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Abstract
Registration is an essential prerequisite for many applications when a multiple-camera setup is used. Due to the noise in depth
images, registration procedures for depth sensors frequently rely on the detection of a target object in color or infrared images.
However, this prohibits use cases where color and infrared images are not available or where there is no mapping between
the pixels of different image types, e.g., due to separate sensors or different projections. We present our novel registration
method that requires only the point cloud resulting from the depth image of each camera. For feature detection, we propose
a combination of a custom-designed 3D registration target and an algorithm that is able to reliably detect that target and its
features in noisy point clouds. Our evaluation indicates that our lattice detection is very robust (with a precision of more than
0.99) and very fast (on average about 20 ms with a single core). We have also compared our registration method with known
methods: Our registration method achieves an accuracy of 1.6 mm at a distance of 2 m using only the noisy depth image,
while the most accurate registration method achieves an accuracy of 0.7 mm requiring both the infrared and depth image.

Keywords Point clouds · Registration · Extrinsic calibration · Depth sensors

1 Introduction

Depth sensors (e.g., ToF cameras and LiDAR sensors) are
widely used in research and industrial applications thanks to
the variety of available and affordable products. These sen-
sors are often utilized in telepresence and robotic applications
for tasks such as 3D reconstruction, SLAM, or object recog-
nition. In order to cover large spaces or to avoid occlusion,
multiple cameras are used. In these cases, the sensors must
be calibrated intrinsically (individually) and extrinsically (to
each other) to obtain a common point cloud.
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For multi-camera calibration and registration, the classical
approach is based on feature detection on flat checkerboards
since those features can be detected reliably and accurately
in color and infrared images. The first step is to detect the
checkerboard itself; then, the inner corners can be extracted
using known corner detectors (e.g., [1]), which serve as
point correspondences. Using these correspondences, a rigid
transformation between different sensors is computed. This
approach has been improved continuously (e.g., [2,3]) and
generally leads to robust and accurate results.

However, this method is not always applicable, for exam-
ple, when infrared or color images are not available. In
addition, Reyes-Aviles et al. [4] reported that, depending on
the camera model, the infrared images and the correspond-
ing depth images may have different projections (which they
observed, for example, with different Orbbec RGB-D sen-
sors) which leads to errors when infrared images are used for
registration. On the other hand, if registration is performed
directly on depth images or point clouds, the problem of
inherently noisy depth data arises, making accurate feature
detection difficult [5].

Our registration procedure, which we present here, requires
only 3D point clouds obtained from depth images (no color or
infrared data needed), works independently of scene bright-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00371-022-02505-2&domain=pdf
http://orcid.org/0000-0002-7836-3341


3996 A. Mühlenbrock et al.

ness, can register both sensors facing in the same direction
and opposing depth sensors, and is very easy and quick to
perform. At the same time, we achieve excellent results in
our evaluations with the Microsoft Azure Kinect, which are:

• low registration errors (avg. 1.6 mm at 2 m distance),
• robust target detection (PPV > 0.99),
• fast target detection (avg. 20 ms).

We accomplish this by using a custom-designed lattice-
like 3D registration target that can be easily replicated and a
pipeline designed to detect the target’s features accurately in
noisy depth images. Our implementation is available both as
a self-contained small C++ library and as an Unreal Engine
4 plugin with a sample project, which also allows registering
the depth sensors into a virtual world.

This paper is an extension of our CW 2021 paper [6]. In
addition to a more detailed explanation of the algorithm and
evaluation, we present a new experimental setup and per-
form an evaluation in which we compare the accuracy of our
registration method to commonly known registration meth-
ods (see Sect. 4.1). Furthermore, we supplement this paper
with a new small C++ library, which allows the use of our
registration procedure in other software projects.

2 Related work

As mentioned earlier, the calibration and registration of depth
sensors is usually done via the accompanying IR or RGB
sensor images: Macknojia et al. [7] synchronously captured
a checkerboard in the color and IR images of a Kinect for
extrinsic calibration between RGB and depth sensors. Reg-
istration (or extrinsic calibration) between multiple Kinect
cameras was similarly performed using the respective IR
images. Chen et al. [8] captured a checkerboard in the color
and IR images for homography-based calibration, while Dar-
wish et al. [9] tracked two orthogonal checkerboards and
aimed to improve depth accuracy.

In other publications, e.g., [10,11] and [12], the use of the
checkerboard approach is also described, but external optical
tracking systems were added for depth correction and regis-
tration of multiple cameras in a common coordinate system,
respectively. Although in this case the viewing areas of the
cameras do not need to overlap, the need for a tracking system
is a major limitation.

Herrera et al. [13] proposed a calibration approach that
works directly in the depth image by detecting the outer
corners of the checkerboard through a time-consuming man-
ual selection. Reyes-Aviles et al. [4] proposed using a 3D
checkerboard as a calibration target and a method that
includes normal estimation, edge detection, and threshold-
ing to detect it in the depth image. The registration method

proposed by Song et al. [5] is based on a special checkerboard
with regularly spaced hollow squares. Depth variations are
handled by a model-based approach that considers the cen-
ters of the holes. Some works such as [14,15] have replaced
checkerboard-like registration targets with static marker-free
3D objects with known or previously scanned geometry, e.g.,
a stack of boxes that can be detected in depth images or point
clouds. Furthermore, spherical targets have also been pre-
sented for camera calibration (e.g., [16,17]) and registration
in multiple-camera setup (e.g., [18]), in which the target was
detected in the RGB image using ellipse fitting and in the
depth image using background subtraction or a spherical area
detection and sphere fitting of the point cloud.

