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Abstract
Recently, graph convolutional networks (GCNs) play a critical role in skeleton-based human action recognition.However,most
GCN-based methods still have two main limitations: (1) The semantic-level adjacency matrix of the skeleton graph is difficult
to bemanually defined,which restricts the perception field ofGCNand limits its ability to extract the spatial–temporal features.
(2) The velocity information of human body joints cannot be efficiently used and fully exploited by GCN, because GCN
does not represent the correlation between the velocity vectors explicitly. To address these issues, we propose a graph-aware
transformer (GAT), which can make full use of the velocity information and learn discriminative spatial–temporal motion
features from the sequence of the skeleton graphs in a data-driven way. Besides, similar to the GCN-based model, our GAT
also considers the prior structures of the human body including the link-aware structure and the part-aware structure. Extensive
experiments on three large-scale datasets, i.e., NTU-RGB+D 60, NTU-RGB+D 120, and Kinetics-Skeleton, demonstrated
that the proposed GAT obtains significant improvement compared to the GCN-based baseline for skeleton action recognition.

Keywords Skeleton action recognition · Visual transformer · Graph-aware transformer · Velocity information of human body
joints · Graph neural network

1 Introduction

Human action recognition has becomeone of themost impor-
tant tasks in the computer vision field as it has a wide
range of applications in intelligent video surveillance [7,67],
human–machine interaction [32,36], medical service [53],
etc. However, the accuracy of video-based action recogni-
tion is limited by the quality of the video and a large amount
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of video data is not easy to store and transmit. In contrast
to video-based human action recognition, skeleton-based
human action recognition has attracted great attention due to
its robustness against changes in body scales, camera view-
points, and interference of backgrounds. At the same time,
more and more human skeleton data are generated by depth
cameras (e.g., Microsoft Kinect) and pose estimation algo-
rithms [5,64], which provides a lot of available data for deep
models. The storage and transmission efficiency of skele-
ton data is also high. In addition, the CNN-based methods
have achieved good performance in processing RGBvideo in
Euclidean space for action recognition [12,20,53]. However,
unlike RGB video, the skeleton data is a kind of graph struc-
ture data, which is in non-Euclidean space. In other words,
there is a correlation map between each joint of the human
skeleton, but the number of relation joints for each joint is
uncertain, and there is no clear order between relation joints.
Therefore, how to effectively extract the spatial–temporal
information in non-Euclidean space has become a key prob-
lem for skeleton-based action recognition, which is the core
topic of this work.

Naturally, the skeleton data represents the human action
as a sequence of 2D or 3D coordinates of the main body
joints, and these joints are connected according to the phys-
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ical structure of human body to construct a skeleton graph
[51]. Therefore, the skeleton data expresses human action
by the motion information of the skeleton graph, such as
the movement speed, the positional relationship, and the
angle of the joints. The traditional deep-model-based meth-
ods convert the skeleton data into Euclidean space according
to predefined rules and then employ CNN or RNN to learn
deep features of the skeleton sequence [4,25]. Currently,
the GCN-based strategy has become the mainstream to han-
dle the problem of skeleton-based human action recognition
[10,21,41,46,62,69,71,73], as it can alternately perform con-
volutional operation on spatial and temporal edges to jointly
learn the spatial–temporal information of the skeleton graph
sequence. Compared with CNN and RNN, GCN has the
advantage in processing the graph structure data with the
result that it can maintain the non-Euclidean characteristics
of the skeleton graph. However, as a core problem of GCN,
the prior adjacency matrix guides the information aggrega-
tion in the non-Euclidean space and limits its perception field,
which is difficult to be manually defined. There are many
works focused on designing suitable adjacency matrix for
skeleton-based action recognition [41,45,62], but these incre-
mental modules increase the complexity of themodel and are
not easy to follow. In this work, we abandon the traditional
GCN-based model and exploit an exquisite transformer-
based model to capture features from the skeleton sequence,
which is fully data-driven and without any complex incre-
mental modules. Similar with GCN, the transformer-based
model can also process the graph structure data in non-
Euclidean space instead of converting the skeleton data to
the Euclidean space in a manually defined way (like CNN or
RNN). The transformer achieves remarkable performance in
the field of natural language processing [54] and some basic
visual tasks [6,17], but there are few researches that discussed
the applicability of the transformer in the field of skeleton-
based action recognition. On the basis of keeping the elegant
structure of transformer, to make the transformer more suit-
able for processing the skeleton data of the graph structure,
we carefully design a graph-aware transformer (GAT) with-
out increasing any trainable parameters. The GAT takes two
important structures of the human body (i.e., the link graph
structure and the part graph structure) as prior masks and
uses a improved multi-head attention mechanism to extract
deep feature of the skeleton sequence.

