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Abstract
Incorporatingmultiscale spectral manifold wavelets preservation into the functional map framework for shape correspondence
achieves great results in terms of both efficiency and effectiveness. However, fixing the dimension of the spectral embedding
strategy in iterations of optimization is troublesome, such as missing high-frequency information when the dimension is
small or getting trapped in local minima at a high dimension. In this paper, we present a simple and efficient method for
refining correspondences from low frequency to high frequency with a theoretical guarantee. We formulate a strong constraint
where the multiscale spectral manifold wavelets should be preserved at each scale correspondingly in the case of the arbitrary
dimension of spectral embeddings. To solve the formula, we deduce two relaxed optimization subproblems and propose an
incremental alternating iterative algorithm between the spatial and spectral domains via spectral up-sampling and filtering,
computing the functional maps and pointwise maps in turn. Our results demonstrate that our method is robust to noisy
initialization and scalable with regard to shape resolutions. The deformable shape correspondence benchmark experiments
show our method produces more accurate and smoother results than state of the arts.

Keywords Shape correspondence · Functional maps · Multiscale spectral manifold wavelets

1 Introduction

Establishing geometrically meaningful correspondences or
maps between deformable shapes is a long-standing prob-
lem in computer graphics, computer vision, and related areas,
which is a fundamental operation across innumerable appli-
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cations including shape interpolation and retrieval, texture
transfer, symmetry detection, and statistical shape modeling,
to mention a few [34].

In recent decades, an enormous amount of literature has
been discussed on how to find the correspondences across
shapes efficiently and accurately. Among these works, the
functional map framework [27] is one of the most influential
tools. In addition, it has been extended to quite a lot of follow-
up works both in axiomatic [10,15,36,44] and in learning-
based [6,7] setting.

Although the functional map framework is flexible, these
works usually require high-quality descriptors or sophisti-
cated regularizers. The computational efficiency is always
not compatible well with the correspondence accuracy. [13]
recently proposed a novel iterative method via multiscale
spectral manifold wavelet preservation (MWP) in the func-
tional map framework, which alleviated the problem to a cer-
tain extent. However, the results are heavily reliant upon the
sizes of spectral embedding of the shapes in the calculation
process. On the one hand, the use of higher dimensional-
ity of spectral embedding, encoding smaller-scale details,
is not merely computationally expensive, but also unsta-
ble. On the other hand, a lower-dimensional one, featuring
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larger-scale information, i.e., the overall pose of the shape,
loses medium- and high-frequency features, and its adoption
often leads to some significant artifacts in practical appli-
cations. The authors used the spectral embedding of fixed
dimension (the dimension is 100) during iterations in MWP
[13],whichmay produce undesirable results, especially start-
ing with a small functional map. As shown in Fig. 1, each
dotted line represents the result obtained by MWP [13] with
a designated dimension of the spectral embedding during
iteration, and MWP has limited optimization capability.

In this paper, rather than using spectral embedding with
a fixed scale, we adjust the dimensionality reflected inci-
sively and vividly in the optimization problem and solution.
In that case, all information about the shape, including low,
medium, and high frequency, is encoded by the multiscale
spectral manifold wavelets, which helps comprehensively
analyze the shape with the use of global and local features.
For the purpose of addressing the defined optimization prob-
lem simply and efficiently, we adopt the alternating iterative
strategy between the spatial and frequency domain and grad-
ually increase the dimension of the spectral embedding in
each iteration. Moreover, when we employ proper filters, the
calculation of the large linear equations is avoided and two
relaxed problems are deduced. Furthermore, we demonstrate
that our algorithm achieves state-of-the-art results over var-
ious shape correspondence tasks, including complete shape
matching, the matching between a shape existing topologi-
cal noise and a full shape. What’s more, our method is robust
to the noisy input since we carry out filtering to the coarse
functional map via a low-pass and a set of band-pass filters.
The step greatly improves the quality of results in the aspect
of both accuracy and smoothness. Another superior property
exhibited by our technique is scalability. In other words, our
method is not sensitive to the resolution of mesh and can effi-
ciently compute the correspondence between a pair of shapes
with different resolutions.

Contributions. We summarize the main contributions as
follows:

1) We formulate a constraint that preserves intrinsic mul-
tiscale spectral manifold wavelets with changed dimen-
sionality of spectral embedding at each scale into the
functional map framework.

2) To solve the optimization problem more efficiently, we
deduce two relaxed subproblems from the original prob-
lem, making full use of the special properties of the
Parseval wavelet frames.

3) Using the simple but useful spectral up-sampling tech-
nique, we propose an approach that updates the com-
putation of functional maps with increasing size and
pointwise maps alternatively. We filter the coarse func-
tional maps via a low-pass and a set of band-pass filters
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Fig. 1 Comparisons ofmap quality betweenMWP and ours on a pair of
shapes belonging to FAUST dataset, where starting from a 10×10 func-
tional map estimated by [27] with WKS descriptors and 4 landmarks.
HereMWPuses the unchanged spectral embeddingwith different sizes,
respectively. Our method increases the spectral embedding from 10 to
110 with kstep = 5. All CQC curves are shown on the left plot and the
right one gives the average error of each situation during the iterative
process

in the spectral domain, which facilitates producing more
accurate and smoother results.

2 Related work

Finding a correspondence between two shapes is a well-
studied project in the field of digital geometry processing
over the past several decades. We refer the interested read-
ers to the recent survey [34] for a more in-depth overview
of shape correspondence problems. In the following, we pri-
marily give a review of methods that are most closely related
to ours.

