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Abstract
This paper presents a novel and fast EMD-based (empirical mode decomposition-based) image fusion approach via morpho-
logical filter. Firstly, we develop a multi-channel bidimensional EMDmethod based on morphological filter to conduct image
fusion. It uses the morphological expansion and erosion filters to compute the upper and lower envelopes of a multi-channel
image in the sifting processing, and can decompose the input source images into several intrinsic mode functions (IMFs) with
different scales and a residue. It significantly improves the computation efficiency of EMD for multi-channel images while
maintaining the decomposition quality. Secondly, we adopt a patch-based fusion strategy with overlapping partition to fuse
the IMFs and residue instead of the pixel-based fusion way usually used in EMD-based image fusion, where an energy-based
maximum selection rule is designed to fuse the IMFs, and the feature information extracted by IMFs is used as a guide to
merge the residue. Such strategy can extract the salient information of the source images well and can also reduce the spatial
artifacts introduced by the noisy characteristics of the pixel-wise maps. A large number of comparative experiments on the
fusion of several commonly used image data sets with multi-focus and multi-modal images, show that our newly proposed
fusion method can obtain much better results than the existing EMD-based image fusion approaches. Furthermore, it is very
competitive with the state-of-the-art image fusion methods in visualization, objective metrics, and time performance. The
code of the proposed method can be downloaded from: https://github.com/neepuhjp/MFMBEMD-ImageFusion.
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1 Introduction

With the rapid progress of data acquiring technology, a vari-
ety of sensors capturing images are emerging. Although each
sensor has irreplaceable advantages in its appropriate work-
ing condition and range, the information obtained according
a single imaging sensor is incomplete. Image fusion is an
important technique to integrate image data of the same tar-
get collected by multi-sensors, so as to extract the favorable
information in each sensor to the greatest extent and syn-
thesize it into high-quality images. They are more suitable
for human visual perception and further image processing
tasks [1]. Image fusion has been extensively used in com-
puter vision, military, remote sensing, etc. [2].

The classical empirical mode decomposition (EMD) pro-
posed by Huang et al. [3] is a powerful tool for processing
non-stationary and nonlinear one-dimensional signals,which
can adaptively decompose a 1D time series signal into sev-
eral intrinsicmode functions (IMFs) and a residue through an
iterative sifting processing. It has also been extended to 2D
images called bidimensional empirical mode decomposition
(BEMD) and can adaptively represent the feature informa-
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tion with different scales of input source images. Many
researchers have appliedEMDinto image fusion to overcome
the artifacts of predefined basis functions in the fusion meth-
ods based on classical transforms such as Fourier transform
and wavelet transform. Unfortunately, the existing EMD-
based image fusion approaches [4–11] have limited impact
in image fusion since there are still some limitations that
need to be addressed. Firstly, the computation efficiency of
such methods is unsatisfactory since the envelope generation
in the sifting processing of 2D images becomes very time-
consuming as the image size rapidly increasing especially
for the surface interpolation-based EMDmethods. Secondly,
they mainly employ the pixel-based fusion strategy to merge
each component of EMD, which may introduce some spatial
artifacts generated by the noisy characteristics of the pixel-
wise maps. Furthermore, the fusion rules in such methods
cannot capture the salient information of input source images
well, therefore they generate fuzzy fusion results.

To improve the performance of EMD-based image fusion
methods, we propose a novel and fast EMD-based image
fusion method in this paper (Fig. 1). We firstly develop a
multi-channel bidimensional EMD method based on mor-
phological filter (we name it as MF-MBEMD) to decompose
the input source images into several IMFs with different
scales and a residue, which can accelerate the computation

of EMD for multi-channel images significantly. We then
adopt a patch-based fusion strategy with overlapping par-
tition instead of the pixel-based fusion way usually used in
EMD-based image fusion to fuse the IMFs and residue,where
the energy-based rules are designed to extract the salient
information of input source images. Finally, we obtain the
final result by adding the fused IMFs and the fused residue
together. The main contributions of this paper can be sum-
marized as follows:

– We develop amulti-channel bidimensional EMDmethod
based on morphological filter (MF-MBEMD) to conduct
image fusion. It uses the morphological expansion and
erosion filters to compute the upper and lower envelopes
of a multi-channel image, where the size of the mor-
phological filter window is determined by the minimal
average extremum distance of all image channels. It sig-
nificantly improves the computation efficiency of EMD
for multi-channel images while maintaining the decom-
position quality.

– We adopt a patch-based fusion strategy with overlapping
partition to replace the pixel-based fusionway commonly
used inEMD-based image fusion,where an energy-based
maximum selection rule is designed to fuse the IMFs,
and the feature information extracted by IMFs is used

Fig. 1 The pipeline of the proposed novel and fast EMD-based image
fusion method for two multi-focus images, where the input source
images are decomposed into several IMFs and a residue, the patch

size of the partition is set into 4 × 4, and the overlapping number of
rows/columns is set into 2 in order to better illustrate our method
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as a guide to merge the residue. It can capture the salient
information of the source imageswell and also reduce the
spatial artifacts introduced by the noisy characteristics of
the pixel-wise maps.