Another popular approach is to perform a target-less regis-
tration directly on the 3D point clouds of the surrounding 3D
scene obtained from multiple depth cameras. The most well-
known algorithm is Iterative Closest Points (ICP), which
alternatively searches for the closest point-to-point corre-
spondences and an optimal rigid transformation. However,
its main drawback is the tendency to converge to a local
minimum and, therefore, its high dependency on good ini-
tial guesses [19]. Numerous variants were proposed in order
to improve the convergence [20], the computational speed
[21] and the robustness to noise [22]. Typical global methods
for 3D registration are based on feature matching (including
detection and description) and transformation via RANSAC.
Generally, these methods tend to be less precise and, depend-
ing on the number of outliers, more time-consuming [23]. A
major problem with target-less registration occurs when the
point clouds do not overlap completely or only slightly. Dif-
ferent recent approaches try to obtain a registration even in
these cases, e.g., [24] and [25]. However, if there is no over-
lap of the scene at all, e.g., because depth sensors are facing
each other, these target-less methods are not applicable.

3 Our approach

We designed a lattice-like 3D target and developed a lattice
detection algorithm that allows for quick and easy registra-
tion (extrinsic calibration) of multiple depth sensors. Our
lattice-like 3D target (see Fig. 1) consists of 12 bars of size
44 cm x 4 cm x 0.2 cm, available in a common DIY store.
By leaving 4 cm of space between the bars in the vertical
and horizontal directions, 25 holes of size 4 cm x 4 cm are
created that can be detected in the point cloud generated by
depth sensors.

To perform the registration, the lattice has to be moved in
the field of view of the depth sensors for a few seconds, while
our lattice detection algorithm detects up to 25 point corre-
spondences per frame for all depth sensors. Based on these
point correspondences of multiple frames, we determine a
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Fig. 1 Left: photograph of our lattice with 25 holes. Right: two point
clouds registered using our method

rigid transformation matrix that describes the transformation
of the sensors with respect to each other.

The major challenge in classical camera registration is the
correct and accurate recognition of feature points. Since we
only use depth data and no RGB or IR data, we cannot easily
reuse the image-based recognition algorithms.

In the following, we present a novel approach that is fast
and easy to implement while still achieving robust results.
The detection of the lattice consists of the following steps:

1. Identification of plausible lattice candidates.
2. Detection of hole centers.
3. Identification of the center and axes of the lattice and

outlier removal among hole centers.
4. Correspondence mapping.
5. Correspondence rejection.
6. SVD-based transformation estimation.

In the following, we will explain the individual steps of the
lattice detection. Note that our algorithm expects an array of
3D coordinates as input—i.e., a point cloud—that is available
in scanline order of the original depth image.

3.1 Lattice candidates

Initially, we are given a point cloud in scanline order from
the depth image, without indication as to whether a lattice is
visible and where the lattice is located. To obtain clues as to
where lattices might be located in the point cloud, we exploit
the property that the lattice has many regularly spaced holes
that result in many gaps in scanline order.

So, in the first step, we search for gaps along the scan-
lines which correspond to the regular geometry of the lattice
(see Fig. 2). We do this by segmenting individual scanlines
based on the Euclidean distance between neighboring points.
Scanline segments that are at most as long as the diagonal of
a hole and that are surrounded by two scanline segments of
plausible length are identified as gap segments.

(a) Point Cloud (b) Gaps found along scanlines

(c) Clusters of gap segments (d) Plausible clusters

Fig. 2 The steps in which we identify lattice candidates

Now we have many individual segments lying along indi-
vidual scanlines, each of which could be within a hole of
the lattice. However, since we want to find a section of
the point cloud that fully encloses the lattice, we cluster
all gap segments using their Virtual Gap Centers1 based
on their proximity to each other. Using PCA, we calculate
eigenvectors and eigenvalues for each cluster. Based on the
proportions of the eigenvalues, we can efficiently discard
clusters that obviously cannot represent lattice candidates:
due to the symmetric structure of the lattice, we expect the
first two eigenvalues to be similar in size, while the third
eigenvector is many times smaller (we use a factor of 10 as
the threshold), since the lattice is flat. All remaining clusters
of gap segments are considered as lattice candidates.

3.2 Hole center detection

Using the clusters leftover from the previous step, we now
know areas where a lattice may be located. In this step, we
try to identify the exact hole centers of the lattice for each
area found and discard lattice candidates that turn out to be
implausible in the following.

We first determine all 3D points that potentially belong to
the physical lattice due to their proximity to the gap segments

1 Since gap segments lie in holes of the lattice where the lattice has
no geometry, the corresponding 3D points of the gap segment may lie
behind the lattice or be invalid. So, to calculate 3D coordinates of the
gap segments that lie on the plane of the lattice, we calculate a Virtual
Gap Center for each gap segment by averaging two 3D points that lie
directly to the left and the right of the gap segment since these are 3D
points of the lattice’s geometry. This resulting Virtual Gap Center (a)
is located in the center of the gap segment in image space and (b) lies
approximately on the lattice’s plane in 3D space.
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(a) Before filtering (b) After filtering

Fig. 3 Side view of the lattice in the point cloud (blue) before and after
filtering noise (e.g., due to the flying pixel effect). This is done by fitting
a plane (black) via RANSAC into these points, then culling points by
thresholding

Fig. 4 A hole of the lattice in image space. The red line visualizes the
separation of both segments. The dark blue points are those 3D inlier
points used to calculate the hole center by averaging them and projecting
the average onto the estimated plane in which the lattice is located

Fig. 5 Visualization of our heuristic that can filter incorrectly detected
hole centers (gray) and detect directions of x- and y-axes. In this exam-
ple, the red and gray colored points where detected as hole centers
previously

using their Virtual Gap Centers (see footnote 1). A point
is considered a lattice point if it is within a certain radius
to at least one Virtual Gap Center (we use r = 0.16 m to
completely cover the lattice in case some holes were missed
in the previous step).