Point-based spectral methods. Lots ofmethods for shape
correspondence directly optimized the pointwise matching.
To eliminate the influence of extrinsic information like the
XYZ-coordinates of deformed shapes, a common strategy
is to obtain the features that are isometrically invariant
and robust to small perturbations. Therefore, there appeared
plenty of methods based on spectral techniques. The early
spectral methods optimized point-to-point maps between
spectral embeddings that were based on either adjacency or
Laplacian matrices of triangle meshes and graphs [14,39].
These methods often lead to complex combinatorial prob-
lems. The authors later suggested solving the Procrustes
matching problem by using a convex semidefinite pro-
gramming relaxation in [21], but the method is limited to
around one hundred points and remains high time com-
plexity. Another kind of matching technique was to design
the handcrafted spectral pointwise descriptors [2,38] and
learning-based one [20,42] firstly. Then, the matches were
obtained by a simple nearest neighbor search algorithm in
the embedding space of descriptors, or by computing a lin-
ear assignment problem (LAP) if injectivity was required.
But LAP lacks consideration of the geometric relationship
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between points, so the correspondences are not smooth
enough. Along with the study of spectral pairwise descrip-
tors, such as kernel functions [37,40], it usually led to an
NP-hard quadratic assignment problem subsequently. To
address the problem, although recently various relaxation
approaches [24] or sparsity control strategy [43] were pro-
posed, they often remained computationally expensive.

Functional map-based methods. Our method is based
on the functional map framework, which was initially intro-
duced by Ovsjanikov et al. [27]. This work abandoned
computing pointwise correspondences directly, instead of
modeling the correspondence as a liner operator (named
functional map) between spaces of real-valued functions
across two shapes. Compared with the point-based method,
functional map representation is more flexible and allows to
incorporate additional constraints such as the preservation
of geometric quantities (descriptors, pointwise landmarks,
or region correspondences) easily. Lately, the vast majority
of follow-up works tried to improve the framework includ-
ing optimization for the harmonicity and reversibility [9],
informative descriptor preservation via commutativity [26],
product preservation[25], discrete optimization [30], among
many others. (We refer to the reference [28] for an overview.)
However, there still exist several drawbacks in correspon-
dence quality and computing efficiency. Firstly, it is not a
common task to obtain a collection of informative, robust,
and linearly independent descriptor functions. Secondly,
although the quality of correspondence can be enhanced by
adding more forceful constraints or regularizers, the compu-
tational complexity always increases tremendously.

After computing a functional map representation, a clas-
sic method to recover the point-to-point map is to perform
a nearest-neighbor search in the embedded functional space
[27]. Recently, the work of [33] introduced a probabilistic
model to the reconstruction of the pointwise map, and the
auction algorithm [3] was used to maximize kernel den-
sity in [40,41]. Although these works achieved accuracy
improvement in some challenging cases, the efficiency was
a bit slow, especially when the shape has tens of thousands
of vertices, and the auction algorithm was not robust to a
change in the discretization of the model. More recently,
Pai et al. [29] formulated the spectral embedding align-
ment as a linear assignment problem and used the modified
Sinkhorn algorithm based on the optimal transport theory.
They demonstrated that this algorithm improves the accuracy
and bijectivity of maps with acceptable time and memory
complexity compared to other methods, but the partial simi-
larity setting cannot be applied.

With the purpose of further improving accuracy, adding a
post-processing step to refine the functional map is a better
remedy. The simplest map refinement method is the itera-
tive closest point (ICP) proposed by [27]. Recently, more
and more powerful refinement methods have been devel-

oped, including bijective and continuous iterative closest
point (BCICP) [31], ZoomOut [22], MWP [13]. Differing
from these works, we formulate the constraints preserving
themultiscale spectralmanifoldwavelets under every dimen-
sion of spectral embedding at all scales into the functional
map framework, rather than a fixed dimension. On the other
hand, our method processes the coarse functional map via
a set of filters on the spectral domain so that we can pro-
duce smoother and more accurate correspondence than other
methods. We further discuss methods that are closest related
to ours in Sect. 4.3.

3 Background and notation

In this paper, a shape is modeled as a continuous, smooth,
and compact 2-dimensional Riemannian manifold with or
without boundaries in the continuous setting and as a triangle
mesh in the discrete setting.

For a manifoldMwith area element dμ in the continuous
setting, we denote square-integrable real-valued functions
space by L2 (M) = {

f : M → R,
∫
M f 2(x)dμ < ∞}

,
and use the standard L2 (M) inner product 〈 f , g〉L2(M) =∫
M f (x) g (x) dμ for any two functions f , g ∈ L2 (M).
The space (M, μ) features the positive semi-definite
Laplace–Beltrami Operator (LBO) �M. Particularly, the
operator admits a real eigen-decomposition �Mφi (x) =
−λiφi (x) , i = 1, 2, ...,with nonnegative andordered eigen-
values 0 = λ1 ≤ λ2 ≤ · · · and corresponding eigenfunctions
{φi }i≥1 which form an orthonormal basis on L2 (M), i.e.,〈
φi , φ j

〉
L2(M)

= δi j , where δi j is the Kronecker delta.
Moreover, the eigenvalues {λi }i≥1 and the associated eigen-
functions {φi }i≥1 are often referred to as frequencies and
Fourier bases for the space L2 (M). Therefore, it allows us
to expand any smooth function f ∈ L2 (M) as a Fourier
bases f (x) = ∑

i≥1
〈 f , φi 〉L2(M)φi (x), where the inner prod-

uct 〈 f , φi 〉L2(M) is called the manifold Fourier coefficient.
For a triangle meshMwithm vertices, LBO can be repre-

sented as a positive semi-definite matrix LM of size m ×m.
We denote the truncated k-dimensional spectral embedding
of shape M as �k

M ∈ R
m×k , whose every row is the

first k eigenfunctions of LBO evaluated at each point, i.e.,{[
φM
1 (x) , φM

2 (x) , ..., φM
k (x)

] |x ∈ M}
.