A recent work 2s-AGCN [45], which utilizes the first-
order spatial difference of the skeleton data (i.e., bone vec-
tors) to construct a two-stream GCN, significantly enhances
the GCN-based models. However, few GCN-based works
can effectively use the first-order temporal difference infor-
mation (i.e., the velocity vector) and they cannot fully
exploit this velocity feature. Worse still, simply adopting the
multi-stream strategy to utilize the velocity information can
multiply the number of parameters and computation costs of

the model. To address this issue, in the GAT, we combine the
multi-head attentionmechanismwith the first-order temporal
difference of the skeleton data and propose a velocity-driven
correlation, which can make full use of the correlation of
joint velocities. Thus, ourGATcan learn both position-driven
attention maps and velocity-driven attention maps to capture
motion features effectively. Notably, unlike the 2s-AGCN
algorithm, we do not utilize additional streams but merge the
joint positions and the velocity features into one stream. In
this way, we canmake full use of the velocity vectors without
increasing the model size.

In summary, the main contributions of this paper are
threefold: (i) A graph-aware transformer (GAT) is carefully
designed to extract the spatial–temporal information of the
skeleton sequence, which takes two important human body
structures as prior masks and uses an improved multi-head
attention mechanism to achieve data-driven feature extrac-
tion. (ii) The first-order temporal difference of the skeleton
sequence is fully utilized by combining the velocity vectors
with the guidance of the multi-head attention mechanism,
which can effectively learn a velocity-driven attention map
to extract motion features. (iii) Extensive experiments on
three large-scale datasets demonstrated that our GAT obtains
remarkable performance for skeleton-based action recogni-
tion and significantly outperforms the GCN baseline.

2 Related works

2.1 Skeleton-based action recognition

Conventional skeleton-based action recognition methods
usually employ handcrafted features [1,55,56] or utilize
RNNs [4,23,32,49,76], CNNs [25,28,29,35] to learn features
of the skeleton sequence. Vemulapalli et al. [55] designed
rolling maps to represent the relative 3D rotations between
various body parts, which is a key motion feature of skeleton
sequence. Liu et al. [32] extended theRNN-basedmethods to
spatial–temporal domains to analyze the action-related infor-
mation. Zhu et al. [80] proposed a cuboid CNN to fully
exploit the local movements of human joints in skeleton
actions. Thesemethods cannot effectively extract the spatial–
temporal correlation from the joints of skeleton graph and
also cannot fully exploit the human body structure. Yan et al.
firstly proposed a GCN-based method ST-GCN [62], which
significantly boosts the performance of skeleton-based action
recognition. Then later, GCN-based methods have become
themainstream. Based on ST-GCN,many variants have been
explored [10,30,46,69,71,73,76], which typically introduce
some incremental modules, e.g., the attention module [10],
the context-aware module [73], and the semantics-guided
module [71], to enhance the network capacity. Shi et al. [45]
took the first-order spatial difference of joints (i.e., bone vec-
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tors) as a second stream and designed a two-stream adaptive
GCN. Wen et al. [59] introduced a motif-based graph con-
volution to encode the hierarchical spatial structure. Zhang
et al. [69] explored a spatial attentive and temporal dilated
GCN to extract the features of skeleton sequences with dif-
ferent spatial attention weights and temporal scales. Peng
et al. [41] turned to neural architecture search (NAS) and
proposed the first automatically designed GCN, which can
further strengthen the representation ability of the adjacency
matrix in GCN. Different from the above works, to com-
pletely overcome the limitation of the adjacency matrix,
we innovatively propose a transformer-based model, i.e.,
GAT to replace GCN as the backbone to extract features
of the skeleton sequence. GAT not only retains the adja-
cency matrixes of the skeleton graph as the prior knowledge,
but also has a correlation-driven global perception field and
a more powerful capability to learn spatial–temporal deep
features. Recently, Chiara et al. [42] also proposed to use
the transformer to process the skeleton data, but they still
employed the GCN layers when extracting the low-level fea-
tures and they also ignored the velocity features. In contrast,
with the help of the graph-aware masks, our GAT model can
effectively extract the low-level features and the high-level
featureswith rich velocity information.More importantly,we
do not integrate the GCN-based model and any other incre-
mental modules with the transformer, so our GAT model is
more concise and easy to implement.