To effectively filter out the noise that typically occurs with
depth sensors (e.g., due to the flying pixel effect), we use
RANSAC [26] to fit a plane to the point cloud section and
define all points closer than a certain threshold to the plane
as lattice points (see Fig. 3). We store the indices of these
lattice points in an inlier set. All remaining points are defined
as outliers.

To identify the holes of the lattice, we again iterate over all
scanlines of the input point cloud, each from the first inlier
to the last inlier. We create segments similar to Sect. 3.1
but this time we create segments of lattice points (which are

contained in the inlier set defined above) and segments of
outliers. All outlier segments, which are enclosed by inlier
segments are assumed to be a part of a hole. Since we have
only iterated over the horizontal scanlines so far and thus only
have horizontal segments, we now vertically join adjacent
outlier segments if they overlap horizontally to obtain one
segment for each hole of the lattice. This vertical joining of
the horizontally running outlier segments is done efficiently
using the union-find structure.

The remaining and joined outlier segments represent the
individual holes. However, since the points of these joined
outlier segments do not lie in the plane of the lattice, we
consider the directly adjacent inlier points in each scanline
(see Fig. 4), project them onto the earlier fitted plane and use
their average as hole centers.

3.3 Axes detection and outlier removal

For each lattice candidate, we have found a set H of hole
center candidates. However, there may be still incorrectly
identified hole centers and additionally, we need correspon-
dence points between multiple sensors, i.e., we have to match
the found hole centers of different sensors.

For this purpose, we have developed a heuristic that can
recognize the axes of the lattice based on the potential hole
centers and that can cope even with quite noisy data. This
heuristic works as follows:

(1) Given the set of all found hole centers H , we now define
the following set V of vectors:

V = {n − m | d − δ < dist(m, n) < d + δ, m, n ∈ H}, (1)

where d = hole spacing and δ is a tolerance (in our case
d = 8 cm and δ = 2 cm which represents the geometry
of our lattice). These vectors can be interpreted as edges
between the hole centers. Together, they form a proximity
graph (see Fig. 5).

(2) Sort the vectors v ∈ V by their angle α they subtend with
the x-axis:

α(v) =
{

atan2(vy, vx ) if atan2(vy, vx ) ≥ 0

atan2(vy, vx ) + π otherwise
(2)

(3) Cluster these vectors based on their angle α. As can be
seen in Fig. 5, this results in two very large clusters (color-
coded by the blue and orange edges) as well as several
other very small clusters. Thinking of these vectors as
edges of a proximity graph, we define the set of all “good”
edges in one of those two largest clusters as G and the
set of all “bad” edges in the remaining small clusters as
B.
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(4) For each hole center h ∈ H we now consider its incident
edges E(h) and remove hole centers based on the num-
ber of incident “good” edges and incident “bad” edges,
leaving the following set:

Hfiltered = {h | #EG(h) > #EB(h), h ∈ H}, (3)

where EG(h) = E(h)∩G and EB(h) = E(h)∩ B. This
way, we very reliably remove incorrect hole centers.

(5) Using the remaining hole centers Hfiltered, we look for
the hole center candidate h∗ ∈ H that is closest to the
average:

h′ = 1

|H |
∑
hi∈H

hi , (4)

The h∗ closest to this h′ will be considered the center of
the lattice.

(6) By selecting the median vector in both the largest clusters,
we get two very stable vectors which points along the x-
axis and the y-axis (see Fig. 5).

(7) At this point, we do not know which of the two vectors
represents the x-axis and which the y-axis as well as their
signs. To resolve this ambiguity, we consider the points of
the point cloud surrounding the lattice: these are usually
the points of the hand and arms holding the lattice. So,
we calculate a vector from h∗ to the center of these hand
points and flip both the previous found vectors and assign
them so that the x-axis always points in the direction of
the hands. Let us assume for the moment that always the
front side of the lattice is visible in the depth image: Then
we can set the plane normal found by RANSAC as the
z-axis, which then determines the y-axis.

If we find that the two vectors we determined in step (6) are
not roughly orthogonal, or #Hfiltered is too small, we discard
this candidate, since it is more likely not to be the lattice in
this case. Using this heuristic and making the preliminary
assumption that the lattice is always visible from the front,
we were able to determine the center and axes of the lattice
as well as remove incorrect hole centers.

3.4 Point correspondences

Generally, it would be possible to use only the centers of the
lattice across multiple sensors as point correspondences over
multiple frames. However, the more point correspondences
are used over a large space, the more accurate and stable the
registration is expected to become. Therefore, it is desirable
to use all the hole centers instead of just the center one. By
using all found hole centers, we get up to 25 times more point
correspondences over a larger space. This also considerably
reduces the time needed to perform a registration.

However, since we still lack the information on whether
the lattice in the original depth image is seen from the front or
the back, we cannot yet establish a clear mapping of hole cen-
ters between multiple sensors. Therefore, we first perform a
less precise registration with only two point correspondences
per frame, namely (a) the lattice center as well as (b) the lat-
tice center shifted in the direction of the x-axis, since the
x-axis always points in the direction of the hands. After that
rough registration, we can transform the z-axis vector of the
lattice seen in sensor A into the coordinate system of sensor
B and use z′B = ±zB as z-axis and y′

B = ±yB as y-axis
(since we created the y-axis using the z-axis), depending on
which sign gives the dot product zA · zB . In this way, we have
resolved the ambiguity of the lattice side and ensured that
lattices visible from the same side in different cameras have
the same sign.

3.5 Correspondence rejection and registration

Up to this point, we have found point correspondences for
which the 3D coordinates in the camera space of multiple
sensors are known. However, since our lattice detection is
not completely immune to errors, very rare errors in the
point correspondences are possible. To ensure that in these
cases the accuracy of the registration is not affected, we filter
the point correspondences using the RANSAC-based corre-
spondence rejection of the Point Cloud Library (PCL) [27].
Finally, we perform registration with the remaining point
correspondences using SVD-based transformation estima-
tion implemented by the PCL [27].

