion in each unit allows the sequent convolutional layer to
extract the inpainting features more quickly and efficiently.
Additionally, in the second unit of each ResNet block the
convolution operation with a stride of 2 is applied for feature
aggregation and spatial resolution reduction. Overall, NFES
has a 3-channel input and a 384-channel output with a spatial
resolution being 1

16 of the input. This can obtain output fea-
ture maps of the same size as the SSAS while maintaining a
similar amount of computation.

3.1.3 Feature fusion

Currently, feature fusion is commonly accomplished by one
of a cascade, an addition, and a multiplication of multiple
features. We compare these methods, and finally cascade the
outputs of SSAS and NFES, as shown in Fig. 2.
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Fig. 4 The SRM filtering
module (top) and the selected
SRM kernels (bottom)

Fig. 5 Filtering effect of the selected SRM filters on two sample images: the tampered images (left), the noise maps (middle), and the real masks
(right)

Further, a convolutional layer with kernels of size 3× 3 is
used to refine the fused features. Meanwhile, the number of
channels is reduced to 384 to eliminate redundant features.
By the feature fusion, comprehensive feature representation
can be obtained.

The reason we only adopt concatenation and convolution
operation is that the two streams have already provided suffi-
cient and distinct features. In contrast, complex structuremay
jeopardize the overall generalization ability of our method
and degrade the performance.
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3.2 Decoder

The decoder generates a binary image, called the predicted
mask, where the tampered regions are white. To this goal, the
decoder is established by convolutional layers, up-sampling
layers, and the Softmax layer. The architecture of the decoder
is demonstrated in Fig. 2, and described in detail as follows.

The first layer is a convolutional layer with kernels of size
3 × 3 and stride of 1, and the feature channel depth is made
to decrease by half. Behind this layer, an up-sampling layer
is employed to enlarge the feature resolution by a factor of 2.
The up-sampling operation is realized by the bilinear inter-
polation. The above two layers are repeatedly applied four
times to produce the feature maps with the same resolution
as the target image and the channel depth being 24. Next,
through two consecutive convolutional layers with kernels
of size 3 × 3 and stride of 1, the feature channel depth is
further reduced to 8 and 2, respectively. Finally, the learned
features are fed into the Softmax layer, where the 2-way Soft-
max function is performed to derive the confidential map Y
regarding the pixel-wise inpainting detection. Consequently,
the predicted binary mask Ẑ is derived according to the rule
whether the elements of the confidential map are larger than
0.5 or not.

3.3 Loss function

During training stage, a loss function is needed to quantify
the quality of a particular set of the parameter settings for
all network weights. In this study, we design the two-stage
loss (TSL) for training our network, where the quality for
the final output and the results of the intermediate stage are
jointly accessed.

Ideally, the final confidentialmapY output by our network
should equal to the ground truth mask Z. Their difference is
indicated by the loss L f , which is obtained by

L f = LBCE(Y,Z), (5)

where LBCE(·) denotes the binary cross-entropy loss (BCEL)
function [26].

The loss L f is particularly important, since the proposed
network is driven to produce the final output being in accor-
dance with the real mask with the use of L f . However, the
prediction performance is also closely related with the inter-
mediate featuresXs1 andXs2 produced by SSAS and NFES,
respectively. Moreover, the two streams have very different
structures, causing the difference on the convergence rate.
Therefore, to attain a better training model, it is necessary to
introduce the loss Lsi regarding Xsi , i ∈ {1, 2}.