2.2 Visual transformer

Transformers, which have been widely used in natural lan-
guage processing (NLP) tasks, are the models that rely
on the multi-head self-attention mechanism to draw global
correlations from the input features. Vaswani et al. [54]
first proposed transformer based on multi-head attention
mechanism for machine translation task. Devlin et al. [16]
introduced a new language representation model called
BERT (Bidirectional Encoder Representations from Trans-
formers), which pre-trains a transformer on unlabeled text
to let the model learn the context of each word. Inspired by
the major success of transformer architectures in the field
of NLP, recently, using transformer in vision tasks becomes
the trend, e.g., object detection [6,13,14,52], image enhance-
ment [8,63], image segmentation [8,58], image generation
[38], video processing [65,79], and 3D point cloud pro-
cessing [75]. For image classification, Dosovitskiy et al.
proposed a vision transformer (ViT) [17], which divides an
image into 16 × 16 patches and feeds these patches into a
standard transformer, obtains remarkable performance. Wu
et al. represented images as semantic visual tokens and
ran transformer to densely model token relationships [60].
For object detection, Carion et al. [6] combined the trans-
former framework with the CNN network and proposed a

simple and fully end-to-end object detector named DETR.
Zhu et al. [13] proposed Deformable DETR, which has
become a popular method that significantly improves the
detection performance. For video processing, Zhou et al.
designed an end-to-end transformer model to encode the
video into appropriate representations [79]. Zeng et al. simul-
taneously fill missing regions in all input video frames by
a self-attention module for video inpainting. For skeleton-
based action recognition, Chiara et al. [42] proposed to
improve GCN by combining spatial and temporal attention
modules to explore the spatial–temporal correlation of the
skeleton graph sequences. These works demonstrated that
transformers have strong visual feature extraction capability
and tremendous potential compared with CNNs. However,
in the field of skeleton-based action recognition, there are
few studies discuss the applicability of the transformer in
extracting low-level and high-level skeleton features. More-
over, how to effectively use the transformer to process graph
structure data is also a meaningful topic.

3 Background

3.1 Problem formulation

In this paper, we use G = (V, E) to represent the skeleton
graph, where V means the vertexes and E denotes the edges.
For the joint graph, V is the set of n joints and E is the set
of m bones. For the bone graph, on the contrary, V is the
set of m bones, and E is the set of n joints. We consider the
adjacency matrix of the skeleton graph as A ∈ {0, 1}n×n ,
where Ai, j = 1 if the ith and the jth vertexes are connected,
and Ai, j = 0 otherwise. The initial position feature of the
skeleton joints is their 3D (or 2D) coordinates. By taking
the first-order spatial difference of the joints, we can get the
representation of the bones, which is a sequence of 3D (or
2D) vectors. Let X j ∈ R

n×3×T be the 3D joint positions
across T frames and Xb ∈ R

n×3×T be the 3D bone vectors.

3.2 Multi-head self-attention

The self-attention function proposed in [54] can be described
as mapping a query and a set of key-value pairs to an output,
where the query (Q), key (K ), value (V ), and output are all
feature vectors. The output is computed as a weighted sum
of V , where the weight assigned to each V is computed by
a correlation function of Q with the corresponding K . In
practice, the self-attention function is defined as:

Attention(Q, K , V ) = so f tmax

(
QKT

√
dk

)
V , (1)
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where dk is the dimension of K . Integrating multiple self-
attention head, the multi-head self-attention can be formu-
lated as:

Multihead(Q, K , V )

= Concat(head1, . . . , headh)W
O , (2)

where headi = Attention(QWQ
i , KWK

i , VWV
i ). The pro-

jections are parameter matricesWQ
i ∈ R

d×dk ,WK
i ∈ R

d×dk ,
WV

i ∈ R
d×dv and WO ∈ R

hdv×d . Multi-head self-attention
allows the model to jointly attend to information from dif-
ferent representation sub-spaces.