4 Results

To investigate the accuracy, reliability, and runtime per-
formance2 of our registration procedure, we designed and
conducted several experiments, which we present in this sec-
tion. In all experiments, the Microsoft Azure Kinect was used
as depth sensor. The following is a list of experiments we
conducted, whereby experiments A and B are related to the
whole registration procedure, and experiments C, D and E
refer to the lattice detection in particular:

A Accuracy Measurement and Comparison: We present
an experimental setup that allows for very accurate deter-
mination of the distance error of a point as well as an

2 Note that in terms of runtime, the lattice detection is the crucial part,
because the lattice detection has to be executed for each sensor and for
each frame compared to the rest of the pipeline, which is executed only
once. The runtime for the rest of the pipeline is on the order of a couple
of milliseconds including the correspondence rejection and SVD-based
transformation estimation which is almost negligible when using many
frames.
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angular error between two registered depth sensors. We
compare our lattice-based registration procedure with
three variants of the well-known checkerboard registra-
tion procedure. Both depth sensors were synchronized in
time, so that two matched frames were always recorded
with a time offset of exactly 160μs.

B Common Coordinate System Registration: We regis-
ter a depth sensor into a ground truth coordinate system
given by Optitrack, a high precision optical tracking sys-
tem. The pose of the lattice is tracked both by Optitrack
and by the depth sensor. The purpose of this experi-
ment is also to determine the accuracy of the registration
procedure, but in a different application—namely, the
registration of a depth sensor with a third system. Major
differences to experiment A are that (a) only the lattice
center is taken as the point correspondence instead of all
hole centers, since Optitrack isn’t able to detect these,
(b) there is no exact time synchronization of the frames
between the two systems, and (c) the error is determined
not only over one very accurate correspondence point,
but over many correspondence points in a larger volume.

C RotationalRobustness: In this experiment, we rotate the
lattice while its center position is fixed. This allows us to
determine the minimum angle at which the lattice is still
detected by our method and to detect possible systematic
errors that depend on the angle of rotation. In this way,
we can estimate whether our registration procedure is
reliable in all situations (e.g., when the angle between
the direction vectors of both depth sensors is very large)
and whether higher errors can possibly be expected there
than those we obtain in Experiments A and B.

D Runtime Performance: We investigate the runtime per-
formance of the lattice detection depending on the lattice
distance since the lattice detection takes by far the largest
part of the runtime (see footnote 2).

E Precision and Recall: The reliability of our registration
method essentially depends on how reliably the lattice,
including its hole centers, is found. Therefore, in this
experiment, for three different scenarios, we look at how
often the lattice was correctly detected when our algo-
rithm detected something (Precision) and how often the
lattice was correctly detected when a lattice should have
been visible (Recall).

4.1 Accuracymeasurement and comparison

With this experiment, we examine the accuracy of our lat-
tice registration procedure and compare it to the accuracy of
conventional checkerboard registration procedures.

The following registration procedures are evaluated:

• Checkerboard (RGB): We capture a moving checker-
board (with 8x8 inner corners) in the RGB image, detect

(a) Lattice Recording (b) Checkerboard
Recording

(c) Evaluation Recoding

Fig. 6 Setup of the recordings made per run. In each of the 10 runs, we
recorded a the moving lattice, b the moving checkerboard, and c the
static whiteboard with a checkerboard in the center. The whiteboard in
c was always located approximately in the middle of the registration
volume (Reg. Volume) and on average about 2 meters away from the
sensors

its corners with OpenCV’s checkerboard corner detec-
tion by Duda et al. [3] in image space, and then we use
OpenCV’s stereoCalibrate function [28] to obtain a reg-
istration for the RGB sensors.

• Checkerboard (IR): We capture a moving checkerboard
(with 8x8 inner corners) in the infrared image, detect its
corners with OpenCV’s checkerboard corner detection by
Duda et al. [3] in image space and then we use OpenCV’s
stereoCalibrate function [28] to obtain a registration for
the infrared/depth sensors.

• Checkerboard (IR+D): We capture a moving checker-
board (with 8x8 inner corners) in the infrared image,
detect its corners with OpenCV’s checkerboard corner
detection by Duda et al. [3] in image space, use the cor-
responding 3D points by the depth image, and apply the
correspondence rejection and SVD-based transformation
estimation implemented in PCL [27], which is also used
by our method.

• Lattice (D): We capture a moving lattice in the point
cloud given by the depth image, detect it using our lattice
detection and perform registration which is based on the
correspondence rejection and SVD-based transformation
estimation implemented in PCL [27].

Note that the first three checkerboard registration meth-
ods (RGB, IR and IR+D) are well-known approaches in the
community that we compare to our lattice-based registration
(D).

Our experiment consists of 10 runs, for each of which we
make (a) a recording with a moving lattice target, (b) a record-
ing with a moving checkerboard target, and (c) a recording
of a stationary whiteboard with a checkerboard pattern at its
center (see Fig. 6). In each run, recordings (a) and record-
ing (b) are used to perform a registration while recording
(c) is an evaluation recording used to determine a point cor-
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(a) Smoothed point cloud of the
checkerboard glued onto the white-
board

(b) Points used for plane fitting

Fig. 7 Uneven-perceived surface and plane fitting. In (a), the uneven-
perceived surface of the checkerboard is visible. In (b), the area of
points of the whiteboard (white) which we considered for plane fitting
is shown

respondence between the cameras’ coordinate systems very
precisely for distance error measurement. After each run, we
slightly changed the position and orientation of both Azure
Kinects to get a bit of variation while maintaining a distance
of approximately 1.5–2.5 m to the center of the registration
volume. Furthermore, we alternated the order whether the
lattice recording (a) or the checkerboard recording (b) was
done first. Both Azure Kinects were synchronized in time to
avoid errors caused by a larger location offset of the registra-
tion target in the same frame of different sensors. However, to
avoid interference between multiple Azure Kinects, the sec-
ond Azure Kinect was delayed by 160µs as recommended by
the manufacturer, which is negligible regarding the expected
error.