– We evaluate the fusion performance of several state-of-
the-art EMD methods for multi-channel images under
the popular fusion strategies used in the EMD-based
image fusion methods on some commonly used data sets
with multi-focus and multi-modal images. The evalua-
tion results demonstrate that our proposed MF-MBEMD
obtains better time performance, and our proposed patch
and energy-based fusion strategy achieves better visual-
ization and objective metrics.

2 Related work

2.1 Bidimensional empirical mode decomposition

The original 1D EMD [3] employs a sifting processing to
extract IMFs with different scales, which needs to generate
the upper and lower envelopes of all local extrema points
(maxima and minima) by cubic splines. To generalize it to
2D images, Nunes et al. [12] generated envelope surfaces by
radial basis function interpolation. Al-Baddai et al. [13] pro-
posed a novelmethod of envelope surface interpolation based
on Green’s function to improve the stability of BEMD. The
approach using bi-Laplacian operator interpolation to com-
pute the upper and lower envelopes [14–16] is developed to
perform the decomposition for signals defined on 3D sur-
faces and can be applied to 2D images naturally [17,18]. To
avoid the computation of the envelope surfaces in the sift-
ing processing, Pan and Yang [8] generated the mean surface
by interpolating the centroid points of neighbour extremum
points in its Delaunay triangulation, while Qin et al. [6] used
a window function as an alternative to compute the mean
surface and obtained a window BEMD method. Wang et
al. [9] presented a bidimensional ensemble empirical mode
decomposition method (BEEMD) to optimize the decom-
position by averaging the modes of all noise-added images,
which needs very expensive time costs. In order to improve
the computation efficiency of the surface interpolation-based
BEMD methods, a direct envelope estimation method based
on order-statistics filters [19] is proposed to generate the
envelope surfaces of an input image, where the distance map
between the adjacent maxima/minima is computed to deter-
mine the filter size. Trusiak et al. developed an enhanced
fast empirical mode decomposition method [20] to further
accelerate the computation of envelope surfaces by using
morphological operations instead of order-statistics filters.
In addition, it generates the filter size only by the extremum
number and can avoid the time-consuming computation of
the distance map between the adjacent extrema.

The aforementioned BEMD methods are designed to
decompose 2D imageswith one data channel (single-channel
images). Although they can also be applied separately to
decompose each channel of a bivariate/multivariate 2D signal
(two/multiple data channel), they suffer from a lot of prob-
lems (e.g. mode alignment and nonuniqueness) as illustrated
in [21]. These issues limit the application of EMD in data
fusion which requires the same-index IMFs containing the
same-scale information. To make the extracted modes from
each of the multiple 2D signals match in feature scales, Yeh
[5] proposed the complex BEMD to decompose a bivari-
ate (complex) 2D signal, which applies the standard BEMD
based on surface interpolation [12] to four real-valued 2D
signals to generate the complex-valued IMFs. Rehman et al.
[7] reshaped amulti-channel 2D image into amultivariate 1D
signal and adopted the 1D multivariate EMD [22] to obtain
the multi-scale decomposition. Xia et al. [10] improved such
decomposition by using n-dimensional surface projections to
estimate the mean surface of a multi-channel 2D image and
can reserve its spatial information. Bhuiyan et al. [23] used a
direct envelope estimation method based on order-statistics
filters [19] to generate the upper and lower envelopes of
color images, which is less time-consuming than the sur-
face interpolation-based BEMD methods for multi-channel
images. In this paper, we obtain the envelope surfaces of a
multi-channel image by using the morphological filters so as
to further reduce thedecomposition time,which is inspiredby
the enhanced fast empirical mode decomposition [20] devel-
oped for single-channel images. It can not only generate good
decomposition results, but also can significantly accelerate
the computation.

2.2 Image fusion

With the development of signal processing and analysis, a
large number of image fusion methods have been proposed
such as transform domain methods, spatial domain meth-
ods, deep learning methods, etc. Here we mainly discuss
the transform domain methods which are more relevant with
EMD-based image fusion. More comprehensive survey can
be found in [2,24,25].

The transform domain methods merge the transformed
coefficients of the input source images obtained by a trans-
form, and generate the fused image by a reconstruction step
with the corresponding inverse transform. Undoubtedly, the
selection of transform domain plays an important role in
these methods. So far, a lot of transforms have been involved
to conduct image fusion, which include Laplacian pyramid
[26], multi-scale geometric analysis [27–30], fast Fourier
transform [31], wavelet transform [32,33], empirical mode
decomposition (EMD) [4,5,7,10], etc.