4 Method

4.1 Graph-aware self-attention

The GCN-based models have achieved remarkable perfor-
mance in skeleton-based action recognition. An important
reason is that GCN can fully explore the physical structure
of the human body through the prior adjacency matrix. Peng
et al. [41] have proved that the first-order adjacencymatrix of
the human body plays a key role in extracting the low-level
features of the skeleton sequence.While to extract high-level
features, the higher-order adjacency matrix is more impor-
tant. Although existing studies have designed a variety of
learnable adjacency matrices to improve the performance of
GCN [41,45,62], higher-order adjacency matrices are more
difficult to design and their robustness is poor. Different
from GCN, the transformer employs the attention map (see
Eq.1) to aggregate information. This process is completely
data-driven and does not require any prior knowledge. There-
fore, the transformer is suitable for extracting high-level
motion features from the skeleton sequence. To fully exploit
the potential ability of the transformer in extracting high-
level features, and enable the transformer to have the same
ability as GCN to use the prior knowledge of the skeleton
graph to extract low-level features, in this work, we propose
a graph-aware self-attention module. The structure of the
graph-aware self-attentionmodule is shown in Fig. 1.We add

Fig. 2 Illustration of the Link Graph (red) and the Part Graph (yellow)

a temporal convolutional network (TCN) layer [62] at the end
of the module and employ a residual connection [22]. More
importantly, based on the multi-head self-attention mecha-
nism, we propose a multi-head graph-aware self-attention,
whose detailed structure can be referred to the right part of
Fig. 1. We use a variety of prior graph-aware (G-A) masks to
constrain the attention map (QKT ) in this module. Specifi-
cally, let W A and Mi , respectively, denote the attention map
and the graph-aware mask, the graph-aware attention map
can be calculated as W A � Mi , where � represents the
element-wise multiplication. Next, we will introduce how
to construct the G-A masks M .

There are two kinds of natural connecting structures
among the joints of the humanbody.Thefirst is the linkgraph,
which connects all the joints of the human body according to
the body’s physical structure (see Figs. 2 and 3 Link Graph).
During the movement of the human body, the physical adja-
cent joints have a significant influence on each other. We use
the same representation rule of the adjacencymatrix to repre-
sent this link-graph mask ML . That is ML

i, j = 1 if the ith and
the jth vertexes are connected, and 0 otherwise. The second
kind of natural connecting structure is the part graph, which
connects part of the joints according to the part-based body
structure (see Figs. 2 and 3 Part Graph). Different parts of
the human body show different motion characteristics dur-
ing moving. We divide the human body into 5 parts, namely

Fig. 1 The architecture of the
graph-aware self-attention
module
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upper left limb, upper right limb, lower left limb, lower right
limb, and torso. The joints contained in one part are regarded
as a fully connected graph. We use the part-graph mask MP

to represent this partial connecting structure. By combin-
ing the attention head with these two kinds of masks, we
get the link-aware attention head and the part-aware atten-
tion head, respectively. The link-aware attention head focuses
on extracting the motion information based on the physical
structure of the human body, while the part-aware attention
head is more interested in extracting the motion correlation
of human body parts. To avoid losing the global information,
we also use the free attention head without any masks. By
fusing the above three kinds of attention heads, we construct
a graph-aware transformer (GAT), which can make full use
of the prior graph structure and effectively extract discrimi-
native motion features of the skeleton graph.

4.2 Graph-aware transformer

The architecture of the deigned graph-aware transformer
(GAT) is shown in Fig. 3. Firstly, we use a normalization
layer (Norm) and a single-head self-attention layer (SSA)
to preprocess the input skeleton data. The dimension of the
input skeleton data isRn×3×T . After being preprocessed, the
output feature dimension changes toRn×54×T , which is used
as the input of the GAT. The GAT consists of two parts. One
part has 6 layers, the other part has 3 layers. Each layer is
a multi-head attention module with h attention heads. The
multi-head attention operation can be formulated as Eq. 2.
In the first part, we use three kinds of different attention
heads, namely the link-aware attention head (LG-A), the part-
aware attention head (PG-A), and the free attention head
(without the graph-aware mask, Free-A). The LG-A is the
self-attention head with the link-graph-aware mask. The PG-
A is the self-attention head with the part-graph-aware mask.
At this stage, the model can extract rich low-level features
with the help of the prior knowledge provided by a variety
of attention heads. The output feature dimension of the first
part is Rn×192×T /2. In the second part, we only use the free
attention head to extract high-level features, which is com-
pletely data-driven, and there is no prior graph structure to
limit its perception field. The output feature dimension of
the second part is Rn×276×T /4. Finally, the classifier, which

consists of a global average pooling layer (Avg-Pooling), a
fully connected layer (FC), and a softmax function, is used
to classify the human action of the skeleton sequence based
on the features extracted by the GAT.