3.1 Functional maps

Given a point-to-point map T : M → N from shapes M
toN (either continuous or discrete), it induces a linear func-
tionalmap TF : L2 (M) → L2 (N ).More precisely, if given
a function f ∈ L2 (M), we can obtain a corresponding func-
tion g ∈ L2 (N ) via composition g = TF ( f ) = f ◦ T−1.
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For completeness, we briefly review the pipeline involved in
calculating the functional map as summarized in [28]:

1) Compute k-dimensional spectral embedding on shape
M and N with m and n vertices, respectively, where k sat-
isfies k << m, k << n.

2) Construct a set of pairs of the descriptor functions
f (p) ∈ L2 (M) , g(p) ∈ L2 (N ), p ∈ {1, 2, ..., P} both
on the shapesM andN . Their manifold Fourier coefficients
are stored as columns of matrices B1 and B2, both with the
size of k × P .

3) Estimate the unknown functional map C by solving the
following optimization problem:

C = argmin
X

‖XB1 − B2‖2F + α ‖�N X − X�M‖2F ,
where α is a scalar weight parameter, and ‖·‖F is the Frobe-
nius norm. The second term of the above problem is a
regularizer commuting with the LBOs.

4) Recover the point-to-point map T from the functional
map C.

3.2 Spectral manifold wavelets

As an extension of classical wavelets on graphs, Hammond
et al. [11] introduced the spectral graph wavelets, which
retain most of the excellent nature of the classical wavelets.
They not only are local both in the frequency and spatial
domain but also possess a fast computing speed and multi-
scale nature. Based on the spectral graph wavelets, [12,13]
replaced graph Laplacian with LBO and defined the spectral
manifold wavelets.

To bemore details, given a kernel function g : R+ → R
+,

acting on a band-pass filter, the spectral manifold wavelet at
a scale s and located at a point y is defined as follows:

ψs,y (x) =
∑

i≥1

g (sλi ) φi (y) φi (x), (1)

where the positive real parameter s determines the support
interval of the band-pass filter g (λ), λi and φi (·) are the i-th
eigenvalue and its related eigenfunction of the LBO on the
associated shape, respectively. To represent stably the low-
frequency content of the signal, the authors of [11] introduced
another real-value function h : R+ → R. In the same way,
the scaling function at a point y is then given as:

ϕy (x) =
∑

i≥1

h (λi ) φi (y) φi (x). (2)

As a note, Eq. (1) tells us that every spectral manifold
wavelet located at one point depends on the continuous scale
parameter s. Along with the increase of scale s, the spectral
manifold wavelets encode the neighbor information of one
shape with a larger radius and allow the diffusion to have
a farther spread on the shape. The parameter s needs to be

sampled into a limited number, denoted as L , of scales in
the practical applications. For the sake of convenience, we
rewrite the scale function ϕy (x) in Eq. (2) as ψs0,y (x), the
function h (λ) as g (s0λ), by setting the scale parameter index
of the spectralmanifoldwavelets l = 0.Then,weobtain L+1
wavelets

{
ψsl ,y (x)

}L
l=0 located at the point y.

As shown in the reference [13,19], under the isometric
map, the information of each frequency band is fully pre-
served by the multiscale spectral manifold wavelets at each
scale, respectively. Combining the functional map theory, the
functional map TF induced by the isometric map T satisfies

TF
(
ψM
sl ,y

)
= ψN

sl ,T (y), l = 0, 1, . . . , L (3)

for any point y ∈ M.
Moreover, the spectral manifold wavelets catch the fea-

tures of a shape in different frequency bands efficiently,
ranging from a smaller neighborhood around each point to a
larger neighborhood along with the rise of scale.

4 Method

The main goal of our work is to strive to efficiently find
an accurate, reliable correspondence or mapping between a
pair of shapes with nearly isometric deformation, even in the
presence of a small, noisy, or approximate functional map.
Next, we describe our method in detail from three aspects:
optimization problem, solution, and differences between our
method and other closely related methods.

4.1 Optimization problem

In the discrete setting, given a pair of shapes M and N
consisting of m and n vertices, respectively. The LBOs
of the shapes M and N are denoted as matrices LM =
A−1
MWM and LN = A−1

N WN , discretized by the method
of [23], where AM is the diagonal matrix of lumped area
elements and WM is the cotangent weight matrix on the
shape M. Let �k

M = diag
(
λM1 , λM2 , ..., λMk

)
and �k

N =
diag

(
λN1 , λN2 , ..., λNk

)
represent the k leading eigenvalues

of LM and LN , the corresponding eigenvectors are stored in
�k
M and�k

N . Since eigenfunctions of LBO are orthonormal
each other with respect to the area-weighted inner product,

we have
(
�k
M

)T
AM�k

M = Ik , where Ik is an identity

matrix of size k×k, equivalently to
(
�k
M

)+ = (
�k
M

)T
AM,

and here + represents the Moore–Penrose pseudo-inverse.
We encode the point-to-point map T from shapeM toN as
a binary matrix P ∈ R

m×n so that P (i, j) = 1, if T (i) = j
and 0 otherwise, where i and j are the vertex indices on the
shapesM andN . The functional mapmatrixCk of size k×k
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can be obtained by projecting the mapping matrix P onto the
corresponding manifold Fourier basis:

Ck =
(
�k
N

)+
PT�k

M. (4)

Given a set of filters gM(·) and gN (·) on the shapes
M and N , under the first k truncated eigenfunctions,
we can quickly get two wavelet matrices at scale sl :
�M

sl ,k
= �k

MgM
(
sl�k

M
) (

�k
M

)+ ∈ R
m×m and �N

sl ,k
=

�k
N gN

(
sl�k

N
) (

�k
N

)+ ∈ R
n×n, l = 0, 1, ..., L , according

to Eqs. (1) and (2), where the i-th column corresponds to the
spectral manifold wavelet at the scale sl of the i-th point on
the shape under k-dimensional spectral embedding. Then,
we get that gM

(
sl�k

M
) (

�k
M

)+
and gN

(
sl�k

N
) (

�k
N

)+

are the manifold Fourier coefficient of two wavelet matri-
ces, respectively.