Different from many classical transforms such as Fourier
transform and wavelet transform using predefined basis
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functions, EMD is fully adaptive and data-driven. Pan and
Yang [8] used the mean approximation-based BEMD to
decompose the source images and then employed a standard
deviation-based weighted averaging rule to fuse each com-
ponent pixel by pixel. Wang et al. [9] proposed a pixel-based
image fusion method based on BEEMD and an entropy-
based weighted averaging rule to conduct the fusion. Qin
et al. [6] used the window BEMD to obtain the decompo-
sition and fused all IMFs and the residue by the maximum
selection rule based on two saliency measures in a pixel-
based manner, which may introduce some artifacts. In order
tomake the decompositions of different source imagesmatch
in number and property, the multivariate 1D EMD [22] are
used to decompose source images and each component can
be merged by a variance-based weighted averaging rule
pixel by pixel [7]. Xia et al. [10] adopted the multivariate
BEMD based on surface projection to obtain the multi-scale
decomposition, which can improve the fusion quality of
the multivariate 1D EMD-based fusion method [7]. Yeh [5]
proposed a pixel-based multi-focus image fusion approach
according to the complex BEMD. Ahmed and Manic [4]
used the order-statistics filter-based EMD [19,23] to decom-
pose the source images and perform the fusion by using a
variance-basedmaximumselection rule pixel by pixel. Zhu et
al. [11] employed bivariate BEMD and sparse representation
to conduct the fusion of infrared-visible images. Although
many attempts have been made in the research of EMD-
based image fusion, they are limited by the computation
efficiency of the used EMDmethods and the fusion schemes.
In this paper, we propose a novel and fast EMD-based image
fusion method based on a fast multi-channel bidimensional
EMD method and a patch and energy-based fusion strategy,
which obtains better performance than the existing EMD-
based image fusion approaches on several commonly used
image data sets with multi-focus and multi-modal images.

3 Multi-channel bidimensional EMD based
onmorphological filter

To our knowledge, the enhanced fast empirical mode decom-
position method [20] obtains the best time performance for
the decompositionof a greyscale image in the existingBEMD
methods. It adopts morphological filters to implement the
direct envelope estimation method based on order-statistics
filters [19] and employs the mean extremum distance as
the filter size to avoid the computation of the distance map
between the adjacent maxima/minima. However, it is only
designed for single-channel images to conduct fringe pat-
tern processing. In this paper, we present a multi-channel
bidimensional EMD method based on morphological fil-
ter (MF-MBEMD), where the relevant modifications of the
enhanced fast empirical mode decomposition method [20]

are given to make it be suitable for more general images with
multiple channels.

The proposed MF-MBEMD employs the morphological
filters with the same widow size for each channel to gen-
erate the envelope surfaces of a multi-channel image, which
can extract similar spatial scale of each channel image during
the decomposition. Specifically, given amulti-channel image
I = (I1, ..., In) with the sizeW × H , its upper (lower) enve-
lope U = (U1, ...,Un) (D = (D1, ..., Dn)) can be generated
by

Uk(x, y)|k=1,...,n = (Ik ⊕ b)(x, y) = max
(s,t)∈Zxy

Ik(s, t),

Dk(x, y)|k=1,...,n = (Ik � b)(x, y) = min
(s,t)∈Zxy

Ik(s, t),
(1)

where ⊕ denotes the morphological expansion filter, �
denotes the morphological corrosion filter, Zxy represents
the set of pixels in the window w × w centered on the pixel
(x, y), and b is a binary set indicator function on Zxy . The
average filter is used to get much smoother envelopes by

U ′
k(x, y)

∣
∣
k=1,...,n = 1

w×w

∑

(s,t)∈Zxy

Uk(s, t),

D′
k(x, y)

∣
∣
k=1,...,n = 1

w×w

∑

(s,t)∈Zxy

Dk(s, t).
(2)

To consider the feature extraction of all data channels of
the input image, we set the window size w in Eq. (1) and
Eq. (2) into the following minimal average extremum dis-
tance of all image channels,

w = min{w1, ..., wn}, (3)

where wk(k = 1, ..., n) denotes the average extremum dis-
tance of the k-th channel image Ik and is computed by

wk =
√

W × H

Nk
, (4)

where Nk is the average value of the numbers of all local
maxima andminimaof Ik .Wefind all localmaxima (minima)
of Ik by comparing the values of each pixel and its neighbours
in the 3 × 3 window centered on it in each iteration. It is
different from the extraction of local extrema in the enhanced
fast empirical mode decomposition method [20], where the
size of extremum window is equal to the average extremum
distance of the previous iteration and the number of extracted
extrema is reduced. In contrast, our strategy obtains more
extrema in each iteration and can extract much-finer feature
scale of each channel image.

