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Abstract
For security inspection, detecting prohibited items in X-ray images is challenging since they are usually occluded by non-
prohibited items. InX-ray images, differentmaterials present different colors and textures.On this basis,we exploit thematerial
characteristics to detect occluded prohibited items. Moreover, the occlusion mainly exists between prohibited items and non-
prohibited ones, belonging to inter-class occlusion.We propose aMaterial-aware Cross-channel InteractionAttention (MCIA)
module which can use the material information of X-ray images to deal with the inter-class occlusion. Specifically, MCIA
is composed of Material Perception (MP) and Cross-channel Interaction (CI). MP captures distinctive material information
of X-ray images and CI gets the local cross-channel interaction to convert material information into channel-wise weights.
By combining MP and CI, MCIA effectively helps the network to highlight the core features of prohibited items while
suppressing non-prohibited items. Meanwhile, we design the MCIA-Net and MCIA-FPN by placing our MCIA module
behind each stage in ResNet. Our MCIA-Net and MCIA-FPN can be used as backbones to detect occluded prohibited items.
Note that MCIA-FPN also takes into account the prohibited items of various sizes. Our MCIA-Net andMCIA-FPN have been
comprehensively validated on the SIXray dataset and OPIXray dataset. The experimental results prove the superiority of our
method. Furthermore, our proposed MCIA module outperforms several widely used attention mechanisms and effectively
improves the performance of Faster R-CNN and Cascade R-CNN in detecting occluded prohibited items.

Keywords Object detection · Prohibited items · X-ray images · Occlusion

1 Introduction

Security inspection is extremely important to maintaining
airport and traffic safety. Currently, X-ray scanners are usu-
ally used to detect prohibited items in baggage. Even though
the scanners can provide detailed insight into the baggage
content, existing X-ray security inspection still relies on
cumbersome manual detection. Manual detection is easily
affected by eye fatigue, which leads to missed detection and
consumes a lot of manpower and time. It is a trend to develop

B Huiqian Du
duhuiqian@bit.edu.cn

Man Wang
3120190807@bit.edu.cn

1 School of Information and Electronics, Beijing Institute of
Technology, Beijing 100081, China

2 School of Integrated Circuits and Electronics, Beijing
Institute of Technology, Beijing 100081, China

3 The Inner Mongolia Autonomous Region Public Security
Bureau, Hohhot 010051, China

a reliable and accurate method for automatically detecting
prohibited items.

Machine learning approaches have been proposed to auto-
matically detect prohibited items in X-ray images. These
methods are mainly divided into two categories, non-deep
learning methods and deep learning methods [1].

Non-deep learning methods exploit hand-crafted features
such as SURF [4], FAST-SURF [19], SIFT [30], based on
which the items are classified into the prohibited or safe ones
by using support vector machines (SVM) [4,19], Random
Forest [18], and K-Nearest Neighbor (K-NN) [37]. However,
non-deep learningmethods heavily rely on features extracted
manually to classify prohibited items.

Recently, deep learning (DL) has made great achieve-
ments in image classification and object detection. A deep
convolutional neural network can automatically extract low-
level and high-level features, which yields a significant
improvement in object detection. The mainstream object
detection can be divided into one-stage and two-stage. One-
stage detectors do not rely on region proposals, the most
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representative models are YOLO [5,33–35], SSD [27], and
RetinaNet [25]. Two-stage detectors rely on region propos-
als, pioneered by RCNN architecture, including Fast R-CNN
[12], Faster R-CNN [36], and follow-up R-FCN [10]. More
recently, FPN [24] has made full use of multi-scale feature
maps to solve the difficulty of detecting small size objects.

Researchers exploited the aforementioned detectors to
detect prohibited items and presented promising results. For
instance,Liu et al. [26] employed a two-stage approachFaster
R-CNN [36] to detect subway X-ray images and achieved
the mAP of 0.77. Akcay et al. [2] compared the gun detec-
tion accuracy of Faster R-CNN [36] and R-FCN [10] based
on DBF2/6 datasets [3]. A follow-up work [40] introduced
a multi-view pooling layer based on Faster R-CNN [36] to
achieve better performance.

As shown in Fig. 1, we can see that prohibited items in
X-ray images have three main characteristics. First, items
of different materials in X-ray images appear with different
pseudo colors and textures. This characteristic of material
information facilitates the detection of prohibited items. Sec-
ond, the size of prohibited items in X-ray images varies. It is
difficult to design a network that can detect large and small
objects at the same time. Third, prohibited items in the bag-
gage may be seriously occluded by messy non-prohibited
items. The occlusionmainly belongs to inter-class occlusion,
which is easy to cause missed detection. Although the emer-
gence of deep learning has greatly promoted the development
of prohibited item detection, the latter two characteristics are
still themain difficulties confronted by prohibited itemdetec-
tion in X-ray images.