In order to comprehensively analyze the shape using both
low-frequency and high-frequency features, we desire to
explore a pointwise mapping matrix P and its each func-
tional map matrix Ck of size k × k preserving the wavelet
constraints at each scale sl . Thus, we define an optimization
problem as follows:

min
P,Ck

∑

k

L∑

l=0

∥∥∥∥Ck gM
(
sl�

k
M

) (
�k

M
)+−gN

(
sl�

k
N

) (
�k

N
)+

PT
∥∥∥∥

2

F
,

s.t. P1 = 1.

(5)

where 1 is a vector and its all elements are 1.

4.2 Solution

To solve the optimization problem in Eq. (5), first of all, we
pay attention to a single term inside the first sum. In other
words, for a certain fixed k, the above problem (5) turns to
be the following optimization problem:

min
P,Ck

L∑

l=0

∥∥∥∥Ck gM
(
sl�

k
M

) (
�k

M
)+ − gN

(
sl�

k
N

) (
�k

N
)+

PT
∥∥∥∥

2

F
,

s.t. P1 = 1.

(6)

Unfortunately, the optimization problem in Eq. (6) is still
challenging. It is a non-convex problem and is difficult to
optimize as the unknown functional map matrix Ck and
the pointwise mapping matrix P influence each other. To
overcome the challenges, we try to approach this problem
approximately using the alternating optimization strategy.

Pointwise map. Firstly, we intend to fix the functional
map matrix Ck and solve for the pointwise mapping matrix

P. In another word, we need to reconstruct the original point-
wise map from the functional map representation. Here, we
consider the below subproblem:

min
P

L∑

l=0

∥∥∥∥Ck gM
(
sl�

k
M

) (
�k

M
)+ − gN

(
sl�

k
N

) (
�k

N
)+

PT
∥∥∥∥

2

F
,

s.t. P1 = 1.

(7)

But then again, finding the optimal solution satisfying the
constraint condition of subproblem (7) remains a compli-
cated task. As mentioned in [12,18], if the filters form a
tight (or Parseval) wavelets frame, they have the important
property of energy conservation between the original and the
transformed domains. Surprisingly, when we apply this kind
of filter, subproblem (7) can be relaxed properly.

To facilitate derivation, we abandon the constraint condi-
tion in problem (7) temporarily, and the analytical solution
can be obtained via solving the linear equations:

CkgM
(
sl�

k
M

) (
�k
M

)+ = gN
(
sl�

k
N

)(
�k
N

)+
PT,

l = 0, 1, ......, L.

(8)

Here, the pointwise mapping matrix P is unknown, while the
functional map matrix Ck is the known one.

Let’s recall that for any shape X , if the filters g(·) sat-
isfy the Parseval wavelets frame, then the quantity G (λ) =
L∑

l=0
g2 (slλ) ≡ 1, λ ∈ [0, λmax ], where λmax is the maximum

eigenvalue of LBO on the shape X . We directly get

L∑

l=0

g2
(
sl�

k
)

≡ Ik, (9)

where Ik is the identity matrix of size k × k, �k is the set of
k leading eigenvalues of LBO on shape X .

Multiplying g
(
sl�k

N
)
on the left and right sides of Eq.(8),

then

gN
(
sl�

k
N

)
Ck gM

(
sl�

k
M

) (
�k

M
)+ = g2N

(
sl�

k
N

) (
�k

N
)+

PT,

l = 0, 1, ......, L.

Summing the above equations, we obtain

L∑

l=0

gN
(
sl�

k
N

)
CkgM

(
sl�

k
M

) (
�k
M

)+

=
L∑

l=0

g2N
(
sl�

k
N

) (
�k
N

)+
PT.
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In addition,
(
�k
M

)+
�k
M = Ik holds, since eigenfunctions

of LBO on each shape are orthonormal.

Let C∗
k =

L∑

l=0
gN

(
sl�k

N
)

CkgM
(
sl�k

M
)
; then, we get

C∗
k = (

�k
N

)+
PT�k

M. After adding the constraint condition,
subproblem (7) turns to the relaxed optimization problem:

min
P

∥∥∥∥C∗
k −

(
�k
N

)+
PT�k

M

∥∥∥∥

2

F
,

s.t. P1 = 1.

(10)

Similarly to the reference [8,22], we consider adding

a regularizer R (P) =
∥∥∥
((

�k
N

)(
�k
N

)+ − I
)

PT�k
M

∥∥∥
2

AN
,

where we use the weighted matrix norm ‖X‖AN = trace(
XTAN X

)
, AN is the area matrix of shape N and I is the

identity of size n×n. Mathematically, this regularizer penal-
izes the image of PT�k

M that is orthogonal to �k
N , which

intuitively means that no spurious high-frequency informa-
tion should be introduced. Eventually, it can be shown that
subproblem (10) with the additional termR (P) is equivalent
to the optimization problem (see proof in appendix A):

min
P

∥∥∥�k
N C∗

k − PT�k
M

∥∥∥
2

F
,

s.t. P1 = 1.

(11)

To obtain amore accurate and smoother pointwise correspon-
dence, we consider using the fast Sinkhorn filter algorithm
recently introduced by [29] to solve problem (11).

Functional map. Next, we hold the matrix P fixed and
solve the problem in Eq. (6) depending on Ck , and then, we
minimize

min
Ck

L∑

l=0

∥∥∥∥Ck gM
(
sl�

k
M

) (
�k

M
)+ − gN

(
sl�

k
N

) (
�k

N
)+

PT
∥∥∥∥

2

F
.

