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Abstract
Pose-invariant facial expression recognition is one of the popular research directions within the field of computer vision,
but pose variant usually change the facial appearance significantly, making the recognition results unstable from different
perspectives. In this paper, a novel deep learning method, namely, soft thresholding squeeze-and-excitation (ST-SE) block,
was proposed to extract salient features of different channels for pose-invariant FER. For the purpose of adapting to different
pose-invariant facial images better, global average pooling (GAP) operation was adopted to compute the average value of
each channel of the feature map. To enhance the representational power of the network, Squeeze-and-Excitation (SE) block
was embedded into the nonlinear transformation layer to filter out the redundant feature information. To further shrink the
significant features, the absolute values of GAP and SE were multiplied to calculate the threshold suitable for the current
view. And the developed ST-SE block was inserted into ResNet50 for the evaluation of recognition performance. In this
study, extensive experiments on four pose-invariant datasets were carried out, i.e., BU-3DFE, Multi-PIE, Pose-RAF-DB and
Pose-AffectNet, and the influences of different environments, poses and intensities on expression recognitionwere specifically
analyzed. The experimental results demonstrate the feasibility and effectiveness of our method.

Keywords Pose-invariant facial expression recognition · Squeeze-and-excitation (SE) block · Soft thresholding SE block ·
Deep residual networks

1 Introduction

Facial expression, as the most intuitive signal for human to
convey social information, has become a research hotspot
in the field of human–computer interaction (HCI). Both
physical and inner thoughts can be obtained through the
analysis of expression variation. In previous research, var-
ious approaches have been proposed to solve the issues of
facial expression recognition (FER) [1–4]. However, most
of the exiting works focus on the recognition of frontal or
near-frontal facial expressions, with relatively few studies
on pose-variant. Nevertheless, in real-world scenarios, the
captured facial images are usually determined by the angular
position of the camera, which leads to rather unstable recog-
nition accuracy [5–8]. Therefore, how to effectively extract

B Xingqiao Liu
1719618835@qq.com

1 College of Electrical and Information Engineering, Jiangsu
University, Zhenjiang City, China

the features based on pose-invariant images is a very chal-
lenging and meaningful task.

In the past fewdecades, several effective feature extraction
techniques have been proposed for pose-invariant expression
recognition. According to the research route, those tech-
niques can be roughly classified into traditional based as well
as deep learning-based methods. When using traditional-
based methods, facial images are usually represented by
geometric feature models or cropped into different regions
of interest (ROIs). For example, Zhang et al. [9] used the pre-
view-trained Active Appearance Models (AAMs) to extract
the positions of facial points, and then trained each set of fea-
ture points through a specific model for pose-invariant FER.
Zheng et al. [10] utilized 83 landmark points and their sur-
rounding regions to represent facial expressions in different
poses, and then extracted SIFT features for expression clas-
sification. In [11], they divided the multi-view facial images
into a set of sub-blocks with the same size, and extracted
LBP features from each block for FER afterward. Similarly,
Zhang et al. [12] firstly presented a spatially coherent feature
learning method for pose-invariant FER (SC-PFER), which
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normalized the expressions and poses with same horizontal
and pitch angles, subsequently extracted a sequence of key
regions for unsupervised feature learning, andfinally used the
extracted regions for FER. All these above-mentioned meth-
ods can achieve good results, but in practical application,
pre-processing is an indispensable operation before feature
extraction.

When using deep learning-based methods, to extract the
regions of interest more accurately, numerous researches
attempt to use multi-channel and multi-model feature learn-
ing methods to improve the representation ability of CNNs.
As shown in Fig. 1, Liu et al. [13] presented a multi-
channel pose-aware convolution neural network (MPCNN)
for multi-view FER, in which channel-M1, channel-M2
and channel-M3 are used to extract whole facial region,
eyes region and mouth region, respectively, and then these
regions are provided to the classifier for expression recog-
nition. Similarly, Liu et al. [14] designed a multi-channel
convolution network for pose-invariant FER. The features
extraction part includes three sub-CNNs, which learn dif-
ferent regions of interest (ROIs) of expressions, and these
fusion features are fed into pose-specific CNN operations
to enhance high-level feature representation. Liu et al. [15]
designed a multi-channel network with pose-invariant FER,
inwhichDML-Net is composed of three parallel channel net-
works, learning global and local features fromdifferent facial
regions, and then integrating them for FER. It is worth men-
tioning that the accuracy of KDFE, BU-3DFE andMulti-PIE
database are 88.2%, 83.5% and 93.5%, respectively. More-
over, in [16], they used two different channels to extract
images features, and employed fixed loss weighting parame-
ters to enhance the accuracy of expression recognition. Based
on this method, Zheng et al. [17] added adaptive dynamic
weight (ADW) in different channels to filter useful informa-
tion, which not only reduced the chance of over-fitting, but
also improved the training efficiency of the network.