To solve the problem of detecting items of various sizes,
Liang et al. [22,23] used SSD [27] to generate multi-scale
feature maps. Liu et al. [29] utilized YOLOv2 [34] to train
with multi-scale, and Cui et al. [9] adopted RetinaNet [25]
with FPN [24] as the backbone to detect gun. A recent work
[46] added a semantic enrichmentmodule (SEM) and a resid-
ual module (Res) to FSSD [21] for detecting prohibited items
with small size.

To cope with the occlusion problem, Hassan et al. [13,14]
applied structure tensors to extract contours of prohibited
items, but they need elaborate parametric tuning. Miao et
al. [31] proposed a dataset named Security Inspection X-ray
(SIXray) and employed a class-balanced hierarchical frame-
work (CHR) to detect occluded prohibited items in SIXray.
Wei et al. [43] proposed to combine edge detection and atten-
tionmodel namedDe-occlusionAttentionModule (DOAM),
they tested DOAM on their proposed Occluded Prohibited
Items X-ray (OPIXray) dataset. Nevertheless, the methods
in [31,43] have only been validated on one dataset, and their
performance under occlusion needs to be improved.

In this paper, we deal with the problem of inter-class
occlusion by introducing the attention mechanism. In the
scenario of heavy occlusion, the shape and appearance of

overlapped prohibited items are incomplete, while the mate-
rial characteristics are still preserved. Thus, we leverage the
material information to enhance local features of occluded
prohibited items. We propose a channel attention module
named Material-aware Cross-channel Interaction Attention
(MCIA). By determining channel-wise weights according
to the material information of X-ray images, our proposed
MCIA recalibrates the features to emphasize important local
features of occluded prohibited items and suppress unnec-
essary background information accordingly. In addition, we
design theMCIA-Net andMCIA-FPN by placing our MCIA
module behind each stage of ResNet. Note that our MCIA-
FPN also takes into account the various sizes of prohibited
items. Comprehensive experiments on the X-ray datasets
prove that our MCIA-Net and MCIA-FPN can bring a
promising improvement to detectors in detecting occluded
prohibited items.

Overall, our main contributions are summarized as fol-
lows:

(1) We propose a novel channel attention module named
Material-aware Cross-channel Interaction Attention
(MCIA). Our MCIA consists of two sub-modules, Mate-
rial Perception (MP) for capturing the material infor-
mation of X-ray images from each channel, and Cross-
channel Interaction (CI) for capturing local cross-channel
interaction to convert the material information into
channel-wise weights. By combining MP and CI, with
slightly computational overhead, MCIA can lay partic-
ular emphasis on local features of occluded prohibited
items and suppress non-prohibited items accordingly.

(2) In contrast to the prior works, we propose to place our
MCIA module behind each stage in ResNet, instead of
inserting it into the residual blocks. In our designed
MCIA-Net and MCIA-FPN, just four MCIA modules
are needed to obtain performance improvement, increas-
ing negligible model complexity. In addition to solving
the problemof inter-class occlusion, ourMCIA-FPNalso
takes into account the prohibited items of different sizes.

(3) The experimental results on the SIXray dataset [31] and
OPIXray dataset [43] demonstrate that by using MCIA-
Net or MCIA-FPN as the backbone, the performance
of Faster R-CNN and Cascade R-CNN can be effec-
tively improved. Besides, ourMCIA is superior to several
widely used attention mechanisms in detecting occluded
prohibited items.

2 Related work

2.1 Style information extracting

Extracting style information from convolution feature maps
has been extensively studied in the field of style transfer. If
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Fig. 1 Examples of X-ray images from SIXray dataset [31], prohibited items are in the area marked with a red box

we can extract the style information successfully, the style of
one image can be transferred into another. As illustrated in
[32], the style information of an image can be encoded by the
feature statistics of a convolutional neural network (CNN).
The pioneering work [11] introduced a new algorithm and
exploited second-order feature statistics as style information
to perform style transfer. A follow-up work [17] presented
a novel adaptive instance normalization (AdaIN) layer and
showed that style information including colors and textures
of an image can be arbitrarily transferred by changing chan-
nel mean and standard deviation. On this basis, the recent
work [45] takes the seasonal features of a remote sensing
image as its style features and extracts them by channel-wise
mean and standard deviation as in style transfer.