(12)

Inspired by the reference [13], when we select the filters
forming the Parseval wavelets frame, we also obtain a relax-
ation of subproblem (12). Subsequently, solving the large
linear systems can be circumvented, and the relaxed solu-
tion becomes simpler and more efficient, as demonstrated in
Remark 1. The proof is referred to Appendix B.

Remark 1 Supposing that spectral manifold wavelet sets
{
ψM
sl ,xi

}L,m

l=0,i=1
and

{
ψN
sl ,y j

}L,n

l=0, j=1
are generated by the spe-

cial filters gM (·) and gN (·), which form a Parseval wavelet
frame of the functional spaces on the shapesM andN with
m and n vertices, respectively, then we can obtain the relaxed
solution Ck of problem (12) as

Ck =
L∑

l=0

gN
(
sl�

k
N

) (
�k
N

)+
PT�k

MgM
(
sl�

k
M

)
. (13)

It is noteworthy that compared with the general form of
functional map matrix Ck = (

�k
N

)+
PT�k

M, as outlined in
the reference [22] and Eq. (4), Ck obtained via Eq. (13) is
equivalent to perform a low-pass and a series of band-pass fil-
tering operations via the filters gM

(
sl�k

M
)
and gN

(
sl�k

N
)
,

l = 0, 1, ......, L to the general functional map matrix. Here
we call the general one as the coarse functional map. More
interestingly, when the point-to-point map from the shapes
M toN , whose Laplacian matrices have the same eigenval-
ues and each of them are non-repeating, is an isometry, the
general and filtered functional map are equivalent as proved
in Appendix C. This observation was not found in [13]. As
stated in [27], for a near-isometric map, we pursuit the func-
tional map matrix to be close to diagonal, and the filtering
operations dovetail nicely with the aim.

In this paper, particularly, we adopt the Meyer tight
wavelet frame provided by [18] in the practical calculation
because it computes the adaptive bandwidth according to the
eigenvalues of LBO on the shape and has a better ability to
capture geometric information [13].

In the above analysis, we assume that the dimension of the
functionalmapmatrix is fixed.Webeginwith a given value k0
and then gradually increase it during the iteration in practice.
The idea is triggered by the fact that ifCk is already preserved
by the spectral manifold wavelets, the step provides a very
strong initialization for the larger sub-problem solvingCk+1.
Finally, our overall pipeline is summarized in Algorithm 1.

Algorithm 1 Shape correspondence generated from incre-
mental functional maps based on multiscale spectral mani-
fold wavelets.
1: Input: k0, kstep , kmax , �

kmax
N , �

kmax
M ,

{
gN

(
sl�k

N
)}

l ,{
gM

(
sl�k

M
)}

l ;
2: Output: T , Ckmax ;
3: Initialization: C0 (k0 × k0);
4: for k = k0 : kstep : kmax do
5: Compute the pairwise map T in Eq.(11) via fast Sinkhorn filter

algorithm [29].
6: Encode the map T as a matrix P.
7: Compute the functional map Ck via Eq. (13).
8: end for
9: Convert the functional map Ckmax to the final pairwise map T .

As shown in Algorithm 1, the initialization of our pipeline
is a functional map C0 of size k0×k0, which can be obtained
by the existing methods like [27,31] among others. Besides
that, during the entire procedure,we start at a small functional
map C0 and up-sample to a large-size and high-quality map
Ckmax .
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Similar to ZoomOut [22], our algorithm can also be fur-
ther accelerated. In line 4 of Algorithm 1, we increase by
one for the dimension k at each iteration to support the theo-
retical analysis. In practice, we can utilize a larger step size
varying from 2 to 10 (see Fig. 4). During the alternative iter-
ation (lines 5–7 of Algorithm 1), as a matter of fact, we can
perform subsampling technology and only involves using
spectral embedding of some sampling points to renew the
pointwise map and the functional map until k = kmax . Here
the sampling points can be obtained by the Euclidean farthest
point sampling strategy starting at a random seed point. In
the end, we reconstruct the dense point-to-point correspon-
dence from the final functional map by using the spectral
embedding of all points only once (line 9 of Algorithm 1).

4.3 Comparisons to other related techniques

There exist many techniques that are closely related to ours,
but our approach is different from theirs fundamentally.

ICP. ICP refinement strategy serves as a post-processing
iterative method in the functional map frame originally pro-
posed by [27]. The major difference between ours and ICP
is that our method allows processing a small-scale func-
tional map, which is easier to compute and more stably to
express the rough correspondence than a large-size one and
achieves a final larger functional map using a simple spectral
up-sampling strategy. In addition, we do not require to per-
form the singular value decomposition and enforce that the
singular value of the functional map matrix equals 1 when
calculating the functional map.

Kernel Matching (KM). KM [40] solves an ocean of
relaxed optimization problems with the auction algorithm,
and the method achieved great results in some challeng-
ing cases. However, it is not robust to the change in the
mesh resolution. What’s worse, when the number of vertices
on the shape increases to a certain extent, the computa-
tional efficiency of the auction algorithm exhibits a sharp
decline. Moreover, compared with the heat kernel in the ker-

nel matching, whose filters are all low-pass, both low-pass
and band-pass filters are used in spectral manifold wavelets
in our method, which can capture geometric features of a
shape better.

BCICP. BCICP [31] is an extension of ICP by adding a
new orientation-preserving term. Additionally, for purpose
of promoting the bijectivity, smoothness, and coverage of
the shape correspondence, the authors use a sequence of
complicated update steps. But, the expensive time cost of
this technique cannot be ignored due to the computation of
geodesic distance on the shape. What’s more, the same as
ICP, it does not change the size of the spectral embedding
during iterations.