The proposed MF-MBEMD can extract the IMFs with
different scales iteratively by a sifting processing based on
the above envelope computation method until the specified
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Algorithm 1 Multi-channel bidimensional EMD via mor-
phological filter
Input: a multi-channel image I = (I1, ..., In)
Initialization: set the initial residue R0 = I, i = 1;
1: repeat
2: find all local maxima (minima) of each channel image of Ri−1

by comparing the values of each pixel and its neighbours in the
3 × 3 window centered on it;

3: compute the average extremum distance wi−1
k (k = 1, ..., n) for

each channel image of Ri−1 by Eq. (4), and get the window size
wi−1 of morphological filter by Eq. (3);

4: obtain the upper (lower) envelopeUi−1 (Di−1) ofRi−1 by Eq. (1),
and smooth them by Eq. (2);

5: obtain the i-th residue Ri = 1
2 (Ui−1 + Di−1) and the i-th IMF

Fi = Ri−1 − Ri ;
6: i = i + 1;
7: until the residue Ri is a constant or a monotonic function, or the

number of IMFs is more than a given threshold
Output: IMFs Fi , i = 1, · · · , K and the corresponding residue RK .

number of IMFs is achieved or the residue is a constant or a
monotonic function (see Algorithm 1). Figures 1 and 2 give
the decomposition results of some multi-focus images using
MF-MBEMD. As can be seen that the leading IMFs extract
much finer-scale features and the trailing IMFs describe
much coarser-scale features. Furthermore, the extracted fea-
ture scales of two multi-focus images are matched very well
for the same-index IMFs, which is very important for the
application of EMD in image fusion.

Table 1 gives the time performance comparison in gen-
erating three IMFs for the image in Fig. 2a with different
sizes between our proposed MF-MBEMD and several state-

Table 1 Time performance comparison (in seconds) between our
proposed MF-MBEMD and several state-of-the-art multi-channel bidi-
mensional EMD methods in generating three IMFs for the image in
Fig. 2a with different sizes

Size SP-MBEMD BL-MEMD OSF-CBEMD MF-MBEMD
[10] [16] [23] Ours

128×128 102.32 15.73 0.11 0.05

256×256 704.64 83.22 0.42 0.17

512×512 9488.67 516.15 3.84 0.60

1024×1024 > 72000 3695.53 38.51 2.40

of-the-art multi-channel bidimensional EMD methods. The
compared methods include the multivariate BEMD based
on surface projection [10], the multi-channel extension
of the EMD based on bi-Laplacian operator interpolation
[14] [16], and the color bidimensional EMD method based
on order-statistics filters [23], which will be called SP-
MBEMD, BL-MEMD, and OSF-CBEMD in this paper,
respectively. Benefited from the aforementioned direct enve-
lope estimation method via morphological filters with the
mean extremum distance-based filter size, MF-MBEMD
obtains the best time performance among the comparedEMD
methods for multi-channel images as shown in Table 1.
Furthermore, as the size of image increasing, the time of
MF-MBEMD increases slowly, while the time of the other
methods increases very fast. The worst case is SP-MBEMD
[10] cannot obtain the decomposition for the image with the
size 1024×1024 in twenty hours. Therefore MF-MBEMD

Fig. 2 Decompositions of two color multi-focus images using MF-MBEMD. a Source images. b IMF 1. c IMF 2. d IMF 3. e Residue
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can be used to improve the efficiency of EMD-based image
fusion algorithms significantly.

4 Proposed EMD-based image fusion

Firstly, our EMD-based image fusion method decomposes
the input source images into several IMFs and a residue
by the aforementioned MF-MBEMD. Secondly, it fuses the
IMFs and the residue separately by a patch-based fusion strat-
egy with overlapping partition. An energy-based maximum
selection rule is developed for the fusion of IMFs, and two
different rules based on the feature information extracted by
IMFs are devised for the fusion of the residue according to
the image types (multi-focus image or multi-modal images)
in order to get high-quality fusion results. Finally, the fused
image are reconstructed by the fused IMFs and the fused
residue. The whole pipeline of our method is shown in Fig. 1.

4.1 Multi-scale decomposition byMF-MBEMD and
overlapping patch partition

Given two source images I1 and I2, we combine them into a
two-channel image I = (I1, I2), which can be decomposed
into K IMFs with the scale from fine to coarse and a residue
by MF-MBEMD,

I =
K

∑

i=1

Fi + RK , (5)

where Fi = (Fi1, Fi2)(i = 1, · · · , K ) is the i-th IMF and
RK = (RK1, RK2) is the corresponding residue.

We divide all IMFs and the residue into many patches of
sizeM×M with N overlapping rows/columns. Figure 3 gives
the illustration of this overlapping patch partition scheme for
a 3 × 6 image, where M = 3 and N is set into different
values. If some pixels are not contained into the partition as
shown in Fig. 3c, we need to add some patches to cover such
pixels (Fig. 4b). This overlapping patch strategy is designed
to reduce the artifacts which may be produced around the
partition boundary in the patch-based fusion methods.