4.3 Velocity-driven correlation

Referring to Eq.1, in theory, the self-attention mechanism is
driven by the correlation between joints. If the product QKT

of the two joints is larger, the correlation is stronger, and the
attentionmapping is more obvious. Intuitively, in the process
of human motion, joints with similar velocities have a strong
correlation. For example, in the running period, there is a
significant correlation between the speed of the hands and
feet. Another example is clapping hands, where the corre-
lated speed and direction of the two hands are the key features
to distinguish this action. Based on the above analysis, com-
binedwith the characteristic of the self-attentionmechanism,
we use the first-order temporal difference (velocity vector)
of the joint coordinates to enhance the feature of the joints,
which is formulated as:

S j = X :,:,1:T
j − X :,:,0:T−1

j , X
′
j = Concat(X j , S j ), (3)

where S j is the velocity vector of the joints, X
′
j is the

enhanced feature. To keep the dimension of S j match the
dimension of X j , we fill S j ∈ R

n×3×T−1 with 0 to make it
satisfy S j ∈ R

n×3×T . Among the GCN-based models, there
was no work to use this velocity vector to enhance the feature
of the joints. The reason is that GCN cannot fully exploit the
correlation between joint velocities, so the performance of
the model does not significantly improved after adding this
new feature. In contrast, our model is based on the trans-
former, which can effectively use the correlation between
joint velocities and learn velocity-driven attention map to
extract motion features. Furthermore, unlike the existing
researches that use an additional stream to process the first-
order spatial difference, we directly concatenate the velocity
vector of the joint with the initial position vector and use
a single stream network to process this enhanced feature,
so that there is almost no increase in computation cost. The
dimension of the enhanced input skeleton data is Rn×6×T .

Fig. 3 The architecture of the
graph-aware transformer (GAT)
model

123



4506 J. Zhang et al.

Fig. 4 The flowchart of the
velocity-driven correlation
mechanism

To further utilize the correlation between joint velocities,
we use the position vector and the velocity vector to calculate
two different attention maps respectively (i.e., the position-
driven attention map and the velocity-driven attention map
as shown in Fig. 4). We take the average of the two attention
maps as the final attention map. To sum up, our velocity-
driven correlation can be formulated as:

W A = 1

2
(so f tmax(

QXKX
T

√
dk

) + so f tmax(
QSKS

T

√
dk

)). (4)

The graph-aware velocity-driven self-attention function can
be formulated as:

Attention(X) = (W A � Mi )X
′
, (5)

where W A and Mi , respectively, denotes the attention map
and the graph-aware mask, X

′
is the velocity enhanced fea-

ture.
Our velocity-driven correlation mechanism can fully

exploit the speed relationship of the joints and can obtain
the attention map containing rich motion information, which
helps the model extract the spatial–temporal motion infor-
mation of the skeleton sequence effectively.

5 Experiments

5.1 Datasets and implementation details

Three popular skeleton action datasets, i.e., NTURGB+D 60
(NTU60) [43], NTU RGB+D 120 (NTU120), and Kinetics-
Skeleton (KS) [62] are selected for our experiments.

5.1.1 NTU-RGB+D 60

NTU60 [43] is a large-scale dataset with annotated 3D joint
coordinates of the human body for the task of human action
recognition. NTU-RGB+D contains 56,000 action videos
with 60 action classes. These videos are in-door-captured
from 40 volunteers in different age groups ranging from 10

to 35. For each action, the videos are obtained by 3 cam-
eras from different viewpoints, and the 3D annotations of
human body joints are given in the camera coordinate sys-
tem. Each action video has no more than 2 subjects and there
are 25 key joints for each subject in the skeleton sequences.
The NTU-RGB+D dataset includes two settings: (1) Cross-
Subject (CS) benchmark, which contains 40,320 videos for
training and 16,560 videos for testing. In this setting, the
training set comes from one subset of 20 subjects and the
remaining19 subjects are used for evaluation; (2)Cross-View
(CV) benchmark, which includes 37,920 videos for training
and 18,960 videos for testing. In this setting, the training
samples come from the camera viewpoints 2 and 3, while
the camera viewpoint 1 is used for evaluation. We follow the
conventional settings in [43] and report the top-1 accuracy
on both benchmarks.