The loss Lsi is computed between Xsi and Z to measure
how well the intermediate features agree with the ground
truth mask. For the purpose, a 3 × 3 convolutional layer

Algorithm 1 Training Algorithm of GLFFNet
Input: F , θF are the proposed forensic network and the corresponding

parameters;
D = {(Xk ,Zk)|k = 1, 2, · · · , N } is the training dataset, and

Xk and Zk stand for the k-th sample image and the corresponding
ground truth mask;

Output: Optimized forensic network F
1: Initialize the network F
2: for each mini-batch Db ∈ D do
3: Perform forward inference to obtain the featuresXs1,Xs2 and the

final output Y for each image
4: TransformXs1 andXs2 intoX′

s1 andX
′
s2 by a convolutional layer

followed by a Softmax layer
5: Down-sample the real mask Z for each image by a factor of 1

16
to derive Z′

6: Calculate the losses Ls1, Ls2, L f , and L by (5) to (7)
7: Update the model parameters θF according to the overall loss L
8: end for

followed by a Softmax layer is applied to Xsi , resulting in
X′
si with the channel depth being 1. The real mask Z is

down-sampled by a factor of 1
16 with the nearest-neighbor

algorithm, deriving the low-resolution version Z′. Then,
applying the function LBCE(·) again, the lossLsi is expressed
as

Lsi = LBCE(X′
si ,Z

′). (6)

Apparently, with the use of the losses Ls1 and Ls2,
GLFFNet can be guided to more effectively learn inpaint-
ing features for forensics. Moreover, the issue is alleviated
that one of the encoder streams tends to be optimized during
the training phase.

The overall loss L is obtained by combining the above
three losses as

L = λ1Ls1 + λ2Ls2 + L f , (7)

where λi , i ∈ {1, 2}, is a hyperparameter indicating the
importance of the loss Lsi . In our simulations, the hyper-
parameters are both set to 1. The pseudocode of the training
procedure is shown in Algorithm 1.

The parameters of neural networks are commonly opti-
mized by on-line gradient descent. Therefore, the conver-
gence rate of our network is closely related to the gradients
of the overall loss with respect to the network parameters.We
use vectorsW1 andW2 to denote the parameters involved in
SSAS and NFES, respectively. Then, the gradient ∂L

∂Wi
can

be derived as ∂L
∂Wi

= λ1
∂Lsi
∂Wi

+ ∂L f
∂Wi

, i ∈ {1, 2}. Clearly, by
choosing the hyperparameters λ1 and λ2, the gradients ∂L

∂W1

and ∂L
∂W2

can be changed, and thus the convergence rates of
the SSAS and NFES λ1 and λ2 can be adjusted.
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4 Experiment

To evaluate the performance of the method developed in this
paper, we built an image inpainting forensics dataset, and
trained and tested our GLFFNet on the dataset. Intersection
over Union (IoU) and F1 score were used as forensic perfor-
mancemetrics, and comparison experiments were conducted
with typical image inpainting forensics methods. Finally, we
conducted an ablation study to verify the main components
of our proposed network.

4.1 Training and testing datasets

We randomly selected 21,600 images from the Place365
dataset [53] to generate training and testing images of size
256 × 256. The real mask is randomly generated for each
image in shape, size, and location [54]. Three types of
inpainted regions were included: circular, rectangular, and
irregular regions. The area of the inpainted region was ran-
domly set to one of 1%, 5%, 10%, and 15% of the whole
image, and the inpainted region was randomly located on
the image plane. Meanwhile, we randomly employed four
typical deep learning-based image forensicsmethods, includ-
ing DeepfillV2 [16], PIC [18], LaMa [19], and ICT [21], to
tamper a given image. Finally, we divided all the inpainted
images into three parts: 18,000 images for training, 1,800
images for validation, and 1,800 images for testing.

4.2 Training details

The proposed GLFFNet with the input of size 256×256 was
implemented using the PyTorch deep learning framework.
GLFFNet was trained on a workstation with 3.5 GHz Intel
Xeon(R) W-3223 CPU and 64 GB memory, equipped with
a single NVIDIA GeForce RTX 3090 GPU. The network
weights except for those in SRM kernels were initialized
by Kaiming initialization method [55]. The Adam optimizer
with decoupled weight decay (AdamW) [56] was adopted
to iteratively update the network weights during the training
process. The optimizer recovers the original formulation of
weight decay regularization by decoupling the weight decay.
This can accelerate training convergence and greatly improve
the generalization performance of the network. The training
parameters of the optimizer were set as follows. The learning
rate was initialized to 1 × 10−3, and decreased by 0.95 per
epoch. The batch size was set to 64. In addition, the training
data were augmented by JPEG compression with a randomly
selected quality factor between 75 and 100.