ZoomOut. ZoomOut [22] is a recent approach for map
refinement. Especially, our optimization problem defined in
Eq. (5) is different from the one of ZoomOut designed in Eq.
(3) in [22]. We introduce constraints of preserving the mul-
tiscale manifold wavelets with different scales of spectral
embedding at all scales into the functional map framework,
whereas the optimization goal of ZoomOut is to enforce
orthonormality of every principal submatrix of the full func-
tional map matrix. Our method adds a great number of filters
to the functional map, enforcing the functional map matrix
to be closer to diagonal, and it is of great benefit to improve
the smoothness and accuracy of the correspondence across
shapes. It also leads to our solution being less sensitive to the
noise than ZoomOut, as shown in Fig. 3.

MWP. MWP [13] is another powerful technique for
improving the quality of the point-to-point map. As the same
as ours, the method combines the multiscale spectral mani-
fold wavelets and the functional map framework. However,
the scale of spectral embedding is unchanged in MWP [13].
When starting a small functional map, this methodmay bring
some artifacts to the results. As shown in Fig. 1, the average
error of our strategy quickly decreases, while MWP has a
limited optimization ability and falls into a local minimum
solution. In addition, although the twomethods both filter for
the coarse functional map, our method can produce smoother

Table 1 Quantitative
comparisons of refinement for
complete shape matching across
different metrics on the FAUST
and SCAPE datasets. Here only
refinement runtime is counted

Methods / Datasets Accuracy ( ×10−3) Smoothness Average Runtime (s)

FAUST SCAPE FAUST SCAPE FAUST SCAPE

Ini 74.56 94.42 12.59 14.61 – –

ICP 60.99 78.26 17.47 26.94 7.81 7.95

KM 34.31 43.17 6.54 6.64 89.37 90.37

BCICP 21.06 43.93 4.84 6.47 206.75 263.49

ZoomOut 29.75 46.09 5.90 9.68 16.86 17.01

MWP 25.22 37.94 5.70 9.78 1.24 1.19

Our 10.12 14.53 3.70 3.33 73.51 74.24

Our* 12.18 16.98 3.93 3.70 2.77 2.98

Bold indicates the best results across different metrics on two datasets between ours and other competitors
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results, and the smoothness is nearly 3 times than MWP on
the SCAPE dataset [1] from Table 1. Furthermore, theoret-
ically, when fixing the functional map matrix, we deduce a
relaxed problem still from the original problem (6), while
the minimized energy is not the optimization problem (4) in
[13]. Rather than the traditional nearest neighbor searching,
we use the fast sinkhorn filter algorithm, a useful way for
recovering accurate, and smooth pointwise correspondences
from a functional map within a reasonable runtime, to solve
the relaxed problem.

5 Results

In this section,we test comprehensive experiments on various
datasets to evaluate the performance of our algorithm.

Datasets. Here we use the four benchmark datasets. The
FAUST dataset [4] contains 100 human scans of 10 differ-
ent individuals with 10 poses. The SCAPE dataset [1] has
71 shapes of the same person with varied postures. The
TOSCA dataset [5] includes 76 shapes, which divides into 8
categories. In addition, considering the difference in the con-
nectivity and the number of vertices across the scan shapes in
real life, we use the re-mesh version of three datasets [6,31]
in our all experiments. These shapes do not share consistent
connectivity and have different numbers of vertices. Further-
more, we also run our algorithm on the datasets with shape
existing topological noise. SHREC’16 Topology dataset [17]
contains 25 poses of an identical child with around 12k
vertices, deforming near-isometrically with different topo-
logical shortcuts.

5.1 Performance

Firstly, we analyze the superior natures of our method,
including the scalability as well as the stability.

Scalability. We test the scalability of our pipeline on a
pair of shapes coming from the FAUST dataset [31], starting
with a 10 × 10 functional map produced via the method of
[31] with the orientation-preserving term and endingwith the
80×80 functional map. As shown in Fig. 2, the target shapes
have differentmesh resolutions, aswell as connectivity,while
the source shape is the unchanged model with 5k vertices.
When given a shape with 500 vertices as the target shape,
where the details of the mesh such as the fingers and nose
are simplified, the refinement result remains smooth and high
quality. Conversely, even though the target shape has up to
150k vertices, which is equivalent to 30 times of the number
of vertices on the source shape, our method still performs
quite well similar to the one with 5k vertices.

Stability. In Fig. 3, we also assess the stability of our
method against input with noise. A pair of shapes belonging
to the TOSCA dataset [31] is used in these tests. Firstly, we

Source

Initialization

Our Results

500 5k 10k 15k 100k 150k

Fig. 2 Scalability of our method. The far left one is the source shape
with 5k vertices. The top row and the bottom row show the results
of initialization (the numbers above the shapes indicate the numbers
of vertices) and our results, respectively. As we can see that although
there exists back-to-front on the legs or symmetry on the hands for the
initialization, the results are smooth and excellent after the treatment of
our method
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(b) ZoomOut

Fig. 3 Stability test for our method and ZoomOut with the same noisy
initializations. Here we run a total of 100 independent random tests,
as shown in the gray dotted lines. The average error of 100 tests at
each iteration is computed and visualized with the red solid line. Note
that both in terms of robustness and accuracy, our method outperforms
ZoomOut, a state-of-the-art map refinement method

compute a 10×10 functionalmap using the approach of [31].
Then, we add white Gaussian noise into the initial functional
map independently and refine the maps using our method
and ZoomOut with an iterative step size 10 for acceleration.
The plot shows that our method effectively filters the noise
after a small number of iterations. Moreover, we observe that
97% refined maps obtained by our refinement technology
converge to the low-error level quickly, while only 2 cases
of 100 refined maps don’t make the grade, where there exist
left-to-right, back-to-front ambiguities of a large area in the
initialization resulting from too much noise. Compared with
ZoomOut, our method is more robust to noise in the input
since we perform a sequence of filtering operations on the
coarse functional maps during iterations.
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5.2 Complete shapematching

Here we perform experiments on two benchmark datasets
and compare our method with the recent five most simi-
lar mapping refinement methods, including ICP [27], kernel
matching (KM) [40], BCICP [31], ZoomOut [22], MWP
[13], both with respect to matching quality, computational
efficiency, and smoothness of correspondence. For all com-
petitors above except kernel matching, we use the wave
kernel signatures (WKS) [2] with orientation-preserving
operators [31] to estimate a functional map of size 20×20
as their initialization. Kernel matching initializes its process
by Signature of Histograms of OrienTations (SHOT) [35] as
suggested by the authors.