5.1.2 NTU-RGB+D 120

NTU120 [34] is an extension of NTU60, which adds 57367
new skeleton sequences representing 60 new actions, for a
total of 113945 videos referring to 120 classes from 106
subjects under 32 camera setups. It includes two settings:
(1) cross-subject (X-Sub) benchmark: the 106 subjects are
split into training and testing groups. Each group contains
53 subjects. (2) cross-setup (X-Set) benchmark: the training
data comes from samples with even setup IDs, and the testing
data comes from samples with odd setup IDs.

5.1.3 Kinetics-Skeleton

Kinetics [24] consists of 300,000 videos with 400 action
classes. The video clips of Kinetics are abundant and var-
ious that sourced from YouTube, but it only provides raw
videos without skeleton annotation. Yan et al. [62] used the
OpenPose toolbox to estimate the locations of 18 joints on
every frame of the videos and released the Kinetics-Skeleton
datasets. In Kinetics-Skeleton, all videos are converted to a
frame rate of 30fps and are resized to 340 × 256 resolution.
The OpenPose toolbox generates the 2D coordinates and the
confidence score for 18 joints of each human body from the
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Fig. 5 Visualization of the velocity-driven attention maps and the
position-driven attention maps for different human action classes on
the NTU60 dataset. The value of the attention map is the average of all
the heads’ attentionmaps that without the graph-aware mask operations

in the second layer of the model. The brighter area indicates that the
weight of the attention map is larger there, which means the correlation
between two joints is stronger

processed videos. For the multi-person clips, two major peo-
ple are selected by calculating the average joint confidence.
Each joint is represented by its 2D coordinate and confi-
dence score, which construct a three-element feature vector.
Following the evaluation method of Yan et al. [62], we train
the models on the training set and report the top-1 and top-5
accuracies on the testing set.

We implement ourmodel basedon thePyTorchdeep learn-
ing framework [39].We apply the stochastic gradient descent
(SGD) algorithmwith Nesterov momentum (0.9) as the opti-
mizer. We use 4 Nvidia GTX 1080Ti GPUs for the model
training, and set the batch size to 48. For the NTU60 and
NTU120 datasets, the number of training epoch is set as 60
and the learning rate is set to 0.1. The learning rate decay is
set as 0.1 at the 30th epoch, 40th epoch and 50th epoch. For
the Kinetics-Skeleton dataset, the number of training epoch
is set as 70 and the learning rate is set as 0.1. The learning
rate decay is set as 0.1 at the 40th epoch, 50th epoch and 60th
epoch.

5.2 Ablation study

We present an ablative analysis on the NTU60 CV bench-
mark to evaluate the effectiveness of the proposed model.
We analyze the effect of the transformer-based model, LG-A
mask, PG-A mask, and the velocity-driven correlation. ST-
GCN [62] is our baseline.

The results in Table 1 show that compared to the GCN-
based baseline, our transformer-basedmodel performs better.
The free transformer outperforms the baseline by 2.61%
(90.91%vs88.30%), and thevelocity-driven free transformer
outperforms the baseline by 4.04% (92.49% vs 88.45%). The
results demonstrate that the transformer-based model is sig-
nificantly stronger than the GCN-based model in terms of
extracting spatial–temporal motion features of the skeleton
sequence. Besides, the transformer-based model can fully
exploit the velocity correlation of human body joints. When
the velocity-driven correlation is added, the performance of
the free transformer improves by 2.3% (92.49% vs 90.91%),

but the GCN-based baseline with velocity enhanced feature
only improves by0.15%(88.45%vs88.30%). Figure 5 shows
the velocity-driven attention maps and the position-driven
attention maps for different human action classes on the
NTU60 dataset. The value of the attention map is the average
of all the heads’ attention maps that without the graph-
aware mask operations in the second layer of the model.
The brighter area indicates that the weight of the attention
map is larger there, which means the correlation between the
two joints is stronger. We can see that for different actions,
the bright area of the velocity-driven attention map is more
concentrated than the position-driven attention map. Take
the action “clapping” as an example, the activation values
of the velocity-driven attention map are concentrated on a
few joints of hands with salient motions, which means the
velocity-driven attention map can better highlight the signifi-
cant joints of human action than the position-driven attention
map. Therefore, the velocity information can better reflect the
motion correlation of the joints during the action procedure.
Our GAT, which fuses the velocity-driven correlation mech-
anism and the position-driven correlation mechanism, can
exploit rich motion information from the skeleton sequence.