For comparisons, the state-of-the-art methods proposed in
[25], [27], [26] and [45] were chosen. We used the publicly
available implementations of HPFCN [25] and IID-Net [45].
FCNet [26] and PSCC-Net [27] were implemented by our-
selves. These methods were re-trained on our dataset strictly

following the training procedures and parameter settings pre-
sented in their papers.

4.3 Forensic performance evaluation: no attacks

The forensic performance is first evaluated on the original
inpainted images. Figure 6 shows the visualization results
obtained by all the tested approaches on four typical deep
learning-based image inpaintingmethods. All of themethods
are able to approximately locate the inpainted regions with
different shapes and sizes. However, the methods for com-
parisons fail to finely determine the edges of the inpainted
regions, especially the irregular regions. The forensics results
of our proposed method (e.g., column 6 of each subfigure in
Fig. 6) better agree with the ground truth masks (e.g., the last
column of each subfigure in Fig. 6).

Table 1 summarizes IoU and F1 score for each tested
method on the testing dataset. It is clear that our GLFFNet
provides very accurate and consistent inpainting localiza-
tion. GLFFNet achieved IoU of 88.76 and F1 score of
93.69 on the DeepfillV2 dataset, and higher metrics on other
three datasets. These results are significantly better than
those obtained by other methods. The performance advan-
tage might be brought about by the combination of CNN and
transformer.

In addition, we also examine the forensic effects on
inpainted regions with different shapes and sizes, as shown
in Fig. 7. Clearly, for the circular inpainted regions, the per-
formance of all the tested methods degrades as the size of
the inpainted regions decreases. Similar observations can be
made for rectangular and irregular regions. Moreover, our
method achieves the best forensic performance for all the
considered cases. In particular, our method even presents
IoU larger than 80% on all the datasets while the area of
the inpainted region is set to 1% of the whole image. This
indicates that our methods are also very effective for small
inpainted regions. Generally, a small missing region is eas-
ily inpainted and less inpainting traces are left, thus causing
the forensic difficulties.Among allmethods, only ourmethod
and PSCC-Net achieve good results on small regions, both of
which are fused bymultiple streams. This shows that the fea-
ture information of multiple different receptive fields needs
to be fused. Our method learns long-short range dependent
features effectively by combining CNN and transformer, and
thus improves the detection accuracy significantly.

4.4 Forensic performance evaluation: typical attacks

In practice, forgers might perform some post-processing
operations after inpainting to evade forensic detection.
Thus, we investigate the robustness of the proposed method
against JPEGcompression and additivewhiteGaussian noise
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Fig. 6 Forensic results on several sample images. a–d Results on four
different inpainting methods: DeepfillV2 [16], PIC [18], LaMa [19],
and ICT [21]. The original inpainted images, forensic results obtained

by HPFCN [25], FCNet [26], IID-Net [45], PSCC-Net [27], and our
results, as well as the ground truth masks are, respectively, shown in
Columns 1 to 7 of each subfigure

Table 1 Average IoU and F1
score of different methods on
four typical datasets without
extra distortions

Inpainting method HPFCN [25] FCNet [26] IID-Net [45] PSCC-Net [27] Proposed

IoU F1 IoU F1 IoU F1 IoU F1 IoU F1

DeepfillV2 57.66 67.06 52.33 61.06 50.52 58.57 85.04 91.32 88.76 93.69

PIC 81.43 88.22 82.15 88.77 80.14 86.58 91.33 95.34 93.87 96.74

Lama 80.39 87.97 81.04 87.84 79.18 86.28 89.38 94.18 91.66 95.49

ICT 75.81 83.32 76.89 83.04 79.20 85.72 88.29 93.39 89.78 94.30

The best results are marked in bold font

(AWGN). The two manipulations are considered because
they are often performed in many applications.