Measurement. In our experiments, we measure the fol-
lowing metrics: accuracy, average runtime, and smoothness
for the correspondence results between two shapes.

Accuracy. We measure the accuracy as the average per-
vertex geodesic error with respect to the ground-truth cor-
respondence, visualizing with the correspondence quality
characteristics (CQC) curve [16].

Smoothness. For a given map T , we measure the smooth-
ness by computing the Dirichlet energy of the transferred
coordinate functions [29].

Parameter setting. To find a balance between accuracy
and efficiency, we test 30 pair shapes that belong to the
FAUSTdataset with different parameters, including the num-
ber of scales L , the iterative step size kstep and the maximum
dimension of spectral embedding kmax . The results under
the different parameters are shown in Fig. 4, where the
other parameter keeps constant when one parameter varies.
We observe that the change of scale parameter L has little
effect on time consumption, while the average error has little

Fig. 4 Parameter analysis. We carry out experiments for analyzing the
parameter on the FAUST dataset with three parameters, including the
discrete scale L+1, iterative step size kstep and themaximumdimension
of spectral embedding kmax

Fig. 5 Our matching accuracies for two benchmark datasets including
the FAUST (100 pairs) and SCAPE (71 pairs) datasets, in comparison
with other state-of-the-art refinement methods

change if L + 1 ≥ 7. Moreover, along with the dimension-
ality kmax increases, the time required for our method takes
longer and the error tends to decrease. Therefore, here we set
L = 6 on all datasets, and kmax can be selected from 50 to
150 for saving runtime. Additionally, when the iterative step
gradually increases, the runtime becomes shorter and shorter
and there is a small increase in error. Results produced by the
steps smaller than 10 are within the acceptable error range.

For complete shape matching, we set kmax = 100.
We compare our matching accuracy across two benchmark
datasets with other refinement strategies, as visualized via
CQC curves in Fig. 5. The three metrics of all methods
are reported in Table 1. In Fig. 5 and Table 1, “Ours” rep-
resents that our method does not adopt any acceleration
strategy, while “Ours*” reports the results of our method
with the subsampling strategy with 500 vertices. Figure 6
illustrates more qualitative and quantitative results. In com-
parison with the best competing methods with respect to
the accuracy across different datasets, our algorithm with-
out acceleration achieves 51.95% improvement on 100 pair
shapes from the FAUST dataset and 61.70% on 71 pair
shapes from the SCAPE dataset. At the same time, since
our method adopts a sequence of filtering operations on

Fig. 6 Qualitative and quantitative examples on the FAUST (top row)
and SCAPE (last row) datasets. The numbers below the shapes represent
the average error of correspondence between the one with the source
shapes (first column). Similar colors encode corresponding points. Note
that ourmethod obtains amore perfect correspondence than othermeth-
ods from color to error
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coarse functional maps, we also achieve 23.55% and 48.53%
improvement on two datasets, respectively, in terms of
smoothness. Moreover, our acceleration strategy with sub-
sampling is powerful. Although the accuracy and smoothness
of ourmethod decrease a little after acceleration,more impor-
tantly, the results still outperform other methods and the time
consumption is cut down nearly 25 times on a computer with
a 3.7GHz Intel i5 CPU and 8.0GB RAM.

5.3 Topological noise

Our method also can be used to cope with shape match-
ing where the target shape has topological noise relative to
the source shape, such as they maybe have distinct genus
due to self-contact. To perform filtering operation in a same
range of frequencies of two shapes, we require to truncate the
LBO’s eigenfunctions with different sizes. More detailedly,
we firstly set kNini = kini , kNmax=kmax , and compute kMini
and kMmax via kMini = maxk

M
i=1

{
i, λMi < max

kNini
j=1 λNj

}
and

kMmax = max
kM
i=1

{
i, λMi < max

kNmax
j=1 λNj

}
, where M and N

are the shape with topological noise and the complete shape,
respectively. Then, we determine the number of iterations
niter = kMmax − kMini + 1 . Next, kM is increased one by one
and kN is increased uniformly from kNini to kNmax with iterative
times niter . Here the initialization is brought with a 30 × 30
functional map computed by standard least squares with
the SHOT descriptor [35]. Here we also use the parameters
kNmax = 100 and L = 6. We compare our matching accuracy
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Fig. 7 Top: correspondence performance comparison on the
SHREC’16 Topology benchmark with MWP, PFM and ZoomOut
starting the same initialization. Bottom: qualitative and quantitative
examples on the dataset

with other state-of-the-art matching methods including PFM
[32], MWP and ZoomOut, see Fig. 7.

6 Conclusion

In this paper, we developed a simple and efficient incremen-
tal technique based on the functional map framework for
shape correspondence. For the sake of analyzing the shapes
comprehensively, we made full use of both local and global
features as shown in the optimization problem and solution.
First of all, we defined an optimization problem that aims to
preserve the spectralmanifoldwaveletswith different dimen-
sionality of spectral embedding at all discrete scales. Then,
to address the optimization problem, we found that when we
adopted the Parseval wavelet frames, our solution became
simpler and more flexible. With the help of the spectral up-
sampling technique, we computed alternately the functional
maps and point-to-point correspondences between the spa-
tial space and spectral space. Experimental evaluations on
various well-known datasets showed that our method has
superior performance in terms of accuracy, as well as stabil-
ity and smoothness.