Extensive experiments are performed to test the impact
of the graph-aware masks. Table 1 shows the results of the
GAT with LG-A mask, the GAT with PG-A mask, and the
GAT with LG-A and PG-A masks. For the GAT with LG-A
mask and the GAT with PG-A mask, we make half of their
attention heads have masks and the others are free attention
heads. For the GAT with LG-A and PG-A masks, we make
h/3 of its attention heads have LG-A mask, h/3 of its atten-
tion heads have PG-A mask, and the others are free attention
heads (see Fig. 3). The total number of the attention heads h
is 6. The LG-A mask can bring 1.29% (93.78% vs 92.49%)
improvement to the transformer-based model, and the PG-A
mask can bring 0.89% (93.38% vs 92.49%) improvement.
The combination of the LG-A mask and the PG-A mask
can bring 1.43% (93.92% vs 92.49%) enhancement on top-1
accuracy to the transformer-based model. These experimen-
tal results show that the prior graph-aware masks are helpful
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Table 1 Comparison of the
top-1 and top-5 accuracy on the
NTU60 CV benchmark with
different model configurations.
V-D means velocity-driven. h is
the number of the attention
heads

Model configs LG-A PG-A V-D Top-1 (%) Top-5 (%)

Baseline (ST-GCN) � – – 88.30 97.10

Baseline � – � 88.45 97.82

Baseline � � – 88.69 97.53

Free T (h = 6) – – – 90.91 98.72

Free T (h = 6) – – � 92.49 98.95

GAT (h = 6) � – � 93.78 99.14

GAT (h = 6) – � � 93.38 99.03

GAT (h = 6) � � � 93.92 99.19

GAT (h = 3) � � � 92.92 98.89

GAT (h = 9) � � � 93.63 99.14

GAT (h = 6, all) � � � 93.58 99.09

for the transformer to extract motion details from the physi-
cal structure and partial structure of the human body. On the
other side, when we use the graph-aware attention heads for
all the transformer layers without free attention head, the per-
formance of the model will decrease instead (e.g., see the last
row of Table 1, the results are, respectively, 0.34% and 0.10%
lower than the GAT (h = 6, the 7th row of Table 1) on top-
1 and top-5 accuracy). This is because high-level skeleton
motion features require the model to have a global percep-
tion field, but the graph-aware masks limit the perception
field of the model. Therefore, the free attention head with-
out any limitation is necessary for the transformer to extract
multi-scale and multi-granularity features. Consequently, in
our model, we combine the graph-aware attention heads and
the free attention head in the first 6 layers and only use the free
attention head in the last 3 layers (see Fig. 3). The influence
of the number of the attention heads h in each transformer
layer is shown in Table 1. Specifically, compared to the GAT
with h = 3 and h = 9, the GAT with h = 6 has the best
performance.

5.3 Comparison with state of the arts

We compare the proposed GAT model with the state-of-the-
art skeleton-based action recognitionmethods on theNTU60,
NTU120, and KS datasets. The methods which are selected
for comparison include CNN-based methods [2,26,28,29],
3D-CNN-based method [19], RNN-based methods [18,33],
GCN-based methods [11,30,44,45,62,73], and transformer-
based method [42]. In this experiment, we use a two-stream
(joint stream+ bone stream)GATmodel. The final classifica-
tion score is the sum of the two-stream scores and the number
of parameters is two-stream parameters. The results on the
NTU60 dataset are shown in Table 2. Our GAT outperforms
the CNN-based methods, RNN-based methods, and GCN-
basedmethods onboth theCSand theCVbenchmarks,which
proved that the transformer has great advantages in dealing

Table 2 Comparison of the top-1 accuracy with the state of the arts on
the NTU60 dataset

Methods Params (M) CS (%) CV (%)