To obtain a point correspondence for error measurement
in recording (c), which is needed to determine the distance
error, we proceed as follows:

(1) We detect the checkerboard pattern glued to the white-
board using OpenCV’s checkerboard corner detection in
the infrared image. According to [3], this yields subpixel
accuracy.

(2) Since, in the case of the Azure Kinect, the projections
and sensors that generate the depth and IR image are
identical, for each corner in the IR image, we obtain the
3D points of all corners, and average over all 3D corner
points to get a mid-point of the checkerboard.

(3) While the 3D mid-point is assumed to be very precise
along the axes in image space, there may be small devia-
tions along the depth axis due to the alternating colors of
the checkerboard fields (see Fig. 7a). To control for that,
we fit a plane to the 3D points rectangle that is centered
to the checkerboard (see Fig. 7b). The previously calcu-
lated mid-point is then projected onto this plane, which
is finally used to estimate the error between both point
clouds.

Note that the registration transformation obtained by the
Checkerboard (RGB) procedure differs somewhat from those
obtained by the other procedures. This should be taken into
account when comparing the 3D accuracy of the different
calibration procedures. The reason for that arises from the
fact that the Azure Kinect (and potentially many other RGB-
D cameras) has two sensors: one sensor for both the IR and
depth image, and a separate sensor for the RGB image. In
order to perform a transformation of 3D points of Kinect B
into the reference frame of Kinect A, the following concate-
nation of transformations should be used in case of the RGB
calibration procedure:

TDA←DB = TDA←CA · TCA←CB · TCB←DB (5)

where

• TDA←DB denotes the transformation from the depth sen-
sor of Kinect B to the depth sensor of Kinect A,

• TCB←DB denotes the transformation from Kinect B’s
depth to its color sensor (given by the factory calibra-
tion),

• TCA←CB denotes the transformation from Kinect B’s
color sensor to Kinect A’s color sensor (known from the
checkerboard registration),

• TDA←CA is the transformation from Kinect A’s color to
its depth sensor.

Obviously, the error of the Checkerboard (RGB) registra-
tion procedure using the RGB sensors and the error of the
factory calibration between depth and color sensors accumu-
late. Therefore, it is to be expected that the Checkerboard
(RGB) registration has a higher error than the other reg-
istration procedures. This is verified by the results of our
experiments (see Table 1).

In all runs, the lattice was detected by both sensors in an
average of 87.2 frames (SD: 32.0) of recording (a). In the
RGB image of recording (b), the checkerboard was detected
in 108.3 frames (SD: 39.7) in average and in the IR image in
87.4 frames (SD: 39.0) in average. Note that the recordings
(a) and (b) are not identical— individual recordings of the
checkerboard methods and the lattice method can therefore
not be directly compared. Furthermore, the difference in the
number of detected checkerboards in the RGB image and
the IR image, both using recording (a), is due to the uneven
brightness of the checkerboard at different distances in the
IR image, so that the checkerboard was not detected in some
cases in the IR image.

The results (see Table 1) show that the average distance
error of our method Lattice (D) (which only requires the
depth image) is 1.6 mm and the average angular error is
0.17 deg. The Checkerboard (IR+D) method performs con-
siderably better with an average distance error of 0.7 mm
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Table 1 Results of single registration runs. Error (mm) is the distance
error measured by the correspondence point while Error (deg) is mea-
sured by the angle between the fitted plane normals. The value of the
method that performed best in the respective run is marked in bold

Run Error (mm) Error (deg)

RGB IR IR+D D RGB IR IR+D D

1 15.2 6.8 1.4 1.8 0.17 0.04 0.0 0.17

2 9.7 5.1 0.6 0.9 0.21 0.22 0.09 0.18

3 15.1 5.4 0.6 2.8 0.40 0.22 0.06 0.10

4 20.5 7.4 0.7 1.9 0.15 0.02 0.07 0.13

5 14.8 8.1 1.2 2.1 0.21 0.12 0.09 0.18

6 15.5 5.5 0.4 1.3 0.24 0.07 0.04 0.11

7 19.3 5.0 0.3 0.5 0.24 0.16 0.15 0.28

8 7.4 4.6 1.0 1.0 0.19 0.02 0.05 0.08

9 17.8 9.2 0.5 2.8 0.57 0.23 0.10 0.22

10 19.0 6.5 0.6 1.1 0.08 0.13 0.11 0.21

AVG 15.4 6.4 0.7 1.6 0.24 0.12 0.08 0.17

SD 4.0 1.4 0.3 0.7 0.13 0.08 0.04 0.06

Fig. 8 Distance error after registration by procedures and axes

and an average angular error of 0.08 deg, but requires both
the infrared image and the depth image. Compared to the
Checkerboard (IR) method with an average error of 6.4 mm
and the Checkerboard (RGB) method with an average error
of 15.4 mm, our registration method Lattice (D) as well as the
Checkerboard (IR+D) method performs significantly better.