4.2 Patch-based fusion for IMFs and residue

Fusion of IMFs.As for the j-th patchF j
i = (F j

i1, F
j
i2) of the

i-th IMF Fi , we adopt an energy-based maximum selection
rule to obtain the fused patch G j

i by comparing the energy
of two corresponding patches as follows,

G j
i =

{

F j
i1, E(F

j
i1) ≥ E(F j

i2)

F j
i2, E(F

j
i1) < E(F j

i2)
. (6)

The energy of each patch in Eq. (6) is computed by

E(F j
ip) =

∑

(s,t)∈Z j

F j
ip(s, t)

2, p = 1, 2, (7)

where Z j represents the set of pixels in the j-th patch. This
rule is used to capture the salient information of the input
source images.

Fusion of residue. As for the j-th patch R j
K = (R j

K1,

R j
K2) of the residue RK , we design two different fusion rules

based on the feature information extracted by IMFs to obtain
the fusion residue patch H j

K according to the image types
(multi-focus images or multi-modal images).

The first one is an energy-based maximum selection rule
which is used to fuse multi-focus images. It compares the
energy of two corresponding patches in the first IMF as

H j
K =

{

R j
K1, E(F

j
11) ≥ E(F j

12)

R j
K2, E(F

j
11) < E(F j

12)
, (8)

where E(F j
1p)(p = 1, 2) denotes the energy of the first IMF

and can capture the finest-scale features. This fusion scheme
can describe the focused region of multi-focus images effec-
tively.

The second one is an energy-based weighted averaging
rule which is used to merge multi-modal images. It uses the
mean of the residue patch as a guide to fuse the brightness
of each modal image, and adopts the feature information
extracted by IMFs as a guide to merge the mean-separated
part of the residue. The fusion formula is given by

H j
K =

2∑

p=1
a j
p(R

j
Kp − µ

j
K p) +

2∑

p=1
b j
pµ

j
K p,

a j
p = |

K∑

i=1
E(F j

ip)|l
/(|

K∑

i=1
E(F j

i1

)|l + |
K∑

i=1
E(F j

i2)|l
)

,

b j
p = |µ j

K p|m
/(|µ j

K1|m + |µ j
K2|m

)

,

(9)

where µ
j
K p is the mean of the j-th patch of the residue

R j
Kp, p = 1, 2, l andm are two nonnegative exponent param-

eters to control the feature guide intensity and the brightness
fusion intensity, respectively. If we set l = 0 and m = 0,
it becomes a simple averaging of the residue of two multi-
modal images. Ifwe set l > 0 andm > 0, it adopts the feature
information extracted by IMFs as a guide to merge the mean-
separated part of the residue of eachmodal image, and adopts
the mean of the residue patch as a guide to fuse the bright-
ness of each modal image. A larger value of l means much
stronger features are transmitted to the fusion result, and a
bigger value ofm meansmore bright targets are involved into
the merged result. In our experiments, both l and m are set
into 6 and can generate good results.

123



Novel and fast EMD-based... 4255

4.3 Multi-scale image reconstruction

Once all patches of the IMFs and residue are fused, we first
get the value at eachpixel (x, y)of the fused IMFs and residue
by averaging the values of the pixel (x, y) in all overlapping
patches by

G ′
i (x, y) = 1

S(x,y)

∑

j G
j
i (x, y),

H ′
K (x, y) = 1

S(x,y)

∑

j H
j
K (x, y),

(10)

where S(x, y) denotes the overlapping patch number at the
pixel (x, y), and then we add the fused IMFs and the fused
residue together to obtain the final fused image I ′ by

I ′(x, y) =
K

∑

i=1

G ′
i (x, y) + H ′

K (x, y). (11)

4.4 Implementation

We implement our newly proposedEMD-based image fusion
method effectively by accumulating the fused value at each
pixel patch by patch (Algorithm 2). Specifically, we first
set the initial value at each pixel (x, y) of the fused IMFs,
the fused residue, and the overlapping patch number by
G ′

i (x, y)|i=1,...,K = 0, H ′
K (x, y) = 0, and S(x, y) = 0.

After each patch is merged, we update the fused values by

G ′
i (x, y) → G ′

i (x, y) + G j
i (x, y), (12)

and

H ′
K (x, y) → H ′

K (x, y) + H j
K (x, y), (13)

Fig. 3 Illustration of overlapping patch partitions for a 3 × 6 image (a), where the patch size M is set into 3 and the overlapping row/column
number N is set into 0 in (b), 1 in (c), and 2 in (d), respectively

Fig. 4 Processing of the boundary pixels not contained in the partition. a The partition in Fig. 3c. b The partition with an additional blue patch
covering these boundary pixels
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Fig. 5 Fusion results of two greyscale multi-focus images generated by the pixel-based strategy and our patch-based strategy. a Source image 1. b
Source image 2. c The pixel-based strategy based on our energy-based maximum selection rule. d Our fusion strategy based on overlapping patch
division

and update the overlapping patch number at each pixel of the
j-th patch by

S(x, y) → S(x, y) + 1. (14)

Once all patches of K IMFs and the residue are fused, we
get the final fused IMFs and residue at each pixel by

G ′
i (x, y) → 1

S(x,y)G
′
i (x, y),

H ′
K (x, y) → 1

S(x,y)H
′
K (x, y).