The testing images are first JPEG-compressed by qual-
ity factors (QF) of 95, 85, and 75, and inpainting forensics
methods are performed on the compressed images while the
area ratio for the inpainted region is set to 15%. The average
values of IoU and F1 scores obtained by the tested methods
on the DeepfillV2 and PIC datasets are listed in Table 2. It
can be seen that the forensic performance degrades for all the
tested methods as QF decreases, and our method still has the
best forensic results in all the cases. For QF of 95, GLFFNet
performs almost as well as on the original inpainted images.
For QF of 75, GLFFNet obtains IoU of 79.78, 92.32, and F1
score of 88.28, 95.95 on the DeepfillV2 and PIC datasets,
respectively. These results are even better than those of other
methods for comparisons on the inpainted images without
any alterations, although our network has a little larger per-
formance loss compared to other methods. Therefore, our

proposed method exhibits stronger robustness against JPEG
compression.

Then, the robustness is further tested under AWGN with
signal-to-noise ratios (SNRs) of 50 dB, 40 dB, and 35 dB.
The results on the DeepfillV2 and PIC datasets are reported
in Table 3 for the area ratio 15%. As is clear, our method
is still superior to other tested methods under this attack.
For AWGN with SNR of 50 dB, GLFFNet performs slightly
worse than that under no attacks. Even for AWGNwith SNR
of 35 dB, IoU of 83.43 and F1 score of 90.46 are reached by
GLFFNet on theDeepfillV2.Therefore, the proposedmethod
is insensitive to AWGN.

4.5 Ablation analysis

We investigated the effects of the SRM filters, SSAS, NFES,
two-stream encoder, and TSL through ablation experiments.
For this purpose, we implemented the following variants of
the full model (GLFFNet).
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Fig. 7 Effects of parameters (shape and size) of inpainted regions on
the forensic performance for different methods. a–d IoU curves on the
testing dataset produced by: DeepfillV2 [16], PIC [18], LaMa [19],
and ICT [21]. The circular, rectangular, and irregular inpainted regions

are indicated by the letters “c,” “r,” and “i” in parameters of inpainted
regions, respectively. The numbers 1, 5, 10, and 15 behind these letters
represent the percentage of the whole image to be inpainted

1. RCSNet: This network is built by removing SSAS and
SRM filtering module in GLFFNet. In other words, the
residual convolutional stream (RCS) in NFES serves as
the encoder. BCEL is adopted to train RCSNet.

2. NFESNet: This network is obtained by removing SSAS in
GLFFNet. That is, swin transformer (ST) blocks are not
contained in NFESNet The training is performed with the
use of BCEL.

3. SSASNet: SSASNet is developed by removing NFES
in GLFFNet. That is, only SSAS containing ST blocks
serves as the encoder. BCEL is applied for training SSAS-
Net.

4. DRCSNet: DRCSNet is constructed by replacing all swin
transformer blocks in SSASwith ResNet blocks. As such,
the encoder is composed of double RCSs (DRCS). The
training of DRCSNet employs TSL.

5. DSTSNet: The network is formed by replacing NFES in
GLFENet with SSAS. That is, the encoder is composed
of double swin transformer streams (DSTS). DSTSNet is
trained as DRCSNet.

6. GLFFNet2: This network has the same structure as
GLFFNet, but is trained using BCEL.

All these variants were trained on the training dataset for
DeepfillV2 with the same training options as those of the
full model. Table 4 reports the results of GLFFNet and its
variants on the testing dataset for DeepfillV2 and the results
under JPEG compression with QF of 75 (JPEG 75 for short).