Although the traditional-based and deep learning-based
methods both have performed well in reducing the influ-
ence of occlusion and pose-invariant, there still remain
several inevitable shortcomings. In the traditional-based set-
ting, these methods generally require to manually crop out
a large number of ROIs, which destroys the construction of
automatic expression recognition system, especially the geo-
metric feature models that are more dependent on the precise
localization of feature points will be greatly limited the capa-
bilities of following feature extraction and representation. In
the deep learning-based methods setting, the multi-channel
multi-model features learning methods need to not only con-
sider the features of each region, but also pay attention to
the impact of the loss function of each region on the accu-
racy of expression recognition, which usually results in a
the convolution neural network being more complex than
the traditional end-to-end networks. Moreover, using ROIs

to represent the facial images in sparse pattern may not be
possible to represent the original meaning of expressions
completely and precisely.

In this paper, as far as the overall information of the pose-
invariant expression images is concerned, the cropping of
ROIs and calibration of geometric feature points is avoidable,
and good operation of the automatic expression recognition
system can be well ensured. All these benefits are brought
by the Squeeze-and-Excitation (SE) block [20], which can
dynamically recalibrate channel-wise feature in each convo-
lutional layer in spite of the different feature maps contained
in each convolutional layer, aiming to enhance the represen-
tation ability of networks on the useful layer and suppress
the role of the useless layer. According to this technique, Ma
et al. [18] proposed an optimized neural network based on
ResNet18 and SE blocks for FER, and embedded SE model
into ResNet model, which not only reduced the calculation
parameters, but also improved the flow capacity of the net-
work layer by layer. Li et al. [19] presented a Slide-Patch and
Whole-Face Attention model with SE blocks (SPWFA-SE)
formulti-view FER inwild condition, in which SE blocks are
used as attention modules to train the weights of pre-trained
patches of each channel, which can further filter out salient
features from multi-view facial images. Inspired by [18, 19],
in order to accommodate the different visual images, this
paper proposed a soft thresholding multi-channel squeeze-
and-extraction (ST-SE) block for pose-invariant FER. In each
ST-SE block, the extracted feature maps were flattened by
global average pooling (GAP), which were then sent into
SE module. Consequently, the threshold parameters were
obtained by multiplying the SE training parameters and the
absolute value GAP, which could be regarded as a specific
self-attention function aiming at filtering the salient features
in the current views. The main contributions of this paper are
summarized as follows:

1. The soft thresholding SE (ST-SE) block for pose-
invariant FER is designed. Not only the SE method, but
also the global average pooling (GAP) layer is added to
ST-SE block. GAP operation can provide a large number
of the average values from each channel of the feature
map, which can force the network to pay more attention
to the features in the current view.

2. The SE operation multiplied by the absolute value GAP
is regarded as a self-attention mechanism, which can not
only extract salient feature information, but also reduce
the influence of pose-variant on the recognition accuracy.

3. In order to illustrate the effectiveness of designed ST-SE
block, ResNet50 is used as the backbone architecture, as
well as SE and ST-SE blocks are embedded into deep
architecture as nonlinear transformation layers, respec-
tively.
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Fig. 1 The main steps of
multi-channel facial expression
recognition

4. This study implements extensive experiments on four
public pose-invariant datasets. As shown in Fig. 2, there
are not only controlled but also real-world scenario
dataset, i.e., BU-3DFE, Multi-PIE, Pose-RAF-DB and
Pose-AffectNet. In addition, the performance of SE and
ST-SE block with some previous pose-invariant FER
methods is compared, and the experiments show that the
ST-SE block designed in this paper is superior.

The remainder chapters are introduced as follow: Sect. 2
introduces the relatedworks of pose-invariant FER. Section 3
represents the proposed method in detail. The experimental
results and analysis are introduced in Sect. 4. Finally, the
conclusions are given in Sect. 5.

2 Related work

The ResNets and ST-SE block both contain some simi-
lar basic components, including convolutional layer, batch
normalization and rectifier linear unit, which are generally
considered as the essential components of convolution oper-
ations. In addition, the Global average pooling (GAP), which
fully-connected layer and cross-entropy as indispensable
ancillary operations, are usually utilized in deep learning to
improve classification tasks. Next, this paper introduces the
concepts of these components.