(15)

Our fusion strategy based on overlapping patch partition
can reduce spatial artifacts introduced by the noisy charac-
teristics of the pixel-wise maps in the pixel-based fusion
methods. Figure 5 gives a comparison of these two fusion
strategies based on our MF-MBEMD, where the pixel-based
scheme obtains the fused IMFs and the fused residue pixel by
pixel by comparing the IMFs’ energy of two patches centered
at each pixel according to Eqs. (6) and (8), respectively. It
can be seen that some spatial artifacts have been produced
by this pixel-based fusion scheme in Fig. 5c, while they can-
not be observed in our fusion strategy based on overlapping
patch division (Fig. 5d).

5 Experiments and discussions

In this section, we first introduce the fusion image data sets
used in our experiments and give the used objective metrics
for evaluating the algorithm. Then, we discuss how to select
the main parameters of our method. Afterwards, we make
various comparison to further illustrate the effectiveness of
the proposed algorithm. All experimental results shown in
this paper are carried out by MATLAB 2019 on a Laptop
with Inter Core (TM) i7 CPU and 16.0 GB RAM.

Fig. 6 Four data sets in our experiments. a Greyscale multi-focus set.
b Color multi-focus set. c Medical multi-modal set. d Infrared-visible
multi-modal set
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Fig. 7 Fusion results with different overlapping number N of rows/columns. a Source image 1. b Source image 1. c N = 0. d N = M/6. e
N = M/2. f N = M − 2. M is set into 31 in the first row and is set into 15 in the second row

Fig. 8 The average values of ten fusion metrics for four data sets with the patch size varying from 1 to 50. a Greyscale multi-focus set. b Color
multi-focus set. c Medical multi-modal set. d Infrared-visible multi-modal set

5.1 Data sets and objectivemetrics

Many widely-used multi-focus images1 and multi-modal
images 2 3 in the literature are selected to assess the per-
formance of image fusion (Fig. 6). The multi-focus images
are divided into two data sets including a greyscale set with
10 pairs of greyscale images and a color set with 20 pairs
of color images, which are used to evaluate the performance
of the state-of-the-art methods in a recent survey of multi-

1 https://github.com/yuliu316316/MFIF.
2 https://github.com/uzeful/IFCNN.
3 https://github.com/arbabsufyan/Proposed-Code.git.

focus image fusion [25]. The multi-modal images are also
divided into two data sets including a medical image set with
16 pairs of medical images and an infrared-visible image set
with 16 pairs of infrared-visible images, which almost cover
all tested multi-modal images in [26,30,34].

In order tomeasure the fusion quality of ourmethod objec-
tively, tenwidely used fusionmetrics are employed including
mutual information QMI [25], feature mutual information
QFMI [35], the nonlinear correlation information entropy
QNCI E [25], the gradient-based metric QG [36], the phase
congruency-based metric QP [25], the structural similarity-
based metric QE [25] and QY [37], the human perception
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Fig. 9 Comparison of EMD-based image fusionmethods on twomulti-
focus images (a). The top results in (b), (c), (d) and (e) are generated
in a pixel-based manner using SP-MBEMD [10] with the fusion rule in
[10], BL-MEMD [16] with the fusion rule in [8], OSF-CBEMD [23]

with the fusion rule in [4], and the proposed MF-MBEMD with the
fusion rule in [9], respectively. The bottom results in (b), (c), (d) and
(e) are obtained in a patch-based manner by the corresponding EMD
methods in the top row and our fusion strategy

Fig. 10 Comparison of EMD-based image fusion methods on two
multi-focus images (a). The top results in (b), (c), (d) and (e) are gen-
erated in a pixel-based manner using SP-MBEMD [10] with the fusion
rule in [10], BL-MEMD [16] with the fusion rule in [8], OSF-CBEMD

[23] with the fusion rule in [4], and the proposedMF-MBEMDwith the
fusion rule in [9], respectively. The bottom results in (b), (c), (d) and
(e) are obtained in a patch-based manner by the corresponding EMD
methods in the top row and our fusion strategy

inspired metric QCB and QCV [25], and visual informa-
tion fidelity QV I F [38]. Larger values represent better fusion
qualities for QMI , QFMI , QNCI E , QG , QP , QE , QY , QCB

and QV I F , while smaller values represent better fusion qual-
ities for QCV .