Since both the depth image and the infrared image are
combined as input in the Checkerboard (IR+D) method,
this method is expected to be more accurate than the Lat-
tice (D) method, which uses only the noisy depth image as
input. However, even if the average error of the Checker-
board (IR+D) method is smaller than the average error of the
Lattice (D) method, both errors are very small in absolute
terms considering the accuracy of depth sensors, which are
much noisier and suffer from distortions at edges or the flying
pixel effect. Furthermore, one has to take into account that
the lattice in the experiment has a thickness of 4 mm (two
layers of 2 mm thick bars) and was built with a precision of
about 1-2 mm. The motions of the lattice in the recordings,
as well as the higher standard deviation in the X-direction
for Lattice (D) in Fig. 8, indicates that the thickness of the

(a) Scenario A (b) Scenario B

Fig. 9 Two scenarios used for ground truth evaluation, from the per-
spective of the depth sensor

lattice may have mattered. Thinner and more precise lattices
could improve the result of the Lattice (D) method.

Figure 8 shows that the Checkerboard (RGB) and Checker-
board (IR) procedures, in particular, contain a systematic
error that could be caused by the factory calibration of the
Kinect whose parameters are used in OpenCV’s stereo cal-
ibration methods. In our experimental setup, the distance
between two adjacent pixels in the registration volume is
about 4 mm in physical space, so even small errors in the
intrinsic calibration could have a significant impact on the
distance error in both cases. On the other hand, these two
methods do not use depth information, so a possible sys-
tematic offset in depth direction is not corrected by these
methods. In the case of the Checkerboard (RGB) method, as
described above, the errors in the transformations between
the separate depth and RGB sensors also add up, leading to
expected higher errors compared to the three other methods.

Finally, this experiment shows that our method is a valu-
able alternative registration method in cases where no IR or
color image is available, and is also very accurate in terms
of absolute error values, in regard to the accuracy of depth
sensors.

4.2 Registration into a common coordinate system

In the previous section, we looked at the accuracy of a reg-
istration between two depth sensors using our registration
method. In this section, we will examine the accuracy with
which we can register a depth sensor into Optitrack’s coor-
dinate system using our method. To do so, we tracked the
lattice using both Optitrack and a Microsoft Azure Kinect
combined with our detection algorithm. To track the lattice
with Optitrack, we attached seven markers to the lattice to
achieve sufficient accuracy. These Optitrack markers were
detected in the Azure Kinect depth image by our method as
hole centers. However, our heuristic generally detected these
hole centers as incorrect hole centers, resulting in no notice-
able effect on the precision of the lattice detection.
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(a) (b) (c) (d)

Fig. 10 Pulsating noise in the recorded point cloud due to inference
between Optitrack and the Azure Kinect, which both use infrared light
with a wavelength of 850 nm. In the image sequence shown, the noise
varies from no noise (a) to very intense noise (d)

Table 2 Mean error between ground truth lattice center and detected
lattice center after registration

Scenario A Mean error SD n Rem.

Calibration Set 3.83 mm 2.10 mm 2401 20

Test Set 3.95 mm 1.69 mm 1880 1

Scenario B Mean error SD n Rem.

Calibration Set 4.38 mm 2.07 mm 1270 14

Test Set 4.40 mm 2.10 mm 871 5

Note: Rare error detections with an higher error that 20 mm were
excluded from the error calculation because they are removed dur-
ing registration during outliner rejection anyway and generally have
no influence on the registration result itself (the ”n” column indicates
the number of used frames, whereas the “rem.” column indicates the
number of removed frames)

Since Optitrack and the Kinect use the same infrared light
at a wavelength of 850 nm, there was occasionally a pulsat-
ing noise throughout the depth image (see Fig. 10). We ran
Optitrack at 30 fps (almost the same frame rate with which
the Azure Kinect recorded), as the pulsating noise was least
likely to show up this way. The pulsating noise caused a
greatly increased runtime of the algorithm in those frames,
since many lattice candidates were detected in flat back-
ground objects. However, all these false lattice candidates
were successfully discarded by our detection algorithm.

We performed the evaluation in front of two different
backgrounds (see Fig. 9), hereafter also called scenarios,
while slowly moving the lattice. In scenario B, the distance
between the sensor and the lattice was between 1.0 m and
1.95 m while the center of the lattice stayed within a volume
of about 0.6 m3.3 In scenario A, the distance between the
sensor and the lattice ranged from 0.85 m to 2.05 m, with the
center of the lattice in a volume of about 1.2 m3 (the entire
lattice was about 2.2 m3).

Using the lattice centers as point correspondences, we reg-
istered the Microsoft Azure Kinect’s point cloud into Opti-
track’s coordinate system. We then measured the deviation

3 The entire lattice was in about 1.5 m3 in scenario B, but since we could
only detect a single ground truth reference point via Optitrack, we only
used the detected centers of the lattice as point correspondences between
the two systems. For this reason, the smaller value is more relevant.

(a) Set-up illustration (b) Set-up photo

Fig. 11 Experiment setup to determine the deviation of the detected
center point during the rotation of the lattice around its own axis

of the registered center point from the center point detected
by Optitrack. In both scenes we observed a quite similar error
averaging only 3.83 mm to 4.40 mm (see Table 2).

Note that, compared to experiment A (see Sect. 4.1),
instead of just measuring the distance error of one point
which was located in the center of the registration volume
and was smoothed over time, we captured multiple corre-
spondences in a specific volume which still were affected by
the typical noise of the Azure Kinect. Additionally, Optitrack
and the Kinect were not synchronized in time. Therefore, we
always searched for the closest Optitrack frame in time to a
Kinect frame to find point correspondences. Although we set
both Optitrack and the Kinect to 30 fps, they did not run at
exactly the same speed. The closest frames in time between
Optitrack and the Kinect were always time-shifted by 0 to
about 1/60 second, averaging 1/120 second. With an average
movement speed of 18.8 cm per second in scenario A, this
gives an expected error of 0.0083s ∗ 18.8 cm/s = 1.56 mm.
The average error of the lattice detection by Optitrack was
specified by Optitrack’s Motive software as 0.7 mm.