2.1 Basic components

Convolution layer (Conv) is a role component that imple-
ments the convolution operation to the input image for
extracting feature maps and then transmits them to the next
layer. Each convolutional layer consists of a plurality of neu-
ronswith trainableweight and biases, and each featuremap is
implemented by a convolutional kernel over the input chan-
nels with fixed stride, which can be defined as follows:

xl+1j �
∑

i∈Mj

xli ∗ kli j + blj (1)

where xli denotes the input featuremap at the i th channel, xl+1i
denotes the output feature map at the j th channel, k denotes
the weight matrix of the convolutional kernel, b denotes the
bias, and Mj denotes one of the feature maps in convolution
layer.

As a feature normalizing method, batch normalization
(BN) is usually inserted by convolution layer to accelerate
the convergence of network training [21]. The BN plays a
role in decreasing the offset of internal covariates during
the process of training deep learning network. Especially in
pose-invariant context, the distribution of training data usu-
ally varies with different views. BN operation can normalize
the features of activation values to a fixed distribution during
the training process, and adjust the feature mapping within
a reasonable distribution range, which is an essential oper-
ation in a very deep network. The calculation steps can be
expressed as follows:

μ(Nbatch) � 1

m

m∑

i�1

xi (2)

σ 2
(Nbatch)

� 1

m

m∑

i�1

(
xi − μ(Nbatch)

)2 (3)

x̂i � xi − μ(Nbatch)√
σ 2
Nbatch

+ ε
(4)

yi � γ x̂i + β (5)

where xi and yi denote the input and output feature maps
in current batch, respectively. m denotes the batch size. γ

and β denote scale factor and movement factor, respectively.
ε denotes a constant, which is composed to avoid meeting
undefined of

√
s at s � 0.

The rectifier linear unit (ReLU) serves as the other
indispensable component of convolution operations whose
appears and behaves are similar to a linear function, but
instead are non-saturated and nonlinear features enabling
complex layers of input feature maps to be learned. For any
positive input x, the output is the same value. However, while
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Fig. 2 Anover viewof the proposedST-SE-ResNet block.aTheResNet
block is used to extract feature map. b SE block is used to extract
prominent features from different channels. c The ST-SE block is a soft

thresholding operation that forces prominent features in current layer.
d A basic ST-SE-ResNet block. x̃ and α denote the candidate feature
maps when the threshold is determined

the input is negative, the input will be forced to be 0, which
can be expressed as f (x) � max(0, x), and can cleverly
solve the problemsof gradient vanishing andgradient explod-
ing when the parameters are trained among different layers.

2.2 Global average pooling

Global average pooling (GAP) is another indispensable oper-
ation that computes the average value from each channel of
the feature map [22]. Similar to fully connected (FC) layers,
it is usually applied for the last layer in the entire conven-
tional structure. However, since there no parameters to be
optimized, GAP can use less weights compared to FC layer,
which reduces the possibility of overfitting. In addition, it
needs to be mentioned that GAP can also solve the shift
variant problem,which provides a unique advantage for pose-
invariant and complex environmental background.

2.3 Fully connection layer

The fully connected (FC) layer is similar to the multi-
perceptron neural net-works, and the neuron activation is
fully connected with previous layer. The number of neu-
ron activation in the last layer is determined by the input
convolution kernel, and FC operation can flatten the input
into a single vector in the next layer. Therefore, FC layer
contains a large amount of parameters that characterize the
characteristics and laws of sample data. For some classical
convolutional models, i.e., VGG, GoogLeNet and ResNet,
1–3 FCs can generally solve the complex image classifica-
tion problems.

2.4 Loss function

With respect to the loss function, cross-entropy is one of
the most well-known loss functions in FER tasks. Before
implementing cross-entropy operation, a softmax function is
usually executed to limit the features range within (0, 1). It
can be defined as follows:

y j � ex j
∑Nclass

i�1 exi
(6)

where x j denotes the jth input feature map of softmax func-
tion, y j denotes a predicted probability belong to jth class,
Nclass denotes the number of classes. Then the cross-entropy
loss function can be expressed as:

E(p(y), q(y)) � −
∑Nclass

j�1
p j (y) log(q j (y)) (7)

where p(x) denotes the target values, q(x) denotes the real
probability of x belonging to the jth class.