We can see that, RCSNet with RCS as the encoder only
gets IoU of 68.30 and F1 score of 74.94 under no attacks, but
they become 85.24 and 91.01 for NFESNet. The significant
performance gain is brought about by significant also brought
about SRM filtering module. Moreover, NFESNet performs
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Table 2 Average IoU and F1 score of different methods on two typical datasets under JPEG compression: the area of the tampered regions is set
to 15% of the whole image

Datasets QF(%) HPFCN [25] FCNet [26] IID-Net [45] PSCC-Net [27] Proposed

IoU F1 IoU F1 IoU F1 IoU F1 IoU F1

DeepfillV2 95 77.10 86.77 77.58 86.95 73.34 83.45 91.82 95.70 93.14 96.43

85 72.54 83.52 76.76 86.33 68.11 79.07 87.62 93.26 89.81 94.57

75 68.98 80.75 75.53 85.38 64.40 75.73 78.49 87.09 79.78 88.28

PIC 95 90.70 95.09 92.35 95.98 91.56 95.54 95.42 97.65 95.85 97.87

85 88.75 93.94 91.87 95.72 89.83 94.55 94.20 97.00 94.22 97.01

75 86.29 92.36 91.41 95.46 86.98 92.66 90.99 95.05 92.32 95.95

The best results are marked in bold font

Table 3 Average IoU and F1
score of different methods on
two typical datasets under
additive white Gaussian noise:
the area of the tampered regions
is set to 15% of the whole image

Datasets SNR HPFCN [25] FCNet [26] IID-Net [45] PSCC-Net [27] Proposed

IoU F1 IoU F1 IoU F1 IoU F1 IoU F1

DeepfillV2 50 dB 76.83 86.59 77.51 86.89 76.16 85.56 90.63 94.89 93.05 96.32

40 dB 75.31 85.55 76.84 86.38 74.86 84.49 72.52 82.21 88.34 93.55

35 dB 72.43 83.21 76.00 85.67 71.69 81.90 48.73 62.79 83.43 90.46

PIC 50 dB 91.35 95.45 92.50 96.06 91.91 95.73 95.83 97.86 96.84 98.39

40 dB 87.26 92.94 92.33 95.97 90.46 94.76 91.48 95.30 95.13 97.46

35 dB 85.18 91.68 91.91 95.73 87.16 92.34 83.55 90.33 92.14 96.25

The best results are marked in bold font

Table 4 Average values of IoU
and F1 score obtained by
different variants of GLFFNet
on the DeepfillV2 dataset

Variants Components No attacks JPEG 75

SRM RCS ST TSL IoU F1 score IoU F1 score

RCSNet � 68.30 74.94 44.01 50.96

NFESNet � � 85.24 91.01 43.61 52.28

SSASNet � 85.91 91.82 45.63 53.50

DRCSNet � � � 82.38 89.01 40.72 49.14

DSTSNet � � 85.25 91.51 46.83 54.86

GLFFNet2 � � � 86.51 92.08 46.74 54.84

GLFFNet (full model) � � � � 88.76 93.69 53.39 61.31

The best results are marked in bold font

better than RCSNet being subject to JPEG compression in
terms of F1 score.

ComparingwithNFESNet, SSASNetmanifests the approx-
imately same performance on the original inpainted images.
This reveals that the designed two streams SSAS and NFES
effectively learn the inpainting features. Surprisingly, SSAS-
Net ismore robust to JPEG compression thanNFESNet. This
might be because the local inpainting features learned by
RCS in NFESNet are more easily destroyed than the global
ones extracted by SSASNet applying transformer blocks.

Impressively, GLFFNet2 yields IoU of 86.51 and 46.74,
and F1 score of 92.08 and 54.84, respectively, for no attacks
and JPEG 75. The performance of GLFFNet2 is better than
that of either NFESNet or SSASNet. This indicates that the
two-stream encoder combining RCS and transformer has the

performance advantage over a single-stream encoder. How-
ever, DSTSNet containing double SSAS and using TSL for
training is slightly inferior to the network with a single SSAS
under no attacks and DRCSNet with double RCSs is even
worse thanNFESNet in all the cases. This further reflects that
themanipulation features can be effectively refined by comb-
ing transformer and RCS other than two identical streams
both learning the local or global features.