4.3 Rotational robustness

With this experiment, we tried to determine the robustness of
our method with respect to the angle between the line of sight
of the camera and the normal of the lattice. It is to be expected
that at grazing angles (i.e., angle between line of sight and
the lattice normal approaches 90 degrees), our registration
procedure will fail.

We used a thin thread to hang the lattice as symmetrically
as possible between two tripods, leaving one degree of free-
dom (see Fig. 11). In the experiment, the lattice then slowly
rotated around its y-axis in the range [−90, 90] degrees.
Assuming the rotation axis accurately passes through the lat-
tice’s real center, the position of the detected lattice center
is not expected to change regardless of the orientation of the
lattice.
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Fig. 12 Deviation of the center point during rotation around the y-axis
of a lattice, which was clamped between two tripods with sewing threads

Fig. 13 Scenario C for runtime measurement and precision and recall
estimation

After recording the lattice at a distance of about 1.5 m, we
obtained an average deviation from the mean center along the
x-axis of 0.9 mm (SD: 1.0 mm), along the y-axis of 0.4 mm
(SD: 0.3 mm), and along the z-axis of 1.8 mm (SD: 1.3 mm)
over a range of −57.0 deg to 59.7 deg (see Fig. 12)—at larger
angles the lattice was no longer detected. As expected, the
deviation along the y-axis (upward axis) was very small. The
slightly higher deviation along the z-axis compared to the x-
axis could also be due, at least in part, to the expected error of
the Azure Kinect camera depth values (which mainly affect
the z-value). Also, our lattice has a thickness of 4 mm and
was built with an accuracy of only about 1-2 mm.

4.4 Runtime performance

We expect the runtime of the lattice detection to depend on
the distance between the lattice and the sensor since fewer
points of the point cloud have to be processed if the lattice is
further away. Therefore, we created a recording in which we
moved the lattice back and forth at a distance of about 0.9 m
to 3.9 m (see Fig. 13).

On average, we observed an average runtime of 19.2 ms
on a single core of an AMD Ryzen 9 3900X processor for
the lattice detection per processed frame (SD 6.4 ms) in Sce-
nario C. For only 198 of considered 4022 frames, the lattice
detection took more than 33.33 ms (4.9%), while the maxi-
mum runtime in this scenario was 60.5 ms. As expected, the
runtime clearly depends on the distance of the lattice to the
sensor, see Fig. 14.

Fig. 14 Dependence of the runtime on distance between lattice and sen-
sor in scenario C only (considering frames where a lattice was detected)

For completeness, we have also given the results of our
runtime measurements for Scenario A and Scenario B in
Table 3. There it can be seen that the average runtimes of
19.8 ms and 24.5 ms are quite similar for other scenarios as
well. However, a few frames of both recordings were affected
by pulsating noise due to interference between the Azure
Kinect and Optitrack (see Fig. 10). As a result, many lattice
candidates were detected in these frames, and although they
were correctly rejected, the maximum runtime was abnor-
mally high.

4.5 Precision and recall

Another quality metric for registration methods is the robust-
ness of the detection of the target object in the images, which
can be measured by the well-known classification scores pre-
cision (defined as PPV = TP

TP+FP ) and recall (defined as

TPR = TP
TP+FN ). In our case, precision gives the percentage

of lattices detections that were correct, while recall describes
the percentage of correct lattices that our algorithm detected
among all the visible, actual targets (i.e., in the camera’s field
of view). In Scenario C, we ensured that the lattice was fully
visible in the camera’s field of view at all times; hence, there
are no true negatives in this case.

Our results can be found in Table 4.

4.6 Limitations

We observed that with the Azure Kinect, some of the holes
of the lattice are occasionally invisible in the original depth
image. In our experiments, we found that this seems to
depend on the background behind the lattice (e.g., surface
normal and reflectivity) and primarily occurs when the dis-
tance to the background is greater than the Azure Kinect’s
working range (we used the NFOV unbinned mode which
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Table 3 Runtimes of our lattice detection algorithm in different sce-
narios (without parallelization)

Scenario A (n = 7034) Mean SD Max

Candidate search 8.9 ms 15.9 ms1 230.1 ms1

Candidate processing 10.9 ms 13.06 ms1 344.2 ms1

Plausible candidates 0.79 0.56 5

Total 19.8 ms 23.9 ms1 457.3 ms1

Scenario B (n= 3931) Mean SD Max

Candidate search 12.8 ms 8.4 ms1 67.8 ms1

Candidate processing 11.7 ms 7.75 ms1 62.84 ms1

Plausible candidates 1.18 0.73 6

Total 24.5 ms 14.2 ms1 116.1 ms1

Scenario C (n= 4022) Mean SD Max

Candidate search 9.3 ms 2.1 ms 19.4 ms

Candidate processing 9.9 ms 5.0 ms 53.6 ms

Plausible candidates 1.20 0.48 4

Total 19.2 ms 6.4 ms 60.5 ms

1: Scenarios A and B where affected by occasional pulsating noise
due to interference between Optitrack and Azure Kinect and are to be
understood as extreme cases with regard to performance

Table 4 Precision and recall of the lattice detection algorithm in Sce-
nario C

Scenario n TP FP TN FN PPV TPR

A 6049 4281 21 01 17471 0.995 0.71

B 3593 2141 19 01 14331 0.991 0.601

C 4022 3629 24 0 369 0.992 0.91

1: Note that in scenario A the lattice sometimes leaves the camera’s
view frustum completely, while in scenario B the lattice is only par-
tially visible in at least multiple frames. Since our lattice recognizer
sometimes also detected edge cases, we could not clearly determine at
what point an unrecognized lattice is counted as TN or FN. Therefore,
we counted frames in which no lattice was detected as FN even if the
lattice was only partially visible or not visible at all. So, the recall in
these two scenarios is probably significantly higher in reality