Similar to style information, the material information
contained in X-ray images is also related to colors and tex-
tures. Thus, we adopt the channel-wise mean and standard
deviation of each feature map as material information. By
leveraging the material characteristics, our proposed MCIA
can help the network to emphasize or suppress information
according to its importance to prohibited item detection.

2.2 Attentionmechanism

It has beenproven that the attentionmechanismhas the poten-
tial to improve the performance of several tasks [28,38,39],
including object detection. Attention mechanisms allow the
network to concentrate more on useful information and
suppress useless ones. One of the heuristic approaches is
squeeze-and-excitation (SE) [16], shown in Fig. 2d. As a
channel attention module, SE helped the network to improve
its performance. Some works attempted to combine the SE
block with other blocks. The convolutional block attention
module (CBAM) [44] provided considerable performance
gains over the SE block by emphasizing channel attention
and spatial attention simultaneously. Global context network
(GCNet) [8] simplified the non-local (NL) neural network

[42] and integrated the NL with the SE block, which can
model the global context.

Some works made efforts on modifying the structures of
the SE block and effectively achieving competitive perfor-
mance. As illustrated by Fig. 2b, the style-based recalibration
module (SRM) [20] adopted global average pooling and
global standard deviation pooling. SRM [20] verified that
the combination of global average pooling and global stan-
dard deviation pooling outperforms global average pooling.
Efficient channel attention (ECA) [41] aimed to learn chan-
nel attention effectively with low model complexity. ECA
[41] proved that channels and weights need to correspond
directly, while SE [16] used 2D convolution resulting in indi-
rect correspondence between the channels and weights. As
illustrated in Fig. 2c, it replaced the 2D convolution in SE
[16] with a 1D convolution to learn channel attention effi-
ciently. Both SRM [20] and ECA [41] effectively improved
the performance of SE [16].

As shown in Fig. 2a, to better extractmaterial information,
we combine global average pooling and global standard devi-
ation pooling. However, unlike SRM [20], we do not simply
integrate information by a fully connected layer. Since the 1D
convolution has an advantage in capturing channel dependen-
cies, we design two 1D convolutions to subsequently process
material information for better converting the material infor-
mation into channel-wise weights. Our two 1D convolutions
can achievemore adequate cross-channel interaction to prop-
erly assign the weights to different channels.

Furthermore, we place our MCIA modules behind each
stage inResNet, instead of inserting them into residual blocks
as inSRM[20] andECA[41].Byplacing theproposedMCIA
behind the stages, the network can address the problem of
inter-class occlusionwith a negligible computational burden,
which is further verified in experiments.
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Fig. 2 Comparison of different attention modules, including ECA [41], SRM [20], SE [16], ⊗ represents element-wise multiplication

3 Proposedmethod

In this section, we first describe the proposed Material-
aware Cross-channel Interaction Attention (MCIA) module
in detail and analyze its two submodules, Material Per-
ception (MP) and Cross-channel interaction (CI). Then we
further elucidate the framework of MCIA-Net and MCIA-
FPN. Finally, we analyze the module complexity in terms of
floating-point operations (FLOPs) and parameters.

3.1 Material-aware Cross-channel Interaction
Attention (MCIA)

The detailed structure of our proposed MCIA is shown in
Fig. 3, MCIA consists of Material Perception (MP), Cross-
channel interaction (CI), and the followed Sigmoid function.
To tackle the problem of inter-class occlusion in X-ray
images, we attempt to enhance the local features of occluded
prohibited items and suppress unnecessary channel features
by modeling the channel dependencies. Considering the
characteristic of X-ray images, we facilitate the utilization
of material information in designing our attention module.
Specifically, we design a Material Perception (MP) unit to
capture the material information of X-ray images and a
cross-channel interaction (CI) submodule to capture the local
cross-channel interaction for generating channel weights.
The weights relating to material information are supposed to
model the importance of feature channels so as to emphasize
or suppress them accordingly. Hence, by combining MP and
CI, the proposed MCIA can highlight local features regard-
ing their relevance to occluded prohibited items and remove
the influence of irrelevant information.