3 Proposedmethod

From the above, it can be seen that both residual network
and SE block are composed of these basic elements. In this
section, this paper presents in detail the improvement pro-
cess of soft thresholdingmulti-channel SEResidual Network
structure (ST-SE-ResNet). As shown in Fig. 2, this study
first introduces the residual network, then describes the SE
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block, next describes the ST-SE, and finally introduces ST-
SE-ResNet block.

3.1 Residual building blocks

ReseNet is a classical network model with “identity short-
cut layer”, which has been widely concerned by scientific
researchers [23]. As shown in Fig. 2a, the basic residual block
(RBBs) consists of two BNs, two ReLUs, two Conv-layers
and an identity shortcut layer. The key operation is identity
shortcut that effectively back-propagates the gradient of loss
function to earlier layers, which makes ResNet superior to
the traditional deep learning methods. The residual block is
described as:

F(Xre sin) � H(Xre sin) − Xre sin (8)

where Xre sin denotes the input feature map, H(Xre sin)

denotes the desired feature maps and F(Xre sin) denotes the
output feature maps of one residual module.

3.2 Squeeze-and-excitation block

As mentioned in [18–20], a multi-channel SE block was
implemented to improve the representation of feature. The
function of SE block is to learn feature information from dif-
ferent channels that can enhance the representation ability
by a single basic block. As shown in Fig. 2b, for each input
channel, a weight can be trained by a basic SE block. Here
we assume X � {x1, x2, · · ·xn} is the input feature map of
SE block and Zc�{z1, z2, · · ·zn} is the corresponding output
feature map, the Squeeze operation is described as:

zc � Fsq(xc) � 1

W × H

W∑

i�1

H∑

j�1

xc(i , j), c � 1, 2, · · ·, n

(9)

whereW and H denote the width and height of input feature
maps of SE block, zc denote the output of current layer. n
denote the channel in SE block.

To enhance the representation ability from the current con-
volutional layer, Excitation operation is described as:

sc � Fex (zc, ω) � σ( f (zc, ω)) � σ(ω2δ(ω1zc)) (10)

whereω1 andω2 denote theweightmatrices in twoFC layers.
δ and σ denote ReLU and sigmoid function.

x̃c � Fscale(xc, sc) � scxc (11)

where X̃ � (x̃1, x̃2, · · · , x̃c) and Fscale(xc, sc) denote
channel-wise multiplication between scaling parameter sc
and feature map xc ∈ R

H×W .

3.3 Soft thresholding SE block

The designed soft thresholding SE block (ST-SE) is a variant
of SE, and its main difference is that a specific threshold is
learned by each channel of the feature map, meaning that
each channel can learn a specializing threshold to refine the
significant feature information under current layer of FER.
As shown in Fig. 2c, the ST-SE-ResNet block contains a
special model, where GAP is used to flatten the feature map
into a 1D vector. Next, the 1D vector is sent to two fully-
connected layers to obtain a training parameter, the operation
of which is similar to the SE block [20], and the number
of convolutional cores is equal to the numbers of channels.
Finally, the sigmoid function is used to keep the training
parameters within the range of (0, 1), and the operation is
described as follows:

αc � 1

1 + e−xc
(12)

where xc denotes the output two fully connected layers, and
αc denotes the cth training parameter. Next, the training
parameter α and |x | are multiplied to obtain the threshold.
The inspiration of this design is the fact that the threshold
parameters need to be positive and not too large. Owing to
a pose-invariant FER setting, the views have a very obvious
influence on the recognition accuracy, especially on the edge.
In order to reduce the impact of posture and background, the
threshold values in a ST-SE-ResNet block are calculated as
follows:

τc � αc · average
i , j

∣∣xi , j , c
∣∣ (13)

where τc denotes the threshold in the cth channel, i, j, and
c denotes the index of width, height and channel of feature
map x, respectively.

To demonstrate the practical use of the proposed ST-SE
module, it is vital to construct the same network struc-
ture and parameter settings. Considering the diversity of the
expression images in the same view pictures, this paper uses
ResNet50 as the basic network architecture, and embeds the
SE andST-SEmodules in the network, respectively, as shown
in Fig. 2d. The architectures of ResNet50, SE-ResNet50 and
ST-SE-ResNet50 are listed in Table 1.