Although the method is robust to the initialization with
noise, it will bring undesirable results from an initialization
existing left-to-right, back-to-front ambiguity, or the double
flip self-symmetry with a large area, as shown in two failure
cases in Fig. 3. Additionally, ourmethod cannot workwell on
the partial shape correspondence task. In the future,wewould
like to investigate how to design and add an orientation-
preserving process identifying the intrinsic symmetry to our
framework and extend our algorithm to other applications
such as multi-shape matching, and symmetry detection.
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Appendix

A Equivalence of two optimization problems

Here we show the optimization problem (10) and (11) are
equivalent when adding a regularizer represented asR (P) =∥∥∥
((

�k
N

)(
�k
N

)+ − I
)

PT�k
M

∥∥∥
2

AN
into problem (10).
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To begin with, we give the result: for any matrix X, Y and
a matrix B satisfying BTAB = I, i.e., B+ = BTA, where
A is a symmetric positive-definite matrix, and let ‖X‖2A =
trace(XTAX), and then, the following equation holds:

‖BX − Y‖2F + ∥∥(
BB+ − I

)
Y

∥∥2
A = ‖BX − Y‖2A . (14)

In fact, we observe that subtracting and adding the term
BB+Y in the ‖BX − Y‖2A, we get

‖BX − Y‖2A
= ∥∥BX − BB+Y + BB+Y − Y

∥∥2
A

= ∥∥B
(
X − B+Y

)∥∥2
A + ∥∥((

BB+) − I
)

Y
∥∥2
A

+ 2trace
((

B
(
X − B+Y

))T A
(
BB+ − I

)
Y

)
.

On the one hand, since BTAB = I, we have

∥∥B
(
X − B+Y

)∥∥2
A

= trace
((

X − B+Y
)T BTAB

(
X − B+Y

))

= ∥∥X − B+Y
∥∥2
F .

On the other hand, note that BTA
(
BB+ − I

) = B+ − B+ =
0, where BTAB = I and B+ = BTA are used.

Therefore, Eq. (14) is given. Let X = C∗, B = �k
N ,

A = AN , and Y = PT�k
M, we have

∥∥∥�k
N C∗ − PT�k

M
∥∥∥
2

F
+

∥∥∥∥

(
�k

N
(
�k

N
)+ − I

)
PT�k

M

∥∥∥∥

2

AN

=
∥∥∥�k

N C∗ − PT�k
M

∥∥∥
2

AN
.

As for the issue that

argmin
P

∥∥∥�k
N C∗ − PT�k

M
∥∥∥
2

F

= argmin
P

∥∥∥�k
N C∗ − PT�k

M
∥∥∥
2

AN
,

both problems can be solved by finding the closest column
between �k

N C∗ and �k
M since the matrix P is encoded by

a pointwise map. To improve accuracy and smoothness of
correspondences, we select fast Sinkhorn filter algorithm to
solve this optimization problem.

B Proof of Remark 1

Here we give the proof that (13) is a relaxed solution to
problem (12) under certain conditions.

Proof Indeed, the analytical solution of problem (12) exists
by solving a series of linear equations as follows:

CkgM
(
sl�

k
M

) (
�k
M

)+ = gN
(
sl�

k
N

)(
�k
N

)+
PT,

l = 0, 1, ......, L.

Contrary to Eq. (8), here the point-to-point mapping matrix
P is known, while the functional map matrix Ck is unknown
and enforces no constrain.

Multiplying g
(
sl�k

M
)
on the left and right sides of the

above equations, then

Ckg
2
M

(
sl�

k
M

)
= gN

(
sl�

k
N

) (
�k

N
)+

PT�k
MgM

(
sl�

k
M

)
,

l = 0, 1, ......, L.

Summing the above equations, we obtain

L∑

l=0

Ckg
2
M

(
sl�

k
M

)
=

L∑

l=0

gN
(
sl�

k
N

) (
�k
N

)+

× PT�k
MgM

(
sl�

k
M

)
.

Taking Ck out of the summation on the left side of the equa-
tion, we get

Ck

L∑

l=0

g2M
(
sl�

k
M

)
=

L∑

l=0

gN
(
sl�

k
N

) (
�k
N

)+

× PT�k
MgM

(
sl�

k
M

)
.

According to Eq. (9), this implies the desired result with

Ck =
L∑

l=0

gN
(
sl�

k
N

) (
�k
N

)+
PT�k

MgM
(
sl�

k
M

)
.

�

C Equivalence of two functional map
representations

To derive the equivalence of two functional map representa-
tions if the pointwise correspondence from the shape M to
the shape N is an isometry, where Laplacian eigenvalues of
two shapes are same, none of which are repeating, we first
give following result: if the diagonal matrices Al , Dl , l =
0...L , satisfy

∑L
l=0 AlDl = I,

∑L
l=0 AlBDl = B holds for

any diagonal matrix B. To see that, we observe that if two
diagonal matrices are multiplied, the commutative law of
multiplication is satisfied, i.e., BDl = DlB. From this, it
immediately follows that

∑L
l=0 AlBDl = ∑L

l=0 AlDlB = B.
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For one thing, under the condition of isometry, ZoomOut
[22] proved the functional map matrix Ck is both orthonor-
mal and diagonal. For another thing, when Laplacians of two
shapes have same eigenvalues, none of which are repeat-
ing, we obtain that gN

(
sl�k

N
) = gM

(
sl�k

M
)
, and all of

them are diagonal. Thus, we get the equivalence of two func-
tional map representations with Al = gN

(
sl�k

N
)
, Dl =

gM
(
sl�k

M
)
and B = (

�k
N

)+
PT�k

M, which is a general
functional map.
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