Specifically, given an input tensor X ∈ R
C×H×W , where

C , H and W , respectively, indicate the number of channels,
the height and width. MCIA assigns different channel-wise
weights to different channels, the channel-wise weights
WMCIA ∈ R

C×1×1 can be computed as

WMCI A = σ(C I (MP(X))) (1)

Where σ denotes sigmoid function, MP(·) is Material Per-
ception (MP) operation to extract the material information
S ∈ R

C×2 from the input tensor X ∈ R
C×H×W .C I (·) repre-

sents Cross-channel Interaction (CI) operationwhich accepts
S ∈ R

C×2 as input and converts it into channel-wise weights
WCI ∈ R

C×1×1 based on the local cross-channel interaction.
The final output of MCIA is the weighted feature map

X̂ ∈ R
C×H×W which can be computed as:

X̂ = X ⊗ WMCI A (2)

Where ⊗ represents element-wise multiplication.

3.1.1 Material Perception(MP)

Inspired by SRM [20], we adopt the global average pooling
and global standard deviation pooling to better extract the
material information of X-ray images. After obtaining the
channel-wise mean and standard deviation, we concatenate
them together to representmaterial information. Specifically,
for each input feature map X ∈ R

C×H×W , the channel-wise
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Fig. 3 Material-aware Cross-channel Interaction Attention (MCIA). Conv1D1 and Conv1D2 represent the two 1 D convolutions of k = f (C)

mean and standard deviation can be expressed as follows.

μc = 1

HW

H∑

h=1

W∑

w=1

xchw (3)

σc =
√√√√ 1

HW

H∑

h=1

W∑

w=1

(xchw − μc)
2 (4)

The output of Material Perception (MP) is defined as:

S = cat(μc, σc) (5)

Where cat(·) means concatenating two tensors together.
As shown in Fig. 3, after getting channel-wise mean and
standard deviation, Material Perception (MP) concatenates
the channel-wise mean μc ∈ R

C×1 and standard deviation
σc ∈ R

C×1 to obtain S ∈ R
C×2 .

3.1.2 Cross-channel Interaction (CI)

Cross-channel Interaction (CI) takes thematerial informa-
tion S ∈ R

C×2 as input. Based on the fact that 1D convolution
can capture local cross-channel interaction to make the chan-
nels and their weights directly related [16]. In Cross-channel
Interaction (CI), we design two 1D convolutions to make
different channels sufficiently interact with nearby channels.

As shown in Fig. 4b, given an input tensor X ∈ R
C×H×W ,

the filter (red dotted box) slides along the H*W, thus 2D
convolution does not involve interaction between channels.
On the contrary, as shown in Fig. 4a, the filter slides along
the dimension C in 1D convolution, thus one sliding involves
interaction between k channels.

Fig. 4 Schematic diagram of one-dimensional convolution and two-
dimensional convolution

The local cross-channel interaction effectively converts
the material information into channel-wise weights, which
enables the network to focus on important local features of
prohibited items to remove the influence of invalid informa-
tion. Specifically, we set the same kernel size for the two 1D
convolutions as ECA [41]. The kernel size k is computed via
a function related to the channels.

k = f (C) = int | log2(C) + 1

2
| (6)

According to the above function, channels of different
dimensions can get different interaction distances, and the
interaction distance of high-dimensional channels is longer
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Fig. 5 The diagram of MCIA-Net. ResNet consists of a conv1 and four subsequent stages, including conv2_x, conv3_x, conv4_x and conv5_x,
our MCIA module is placed behind each stage. The four stages of ResNet (conv2_x to conv5_x) are stacked by residual blocks

Fig. 6 The diagram of MCIA-FPN. {P2, P3, P4, P5} represents pyramid features of FPN [31]

than that of low-dimensional channels. In Table 5, we ver-
ify the practical benefits of the selected k for our two 1D
convolutions compared to other kernel sizes.

Finally, the output of Cross-channel interaction (CI) is
formulated as:

WCI = Conv1D2(Conv1D1(S)) (7)

Where Conv1D1(·) and Conv1D2(·) represent the two 1 D
convolutions, respectively.

3.2 MCIA-Net andMCIA-FPN

3.2.1 MCIA-Net

The block diagram of the MCIA-Net is shown in Fig. 5.
ResNet composes of a conv1 and four subsequent stages,
namedconv2_x, conv3_x, conv4_xandconv5_x [15].Except
that conv1 is a convolutionwith the kernel size of 7, con2_x to
conv5_x are stacked by residual blocks. In general, attention
modules are inserted into residual blocks of the four stages.
The computational costs and parameters inevitably increase
with the growing number of modules, hence rendering sub-
optimal performance.

Instead of inserting the proposedMCIAmodule into resid-
ual blocks, we place our MCIA module behind each of the
four stages (conv2_x to conv5_x) in ResNet, so that only four
MCIA modules are needed to achieve superior performance.

Compared with the original ResNet-101, our MCIA-Net
introduces negligible parameters and computational burden.