5.2 Selection of main parameters

Decomposition level K of MF-MBEMD. We use the
energy-based maximum selection rule to fuse all IMFs in
order to extract the salient information of the source images.

The decomposition level K of MF-MBEMD is set into 1 for
multi-focus images since the first IMF can effectively cap-
ture the focused region of the multi-focus images, while K is
set into 2 for multi-modal images considering that the salient
information of the source images concentrates on the leading
two IMFs of MF-MBEMD in the tested multi-modal image
sets.

Overlapping number N of rows/columns. Usually,
a much larger value of the overlapping number N of
rows/columns in the patch division can reduce the artifacts
of our method as shown in Fig. 7, but it increases the com-
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Algorithm 2 EMD-based image fusion via morphological
filter
Input: two source images I1 and I2, decomposition level K , patch size

M , overlapping row/column number N , and exponent parameters l
and m in the fusion of multi-modal images;

Initialization: set the initial values at each pixel (x, y) by
G ′

i (x, y)|i=1,...,K = 0, H ′
K (x, y) = 0, and S(x, y) = 0;

1: decompose I = (I1, I2) into K IMFsFi , i = 1, · · · , K and a residue
RK by MF-MBEMD (Algorithm 1);

2: for i = 1 to K do
3: compute the energy of all patches of Fk by Eq. (7);
4: end for
5: repeat
6: for i = 1 to K do
7: merge the j-th patch of the i-th IMF by Eq. (6), and update

the fused values by Eq. (12);
8: end for
9: merge the j-th patch of the residue by Eq. (8) for multi-focus

images or by Eq. (9) for multi-modal images, and update the
fused values by Eq. (13);

10: update the overlapping patch number by Eq. (14);
11: until all patches of K IMFs and the residue are fused
12: get the fused IMFs and the fused residue by Eq. (15);
13: add the fused IMFs and the fused residue together to obtain the final

fused image by Eq. (11);
Output: fused image I ′.

putation cost at the same time. In our experiments, N is set
into M/6 for multi-focus data sets, and M − 2 for multi-
modal data sets, where M is the block size of the division.
A larger number of experiments demonstrate such selections
can produce satisfactory fusion results.

Block sizeM of thedivision. In order to select a properM ,
we conduct the fusion of each data set withM varying from 1
to 50 to evaluate the fusion performance by the average values
of ten fusion metrics (Fig. 8), where the overlapping number
N of rows/columns is set into M/6 for multi-focus data sets,
and M − 2 for multi-modal data sets. In our experiments,
we have obtained good results by selecting M = 31 for the
greyscale multi-focus set, M = 15 for the color multi-focus
set, M = 15 for the medical multi-modal set, and M = 33
for the infrared-visible multi-modal set.

5.3 Comparisons

Comparison with EMD-based image fusion methods.
There are two factors to determine the fusion quality of
EMD-based image fusion methods which include the used
EMDmethod and the used fusion strategy. In order to show-
case the advantage of our newly proposed EMD-based image
fusion method, we compare the fusion results generated by
SP-MBEMD [10], BL-MEMD [16], OSF-CBEMD [23], and
the proposedMF-MBEMDwith the popular fusion strategies
in a pixel-based manner [4] [8] [9] [10] and a patch-based
manner in this paper (Fig. 9, Fig. 10 and Table 2). The
weighted averaging rule based on variance [10], standard

deviation [8] and entropy [9] in a pixel-wise manner can-
not capture the salient information of input source images
well and produce fuzzy fusion results as shown in the top
of Fig. 9b, c, e. In contrast, the variance-based maximum
selection rule [4] in a pixel-wise manner can obtain much
clearer results, but it also generate some artifacts, as shown
in the top of Fig. 9d and Fig. 10d. Compared with the pixel-
based fusion strategies in the existing EMD-based image
fusion methods [4] [8] [9] [10], the fusion strategy based
on overlapping patch division proposed in this paper can
improve the fusion quality of each EMD method in visu-
alization and objective metrics (Fig. 9, Fig. 10 and Table 2),
since the energy-basedmaximumselection rule for the fusion
of each IMF can capture more salient information, and the
patched-based strategy reduces the artifacts introduced by the
pixel-wise fusion manner at the same time. Furthermore, as
for the fusion of the residue, the activity level generated by the
first IMF can more effectively capture the focused region of
the multi-focus images, and the energy-based weighted aver-
aging rule generated by the extracted IMFs can capture more
structure information of the multi-modal images. The visual
results of four BEMD methods under our fusion strategy are
close according to the observation in Figs. 9 and 10. When
considering all fusion objective metrics together (Table 2),
MF-MBEMD and OSF-CBEMD [23] generate better results
than SP-MBEMD [10] and BL-MEMD [16]. In terms of
time performance, SP-MBEMD [10] is extremely time-
consuming, while MF-MBEMD obtains the fastest speed
among the four EMD methods as reported in Table 2.