HBRNN (2015) [18] – 59.1 64.0

Deep LSTM (2016) [43] – 60.7 67.3

ST LSTM (2016) [32] – 67.2 77.7

TCN (2017) [27] – 74.3 83.1

Syn CNN (2017) [29] – 80.0 87.2

CNN+M+T (2017) [28] – 83.2 89.3

ST-GCN (2018) [62] 6.20 81.5 88.3

GCN+VTDB (2019) [59] – 84.2 94.2

AS-GCN (2019) [30] – 86.8 94.2

2s-AGCN (2019) [45] 6.94 88.5 95.1

DGNN (2019) [44] – 89.9 96.1

CA-GCN (2020) [73] – 83.5 91.4

SGN (2020) [71] – 89.0 94.5

Shift-GCN (2020) [11] – 89.7 96.0

S-TR (2021) [42] 6.14 87.9 94.9

PoseC3D (2021) [19] – 94.1 97.1

GAT (Ours) 5.86 89.0 95.2

with the skeleton data. Our results outperform ST-GCN [62]
by 6.9% (95.2% vs 88.3%) on the CV benchmark and 7.5%
(89.0% vs 81.5%) on the CS benchmark with less parameters
(5.86M vs 6.20M). Figure 6 shows the confusion matrix of
ourGATon theNTU60CVbenchmark (left) and the compar-
ison of the classification accuracy with ST-GCN of 60 action
categories on the NTU60 CV benchmark (right). The accu-
racyof theGAT is representedby the red line and the accuracy
of the ST-GCN is represented by the blue dotted line. It can be
seen that our GAT improves the classification accuracy on all
of the action categories, because our velocity-driven correla-
tion can fully exploit the correlation betweenmotion speed of
joints, which is helpful for distinguishing the human actions.
The results in the red boxes of Fig. 6 also reveal that the main
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Fig. 6 The confusion matrix on the NTU60 CV benchmark (left). Comparison of the classification accuracy of 60 action categories on the NTU60
CV benchmark (right). The accuracy of the GAT represents as the red line and the accuracy of the ST-GCN represents as the blue dotted line

Table 3 Comparison of the top-1 accuracy with the state of the arts on
the NTU120 dataset

Methods X-Set (%) X-Sub (%)

ST LSTM (2016) [32] 57.9 55.7

Clips+CNN+MTLN (2017) [25] 62.2 61.8

SkeMotion (2019) [3] 67.7 66.9

TSRJI (2019) [2] 67.9 62.8

ST-GCN (2019) [62] 79.0 77.9

AGCN (2019) [45] 84.9 82.9

Shift-GCN (2020) [11] 86.6 85.3

SGN (2020) [71] 79.2 81.5

S-TR (2021) [42] 83.6 81.0

PoseC3D (2021) [19] 90.3 86.9

GAT (Ours) 86.1 84.0

Table 4 Comparison with the state of the arts on the KS dataset

Methods Top-1 (%) Top-5 (%)

PA-LSTM (2016) [43] 16.4 35.3

TCN (2017) [27] 20.3 40.0

ST-GCN (2018) [62] 30.7 52.8

AS-GCN (2019) [30] 34.8 56.5

2s-AGCN (2019) [45] 36.1 58.7

DGNN (2019) [44] 36.9 59.6

CA-GCN (2020) [73] 34.1 56.6

S-TR (2021) [42] 35.4 57.9

GAT (Ours) 35.9 58.9

difficulty for skeleton-based action recognition is to distin-
guish the confusing human actions, such as “writing” and
“type on a keyboard,” which needs to be further studied. The
results on the NTU-RGB+D 120 dataset are shown in Table
3. Our GAT performs better than the CNN-based methods
and RNN-based methods. Compared to the state-of-the-art
GCN-based methods Shift-GCN [11], our GAT also obtains
competitive results (86.1% vs 86.6% on the X-Set bench-
mark and 84.0% vs 85.3% on theX-Sub benchmark). Results
on the Kinetics-Skeleton dataset are shown in Table 4. Our
GAT surpasses the other competitive methods in both top-1
and top-5 accuracy. It demonstrated that our GAT model is
more robust to deal with noisy 2D skeleton data in real-world
videos. Using only the spatial attentionmechanism, the accu-
racy of our GAT outperforms the S-TR [42] on all the three
datasets NTU60, NTU120, and KS.

6 Conclusions

In this work, we proposed a novel graph-aware transformer
(GAT), which can fully utilize the velocity correlation of
human joints to extract motion features of the skeleton
sequence. The link-aware attention and the part-aware atten-
tion are the core modules of the GAT, which are designed
by fusing the graph-aware masks with the attention map to
effectively make use of the prior skeleton graph structures.
Extensive experiments are conducted on three large-scale
datasets to evaluate the performance of our method. The
results verified that the proposed transformer-based model
outperforms the GCN-based baseline by a large margin,
and the GAT obtains remarkable performance on extracting
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the spatial–temporal deep features for skeleton-based action
recognition. In the future, considering the context informa-
tion and using the attention mechanism to learn the temporal
feature more effectively need to be further investigated.
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