3.2.2 MCIA-FPN

Considering the different sizes of prohibited items in X-
ray images, we design the MCIA-FPN based on MCIA-Net.
Fig. 6 illustrates the detailed architecture of our MCIA-FPN.
MCIA-FPN takes the output of MCIA to obtain {P2, P3, P4,
P5} while the original FPN [24] utilizes the output of each
stage to obtain {P2, P3, P4, P5}.

According to FPN [24], the semantic information of the
low-level features is relatively insufficient, while the object
location is accurate. In contrast, the semantic information of
high-level features is richer, while the target location is rela-
tively rough. FPN [24] makes full use of the complementary
information from different layers to extract features of dif-
ferent dimensions effectively. Therefore, in our MCIA-FPN,
{P2, P3, P4, P5} are scale attention feature maps contain-
ing both multi-scale information and attention information.
Using MCIA-FPN as a backbone, the network emphasizes
the core features of prohibited items and also takes into
account various sizes.

3.3 Module complexity analysis

Take ResNet-101 as an example, the output of conv2_x is
calculated by two methods to demonstrate the superiority of
our method.
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Fig. 7 The diagram of inserting our MCIA module into the residual
block, namely ResNet+MCIA

Fig. 8 Comparison of various attention modules in terms of network
parameters and FLOPs, including ECA [41], SRM [20], SE[16], GCNet
[8],CBAM[44], andResNet-101+MCIAwhich represents inserting our
MCIA module into residual blocks. Note that our MCIA-Net increases
the lowest model complexity

Suppose an input x0. Conv2_x is composed of three resid-
ual blocks. As shown in Fig. 7, if our MCIA is inserted into
the residual block, the output of the first residual block can
be computed as follows.

x1 = x0 ⊕ ( fR1 (x0) ⊗ W1) (8)

Where fRi (·)(i = 1, 2, 3) represents the residual block oper-
ation, Wi (i = 1, 2, 3) represents the output weights of our
proposed MCIA.

By analogy, the output of the second and third residual
block can be, respectively, calculated as:

x2 = x1 ⊕ ( fR2 (x1) ⊗ W2) (9)

x3 = x2 ⊕ ( fR3 (x2) ⊗ W3)

= (x1 ⊕ ( fR2 (x1) ⊗ W2))⊕
( fR3 (x1 ⊕ ( fR2 (x1) ⊗ W2)) ⊗ W3)

(10)

To calculate the output of the next residual block, it is
necessary to iterate the output of the previous residual block
and iterate the weights continuously. With the accumulation
of residual blocks, the computational cost also increases.

As shown in Fig. 5, if we place our MCIA behind the
conv2_x, the output of the three residual blocks can be
defined as:

x1 = x0 ⊕ fR1 (x0) (11)

x2 = x1 ⊕ fR2 (x1) (12)

x3 = x2 ⊕ fR3 (x2) (13)

x3 represents the original output of conv2_x, by placing our
MCIA behind conv2_x, the output can be finally calculated
as:

x̂3 = x3 ⊗ W3 = (x2 ⊕ fR3 (x2)) ⊗ W3 (14)

We can find that our MCIA-Net involves fewer parame-
ters.

As illustrated by Fig. 8, our MCIA-Net is lightweight
in terms of floating-point operations (FLOPs) and param-
eters. We fairly compare MCIA-Net with several attention
mechanisms based on ResNet-101 and analyze the model
complexity. From the comparison between our MCIA-Net
and the other five attention mechanisms, we can find that our
MCIA-Net brings the least additional parameters.

In terms of computational complexity, MCIA-Net only
introduces negligible extra computation to the original
ResNet-101. For example, given a single forward pass of
a 224×224 pixel image, MCIA-Net hardly increases the
relative computational burden. This phenomenon may be
attributed to the fact that our MCIA-Net only places our
MCIAmodules behind each stage, while the other five atten-
tion mechanisms and ResNet-101+MCIA insert attention
modules into the residual blocks, resulting in more compu-
tational burden.
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Fig. 9 Visual examples showcasing the performance of Cascade R-CNN+MCIA-FPN (ours) on SIXray dataset. (a) (b) (c) (d) represent the original
images, and (e) (f) (g) (h) represent the images with detecting boxes

To sum up, our proposed MCIA-Net is more efficient
than several attention mechanisms in terms of parameters
and computational consumption.