Comparisonwith non-EMD-based image fusionmeth-
ods.We also compare our method with many state-of-the-art
non-EMD-based methods including six transform domain
methods (CVT [29], DTCWT [33], NSCT [28], NSCT-SR
[30], NSCT-PCLE [41], IMA [26]), three spatial domain
methods (BRW [39], MISF [42], MSID [43] and two deep
learning method (MADCNN [40], IFCNN [34]. The source
code of these methods are publicly available online. Among
them, CVT [29], DTCWT [33], NSCT-SR [30] and IFCNN
[34] can be used for various types of images. NSCT [28],
BRW [39] and MADCNN [40] are designed for multi-focus
images. NSCT-PCLE [41], MISF [42] IMA [26] and MSID
[43]) are developed for multi-modal images. Therefore, we
conduct our comparison experiments to take care of the pref-
erence of each method in the image types. Fig. 11 shows the
fusion results of the compared methods for two color multi-
focus images. As can be found that CVT [29], DTCWT [33],
NSCT [28], NSCT-SR [30] and BRW [39] suffer from the
visible ghosting artifact around the hat, while MADCNN
[40], IFCNN [34] and our method can reduce this effect.
Figure 12 gives the fusion results of the compared methods
for an infrared image and a visible image. It can be seen that
NSCT-SR [30], NSCT-PCLE [41] and MISF [42] produce
some obvious artifacts. CVT [29] and DTCWT [33] cannot
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Fig. 11 Comparison with non-EMD-based methods for the fusion of two color multi-focus images. a Source image 1. b Source image 2. c CVT
[29]. d DTCWT [33]. e NSCT [28]. f NSCT-SR [30]. g BRW [39]. h MADCNN [40]. i IFCNN [34]. j Ours

Fig. 12 Comparison with non-EMD-based methods for the fusion of an infrared image and a visible image. a Source image 1. b Source image 2.
c CVT [29]. d DTCWT [33]. e NSCT-SR [30]. f NSCT-PCLE [41]. g MISF [42]. h MSID [43]. i IFCNN [34]. j Ours

incorporate the bright target of the infrared image into the
fusion result well, and IFCNN [34] loses some detail features
of the visible image. In contrast, MSID [43] and our method
obtain better visual results than the other methods. Table 3
lists the objective metrics of the compared fusionmethods on
the tested data sets in Fig. 6. It can be seen that ourmethod and
BRW [39] have some advantages on most objective metrics
in greyscale and color multi-focus set, respectively. As for
multi-modal images,MISF [42] obtains the best performance
on most objective metrics, while our method can compare
favorably with the other methods when considering all met-
rics together. In terms of time performance, we observe our
method is much faster than the methods listed the running
time in the fusion of multi-focus images as shown in Table 3.
Although the efficiency of ourmethod is reduced in the fusion

of multi-modal images since a larger overlapping number are
used, it only needs one second around to complete the fusion
of two input images on average.

6 Conclusion

In this paper, we have presented a novel and fast EMD-
based image fusion method via morphological filter in order
to generate high-quality fusion images. A multi-channel
bidimensional EMD method based on morphological filter
(MF-MBEMD) is first developed to decompose the input
images into several IMFs with different scales and a residue,
which uses the morphological expansion and erosion filters
to compute the upper and lower envelopes of a multi-channel
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image. It can significantly improve the computation effi-
ciency of EMD-based image fusion techniques. And then,
a patch-based fusion strategy with overlapping partition is
adopted to instead the pixel-based fusion method commonly
used in EMD-based image fusion, where an energy-based
maximum selection rule is designed to fuse the IMFs, and
the feature information extracted by IMFs is used as a guide
to merge the residue. Finally, the final result is generated
by adding all fused IMFs and fused residue together. Our
newly proposed EMD-based image fusion method can be
implemented effectively by accumulating the fused values
at each pixel patch by patch. The performance evaluation of
the EMD-based image fusion methods on several commonly
used data sets with multi-focus and multi-modal images
shows that our newly proposed image fusion method obtains
better results. Furthermore, a large number of comparative
experiments have also demonstrated ourmethod is very com-
petitive with the state-of-the-art image fusion methods in
visualization, objective metrics, and time performance.

It is still possible to continue to improve the performance
of our method in the following aspects. Our method can
reduce the artifacts in the fusion of boundary regions ofmulti-
focus images as illustrated in Fig. 11. However, the fusion of
boundary regions is still a challenge especially for the regions
with irregular shapes, which is an open problem in the multi-
focus image fusion as introduced in a recent survey of this
topic [25]. In addition, our method treats each patch sepa-
rately in the fusion processing, which results in the loss of
detail features in the fusion of multi-modal images. The rela-
tionship of different patches should be considered in order to
improve the fusion quality.
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