(a) Sensor’s angle > 90 deg (b) Sensor’s angle < 90 deg

Fig. 15 Since the lattice can be detected from both sides, our regis-
tration method can be used in most applications despite the limited
detection at some angles (see Sect. 4.3). As a rough rule of thumb, if
angle between the lines-of-sight of two cameras is greater than 90 deg,
the lattice should be positioned such that they see different sides of the
lattice a, while for camera angles less than 90 deg, the lattice should be
held so that both sensors see the same side of the lattice b

has a working range of 0.5–3.86 m)4. We suspect this may
be related to a filter in the Azure Kinect or Azure Kinect
SDK that appears to bridge areas between invalid pixels.
In scenario B, this effect likely had a significant impact on
the number of false-negative detections and, consequently,
the recall, due to the distant background (partially > 6m),
while the effect was nearly negligible in scenarios A and C.
Although this effect did not affect the registration success nor
accuracy in our scenarios, there might be special application
areas where registration with our method could be difficult
when the Azure Kinect is operated outside its working range.

As shown in the experiment regarding rotational stability,
our method can detect the lattice stable only if the angle
between the lattice normal and the camera viewing direction
is smaller than about 55 deg. However, since our method is
robust against viewing the lattice from the front or from the
back, this is only a minor limitation for most applications, as
Fig. 15 shows.

Finally, probably the most obvious and very minor limi-
tation is the fact that our lattice needs to be held by one or
two hands at only one side while registration is performed.

5 Virtual world registration

Some applications require not only registration between
depth sensors, but also registration of these depth sensors
with a virtual world. For example, in VR applications, it
might be required to stream a point cloud into the virtual
world for the use as a user’s avatar or for real objects to cast
shadows by virtual lights (see Fig. 16).

To perform such a registration, we need to find corre-
spondences between virtual world space and one of the
depth sensors. To do so, we designed a physical bracket to
which our lattice and two motion controllers can be attached.
This allows to move the lattice and the motion controllers
simultaneously while maintaining a fixed relative distance
between them (see Fig. 17). We manually measured the
transformations from the lattice to both motion controllers,
TRightController and TLeftController, resp. Given those, we can
derive the position of the controllers in camera space. Since
their position in virtual world space is also given (by the VR
system’s tracking), their positions in both reference frames
can be collected simultaneously over multiple frames, which
can then be used as corresponding point pairs. Thus, the
virtual world and the camera reference frames can be reg-
istered using the SVD-based transformation estimation of
the PCL [27].

Instead of manually measuring the transformation between
the motion controllers and the lattice, it is also possible to esti-

4 Given by the Microsoft Azure Kinect specifications: https://docs.
microsoft.com/en-us/azure/kinect-dk/hardware-specification.

123

https://docs.microsoft.com/en-us/azure/kinect-dk/hardware-specification
https://docs.microsoft.com/en-us/azure/kinect-dk/hardware-specification


4006 A. Mühlenbrock et al.

(a) View through the HMD (b) Physical setup

Fig. 16 Rendering of the point clouds of two Kinects registered into
a virtual scene seen from a first-person view in an HMD a and from a
third perspective b

Fig. 17 The lattice with the motion controllers of the HP Reverb G2
attached using a bracket allowing for precise registration of depth sen-
sors with the virtual scene

mate the transform using the rigid motions of both controller
and lattice. This problem is known as hand-eye calibration
and simply requires recording of multiple poses of the motion
controllers and the lattice. For a feasibility check, we per-
formed this calibration offline using the method of [29].
Instead of only calculating the transformation between con-
troller and lattice, we could also directly compute the world
to camera space transformation. As the norm of this transfor-
mation typically is larger, though, a small error in the lattice
orientation leads to an overall higher calibration error.

6 Source code

We provide two implementations of our registration proce-
dure. To register arbitrary depth sensors with each other,
we provide a new small C++ library which can be found at
https://gitlab.informatik.uni-bremen.de/cgvr_public/lattice_
registration_library. Second, we provide a slightly larger
Unreal Engine 4 project that allows for registration of multi-
ple Microsoft Azure Kinects with each other as well as with a
virtual world: https://gitlab.informatik.uni-bremen.de/cgvr_
public/lattice_based_registration_ue4.

7 Conclusion

We presented a novel approach for the registration (extrinsic
calibration) of depth sensors based exclusively on depth data.
As a registration target, we designed a lattice-like board with
regularly spaced holes which are visible in the depth image.
More importantly, we developed an algorithm that can detect
such boards reliably and accurately in depth images and is
very easy to implement.

In our test scenarios, which we performed using a
Microsoft Azure Kinect under real-world conditions, we
achieved a precision of more than 0.99 with our lattice detec-
tion algorithm. At the same time, the lattice detection has an
average running time of roughly 20 ms on a single core of
an AMD Ryzen 9 3900X per frame. Using the features of
the detected lattices for registration, we measured an aver-
age registration error of 1.6 mm between two point clouds in
the middle of the registration volume at a capture distance of
approximately 2 m from the sensors.

We provide an open, small C++ library that can be used
to register any kind of depth sensors. Furthermore, we make
an Unreal Engine 4 project available that is capable of regis-
tering depth sensors with a virtual world; it works exemplary
with the Microsoft Azure Kinect, but can be adapted easily
to other depth cameras as well.

In future work, our method could be made even more accu-
rate by integrating the work of Deng et al. [30], which is able
compensate slight distortions of the depth camera within a
larger volume. Additionally, one could implement the opti-
mization presented by Beck et al. [12] for better registration
results with hardware which is not synchronized in time.
Finally, it could be useful to extend the method to optionally
detect the lattice in an IR or color image as well. This might
improve the accuracy a bit more, e.g., if one wants to register
depth-only sensors or LiDAR sensors, which do not provide
an infrared or color image, with RGB-D sensors, which have
such an additional image.
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