4 Experiment

In this section, we systematically elucidate our experiments.
First, we describe our implementation details, including
datasets, evaluation metrics and training setting. Second,
we verify the superiority of our MCIA-Net and MCIA-FPN
on the SIXray dataset [31] and OPIXray dataset [43] com-
prehensively. Finally, in our ablation studies, we analyze
three aspects, respectively, including the effectiveness of our
MCIAmodule, the effects of the kernel size, and the influence
of the placement of MCIA.

4.1 Implementation details

4.1.1 Datasets

To provide evidence for the effectiveness of our proposed
MCIA module, we conduct comprehensive experiments
on two publicly available X-ray image datasets, including
SIXray dataset [31] and OPIXray dataset [43].

SIXray dataset [31] contains 1,059,231 complex X-ray
images, of which 8929 contain six categories of prohib-
ited items, namely, gun, knife, wrench, pliers, scissors, and
hammer. Each of the 8929 X-ray images contains several
prohibited items that are multi-scale and highly occluded.
Of the 8929 X-ray images, about 80% are used for training
and 20% for testing. Note that the hammer class with merely
60 samples is not used in our experiments.

OPIXray dataset [43] contains 8885 X-ray images, of
which 7109 are used for training while the remaining 1776
are used as a test set. The test set is divided into three levels of
occlusion, namely, OL1, OL2, OL3. Furthermore, the dataset
contains five classes of prohibited items, including folding
knives, straight knives, utility knives, multi-tool knives, and
scissors. Different from the SIXray dataset [31], merely 35
images of the OPIXray dataset [43] contain more than one
prohibited item, while the vast majority of images only con-
tain one.

4.1.2 Evaluation metrics

Mean Average Precision (mAP) is the index for measuring
recognition accuracy in object detection. We use the mAP to
evaluate theperformanceof ourmethod indetectingoccluded
prohibited items.
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4.1.3 Training setting

We employ two detectors including Faster R-CNN [36] with
IoU threshold of 0.5 and Cascade R-CNN [7] with IoU
threshold of {0.5, 0.6, 0.7}, where ResNet-101 and ResNet-
101 with FPN [24] are taken as backbones. Specifically, we
implement all programs by PyTorch on a PC equipped with
NVIDIA 1080Ti GPUs. During training, the training data is
random shuffling and horizontal flipping. The optimizer is
stochastic gradient descent (SGD) with a momentum of 0.9,
weight decay of 0.0001. We set the initial learning rate 0.001
which is divided by 10 with a learning rate decay step of 5.

4.2 Evaluations on SIXray dataset

We use Faster R-CNN [36] and Cascade R-CNN [7] as
baselines to evaluate our MCIA-Net and MCIA-FPN on the
SIXray dataset [31]. We also compare our method with the
CHR [31]. Table 1 shows the results, our method achieves
better performance than CHR [31]. We can observe that
Cascade R-CNN+MCIA-FPN achieves the mAP of 0.8370
leading the CHR [31] by 4.33%. Some visual results of our
method are shown in Fig. 9. Note that when X-ray images
contain some disruptive effects, our method can also detect
prohibited items. Meanwhile, with ourMCIA-Net or MCIA-
FPN as the backbone, the performance of basic detectors is
obviously improved. For example, MCIA-Net and MCIA-
FPN can improve the performance of Faster R-CNN by
1.47% and 1.52%, respectively. We attribute the improve-
ment to the capability of our MCIA module in dealing with
inter-class occlusion.

In addition to inter-class occlusion, intra-class occlusion
also exists in X-ray images. Soft-NMS [6] is helpful to solve
the problem of intra-class occlusion, it increases the mAP of
Cascade R-CNN+MCIA-FPN from 0.8370 to 0.8523.

4.3 Evaluations on OPIXray dataset

To further verify the effectiveness of MCIA-Net and MCIA-
FPN, we use Faster R-CNN [36] and Cascade R-CNN [7] to
conduct experiments on the OPIXray dataset [43]. In partic-
ular, we compare our methods with DOAM [43]. As can be
observed from Table 2, Faster R-CNN+MCIA-Net outper-
forms FCOS+DOAM [43] by 3.48%. The visual results of
ourmethod are shown in Fig. 10. Furthermore, we can clearly
find that MCIA-FPN brings impressive improvements to the
baselines Faster R-CNN [36] andCascadeR-CNN [7]. Using
the proposed MCIA-FPN as a backbone, the performance of
the two detectors can be improved by 1.66% and 2.37%,
respectively.

According to the work [43], the OPIXray dataset is
divided into three levels of occlusion, OL1, OL2, OL3.
Under the three levels of occlusion, we compare our methods

with DOAM [43]. As shown in Table 3, using MCIA-Net
and MCIA-FPN, both detectors can achieve considerable
improvement, regardless of the levels of occlusion. The
results prove that ourMCIA-Net has great potential in detect-
ing occluded prohibited items.