The best performance is reached by the full model, i.e.,
GLFFNet, with the use of all the aforementioned compo-
nents. Particularly, by applying TSL, GLFFNet surpasses
GLFFNet2 by about 2.2 in IoU and 1.6 in F1 score under
no attacks. The performance margin becomes more larger
under JPEG 75. Now, we can make a conclusion that all the
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Fig. 8 Training loss curves of
Ls1 and Ls2 for NFESNet and
SSASNet, respectively: a
λ1 = 1 and λ2 = 1; b λ1 = 10
and λ2 = 1

Table 5 Number of FLOPs for different variants

Variants Input FLOPs

NFESNet 256 × 256 4.4G

SSASNet 256 × 256 4.0G

DRCSNet 256 × 256 8.1G

GLFFNet (full model) 256 × 256 7.7G

components present the performance improvement and con-
tribute to the overall performance.

Further, GLFFNet is trained on the DeepfillV2 dataset
applyingTSLwith different values of the hyperparametersλ1
and λ2. The training loss curves for the two loss components
Ls1 and Ls2 in TSL are plotted in Fig. 8. It is clear that the
convergence rate is different for SSAS and NFES. In Fig. 8a
for the case of λ1 = 1 and λ2 = 1, the loss Ls1 for SSAS
degradesmore slowly than that forNFESwhen the number of
iterations is lower than 125000. Thereafter, the optimization
of SSAS can be proceeded at a convergence rate close to
that of NFES. The situation is changed in Fig. 8b for the
case of λ1 = 10 and λ2 = 1, where the loss for SSAS is
highlighted. SSAS converges faster than NFES after about
8k iterations, although SSAS is still inferior to NFES at the
beginning. Meanwhile, the lossLs2 for NFES can be reached
at the lower level. That is, by adjusting the hyperparameters
λ1 and λ2, we can control the optimization speed of SSAS
and NFES, and thus the difference on the convergence rate
for SSAS and NFES is able to be effectively alleviated.

Additionally, in one forward on a fixed input size 256 ×
256, we calculate the number of floating point operations
(FLOPs) for different variants, which is shown in Table 5.
From the results, SSASNet presents about 0.4GFLOPs lower
than that ofNFESNet. FLOPs ofGLFFNet andDRCSNet are
approximately twice as much as one of SSASNet, since they
both contain the encoder with two streams for feature extrac-
tion. Moreover, the difference between FLOPs of GLFFNet
and DRCSNet is also about 0.4G. That means that trans-
former can bring about the forensic performance advantage
with less computation.

5 Conclusion

In this paper, a deep learning forensics approach for deep
image inpainting, called GLFFNet, has been proposed.
GLFFNet followed the encoder–decoder network structure
in order to directly predict the pixel-wise class label regard-
ing inpainting manipulation. The encoder was designed as
a two-stream network combining transformer and a residual
network. By the encoder, both the global and local manip-
ulation features can be effectively learned and further fused
to generate a comprehensive feature representation. The
decoder was established by applying the up-sampling and
convolution operations to gradually enlarge the resolution of
the input feature maps and reduce the feature channel depth.
For training GLFFNet, the TSL function was proposed tak-
ing into account the learning effect of each network stream
in the encoder. GLFFNet works in a data-driven manner and
thus avoids the difficulties on the design of the hand-crafted
features.

The proposed GLFFNet was extensively tested on various
images, and compared with state-of-the-art inpainting foren-
sics methods. Experimental results showed that GLFFNet
can learn the effective manipulation features for deep image
inpainting and locate inpainted regions more accurately.
Comparing with representative forensics methods, GLFFNet
manifests significantly better forensic performance in terms
of the location accuracy.Moreover,GLFFNet exhibited supe-
rior robustness against typical post-processing operations,
i.e., JPEG compression and AWGN.
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