4.4 Ablation studies

In this part, we conduct three experiments. The first one
examines the effectiveness of our proposed MCIA module
itself. The second one explains the superiority of the kernel
size of our two 1D convolutions. The last experiment proves
why the MCIA module is placed behind each stage. In abla-
tion studies, we employ Cascade R-CNN [7] as a baseline
and train the detector on the SIXray dataset [31].

4.4.1 Effectiveness of MCIA module

To verify the effectiveness of the proposedMCIAmodule, in
this subsection, we insert ourMCIAmodule into the residual
blocks, which is shown in Fig. 7. We compare our method
with 5 attention mechanisms, including ECA [41], SRM
[20], SE [16], GCNet [8], CBAM [42]. For a fair compari-
son, we implement all attentionmechanisms according to the
original paper. From Table 4, we can see that the proposed
MCIAachieves themAPof 0.8274 and acquires performance
gains of 1.45% compared with the baseline ResNet-101. We
attribute the superior performance to the ability of ourMCIA
module in dealing with inter-class occlusion. It can highlight
the features of prohibited items by capturing the material
information and converting it into channel-wise weights cor-
respondingly.

Additionally, it isworth noting that theResNet-101+MCIA
(mAP: 0.8274) performs worse than the MCIA-FPN (mAP:
0.8370). It proves that for the proposed MCIA module, plac-
ing it behind each stage (conv2_x to conv5_x) is the best
choice.

4.4.2 Number of kernel size

As illustrated in the previous section, our MCIA module
involves two 1D convolutions with the same kernel size
f (C). To demonstrate why we choose f (C), we set ker-
nel size {3, 5, 7, 9, f (C)}, while other settings are exactly
the same. The results are shown in Table 5, which shows the
influence of kernel size on the MCIA module. The results
indicate that our kernel size outperforms other kernel size
values in detecting occluded prohibited items.

4.4.3 Influence of the placement of MCIA

We finally explore the effect of placing the MCIA module
behind different stages. As shown in Table 6, first, we only
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Table 1 Evaluations on SIXray Dataset [31].

Method Backbone Knife Pliers Gun Wrench Scissors mAP

Faster R-CNN ResNet-101 0.7365 0.8085 0.8122 0.7841 0.8172 0.7917

Faster R-CNN+MCIA-Net(ours) 0.7588 0.8008 0.8076 0.7740 0.8909 0.8064

Faster R-CNN+FPN ResNet-101 0.7127 0.8101 0.8175 0.7911 0.8395 0.7942

Faster R-CNN+MCIA-FPN(ours) 0.7182 0.7965 0.8543 0.7979 0.8675 0.8069

Cascade R-CNN+FPN ResNet-101 0.7739 0.8621 0.8136 0.7867 0.8284 0.8129

Cascade R-CNN+MCIA-FPN(ours) 0.7839 0.8547 0.8926 0.7954 0.8587 0.8370

Cascade R-CNN+MCIA-FPN(ours)+Soft-NMS 0.8375 0.8679 0.8575 0.8150 0.8834 0.8523

ResNet101+CHR[31] ResNet-101 0.8721 0.8828 0.8545 0.7123 0.6468 0.7937

Table 2 Evaluations on OPIXray Dataset [43].

Method Backbone Folding Straight Scissor Utility Multi-tool mAP

Faster R-CNN ResNet-101 0.8906 0.7241 0.9044 0.8619 0.8986 0.8559

Faster R-CNN+MCIA-Net(ours) 0.8908 0.7448 0.8999 0.8613 0.8975 0.8589

Faster R-CNN+FPN ResNet-101 0.8512 0.6422 0.8924 0.7754 0.8784 0.8079

Faster R-CNN+MCIA-FPN(ours) 0.8841 0.6475 0.8993 0.8440 0.8474 0.8245

Cascade R-CNN+FPN ResNet-101 0.8301 0.6406 0.9011 0.7558 0.7720 0.7799

Cascade R-CNN+MCIA-FPN(ours) 0.8478 0.6299 0.8952 0.7749 0.8704 0.8036

SSD+DOAM[43] 0.8137 0.4150 0.9512 0.6821 0.8383 0.7401

YOLOv3+DOAM[43] 0.9023 0.4173 0.9696 0.7212 0.9523 0.7925

FCOS+DOAM[43] 0.8671 0.6858 0.9023 0.7884 0.8767 0.8241

Table 3 Comparison between
our methods and DOAM [43] in
three occlusion levels of
OPIXray dataset [43].

Method OL1 OL2 OL3

Faster R-CNN+MCIA-Net(ours) 0.8689 0.8424 0.8537

Faster R-CNN+MCIA-FPN(ours) 0.8224 0.8171 0.7958

Cascade R-CNN+MCIA-FPN(ours) 0.8223 0.7903 0.7747

SSD+DOAM[43] 0.7787 0.7245 0.7078

attach our MCIA module behind the conv2_x and then add
one stage at a time, totaling four experiments. From the fourth
row of the table, we can observe that our MCIA-Net brings
the best performance benefits. We conclude the reason is that
placing our MCIA module behind each stage in ResNet can
combine multi-level features, which is helpful for the net-
work to deal with the inter-class occlusion in X-ray images.

5 Conclusion

In this paper, we focus on detecting highly occluded prohib-
ited items in X-ray images, which is promising in security
inspection but is understudied. To this end, we proposed the
Material-aware Cross-channel Interaction Attention (MCIA)
module to capture thematerial information and convert it into

channel-wise weights based on local cross-channel interac-
tion. MCIA is effective for dealing with inter-class occlusion
in X-ray images. According to the material information,
MCIA can lead the network to concentrate on the local fea-
tures of occluded prohibited items and remove the influence
of unnecessary non-prohibited items information. Mean-
while, by placing the MCIA behind each stage (conv2_x to
conv5_x) in ResNet, we designed MCIA-Net and MCIA-
FPN. Our MCIA-FPN takes into account both multi-scale
information and attention information. To comprehensively
exhibit the superiority of our proposed method, we evaluated
our MCIA-Net and MCIA-FPN on the SIXray dataset [31]
and OPIXray dataset [43]. Experimental results demonstrate
that our MCIA-Net and MCIA-FPN bring obvious improve-
ment in detecting occluded prohibited items. Moreover, our
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Table 4 Comparison of various
attention mechanisms on SIXray
dataset [31].
ResNet-101+MCIA means
inserting our MCIA module into
residual blocks, as shown in Fig.
7.

Method Knife Pliers Gun Wrench Scissors mAP

ResNet-101+FPN 0.7739 0.8621 0.8136 0.7867 0.8284 0.8129

ResNet101+ECA+FPN 0.7664 0.8343 0.8778 0.7775 0.8431 0.8198

ResNet-101+SRM+FPN 0.7777 0.8133 0.8815 0.7987 0.8441 0.8231

ResNet-101+SE+FPN 0.7895 0.8363 0.8197 0.7982 0.8376 0.8162

ResNet-101+GCNet+FPN 0.7445 0.8184 0.8622 0.7916 0.8111 0.8056

ResNet-101+CBAM+FPN 0.7670 0.8328 0.8709 0.7846 0.8488 0.8208

ResNet-101+MCIA+FPN 0.7759 0.8424 0.8632 0.8147 0.8407 0.8274

MCIA-FPN(ours) 0.7839 0.8547 0.8926 0.7954 0.8587 0.8370

Table 5 Results of our MCIA
module with different numbers
of k.

Kernel Size Knife Pliers Gun Wrench Scissors mAP

k=3 0.7734 0.8564 0.8934 0.7783 0.8643 0.8331

k=5 0.7674 0.8293 0.8083 0.7828 0.8349 0.8046

k=7 0.7765 0.8558 0.8673 0.8020 0.8577 0.8319

k=9 0.7794 0.8526 0.8904 0.7818 0.8635 0.8335

k=f(C)(ours) 0.7839 0.8547 0.8926 0.7954 0.8587 0.8370

Table 6 Comparison of placing
our MCIA module behind
different stages.

Method Knife Pliers Gun Wrench Scissors mAP

conv2_x 0.7662 0.8332 0.8510 0.7795 0.8110 0.8082

conv2_x-conv3_x 0.7758 0.8373 0.8508 0.7989 0.8315 0.8189

conv2_x-conv4_x 0.7667 0.8560 0.8773 0.8116 0.8647 0.8353

conv2_x-conv5_x(MCIA-FPN) 0.7839 0.8547 0.8926 0.7954 0.8587 0.8370

Fig. 10 Visual examples showcasing the performance of Faster R-CNN+MCIA-Net (ours) on OPIXray dataset. (a) (b) (c) (d) represent the original
images, and (e) (f) (g) (h) represent the images with detecting boxes
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MCIA-Net outperforms several attention mechanisms with
lower model complexity.
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