4 Experimental results

To evaluate the effectiveness of the designed network, this
paper performed extensive experiments on four famous facial
expression databases that are BU-3DFE [24] and Multi-PIE
[25] which were collected in a controlled environment, as
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Table 1 The parameters of ResNet50 (Left), SE-ResNet50 (Middle), ST-SE-ResNet50 (Right), fc denotes two fully connected layers in a SE-
ResNet50 basic block

Output size Output size ResNet50 SE-ResNet50 ST-SE-ResNet50

Conv1_x 112 × 112 Conv, 7 × 7, 64, stride 2
Max pool, 3 × 3, stride 2

Conv, 7 × 7, 64, stride 2
Max pool, 3 × 3, stride 2

Conv, 7 × 7, 64, stride 2
Max pool, 3 × 3, stride 2

Conv2_x 56 × 56
⎡

⎢⎢⎣

conv, 1 × 1, 64

conv, 3 × 3, 64

conv, 1 × 1, 256

⎤

⎥⎥⎦ × 3

⎡

⎢⎢⎢⎢⎣

conv, 1 × 1, 64

conv, 3 × 3, 64

conv, 1 × 1, 256

f c, [16, 256]

⎤

⎥⎥⎥⎥⎦
× 3

⎡

⎢⎢⎢⎢⎣

conv, 1 × 1, 64

conv, 3 × 3, 64

conv, 1 × 1, 256

f c, [16, 256]

⎤

⎥⎥⎥⎥⎦
× 3

Conv3_x 28 × 28
⎡

⎢⎢⎣

conv, 1 × 1, 128

conv, 3 × 3, 128

conv, 1 × 1, 512

⎤

⎥⎥⎦ × 4

⎡

⎢⎢⎢⎢⎣

conv, 1 × 1, 128

conv, 3 × 3, 128

conv, 1 × 1, 512

f c, [32, 512]

⎤

⎥⎥⎥⎥⎦
× 4

⎡

⎢⎢⎢⎢⎣

conv, 1 × 1, 128

conv, 3 × 3, 128

conv, 1 × 1, 512

f c, [32, 512]

⎤

⎥⎥⎥⎥⎦
× 4

Conv4_x 14 × 14
⎡

⎢⎢⎣

conv, 1 × 1, 256

conv, 3 × 3, 256

conv, 1 × 1, 1024

⎤

⎥⎥⎦ × 6

⎡

⎢⎢⎢⎢⎣

conv, 1 × 1, 256

conv, 3 × 3, 256

conv, 1 × 1, 1024

f c, [64, 1024]

⎤

⎥⎥⎥⎥⎦
× 6

⎡

⎢⎢⎢⎢⎣

conv, 1 × 1, 256

conv, 3 × 3, 256

conv, 1 × 1, 1024

f c, [64, 1024]

⎤

⎥⎥⎥⎥⎦
× 6

Conv5_x 7 × 7
⎡

⎢⎢⎣

conv, 1 × 1, 512

conv, 3 × 3, 512

conv, 1 × 1, 2048

⎤

⎥⎥⎦ × 3

⎡

⎢⎢⎢⎢⎣

conv, 1 × 1, 512

conv, 3 × 3, 512

conv, 1 × 1, 2048

f c, [128, 2048]

⎤

⎥⎥⎥⎥⎦
× 3

⎡

⎢⎢⎢⎢⎣

conv, 1 × 1, 512

conv, 3 × 3, 512

conv, 1 × 1, 2048

f c, [128, 2048]

⎤

⎥⎥⎥⎥⎦
× 3

1 × 1 Average pool, 1000-d fc, softmax Average pool, 1000-d fc, softmax Average pool, 1000-d fc, softmax

Fig. 3 Some examples of the two
datasets (BU3DFE-E1,
BU3DFE-E2, Multi-PIE,
Pose-RAF-DB and
Pose-AffectNet)
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well as RAF-DB [26] and AffectNet [27] captured in real-
world scenarios. Some samples of these databases are shown
in Fig. 3. Since the BU-3DFE and Multi-PIE databases did
not precisely divide training and testing sets, in this work,
the fivefold cross-validation protocol was employed in these
databases. The designed ST-SE-ResNet50 framework was
carried out on PyTorch, and the learning rate and the batch
size were set to 0.000001 and 40, respectively. The size
of the input images was adjusted to 224 × 224, because
using large images could improve the deep learning abil-
ity of the network, in which more salient features were able
to be extracted. All the experiments was based on NVIDIA
GeForce GTX 1660 Super GPU; Operating System: Win-
dows 10 64bits.

4.1 Experiments with BU-3DFE dataset

This paper first tested the designed network on BU-3DFE
dataset, which was widely used in pose-invariant FER. There
were a total of 100 subjects involved in the experiment, and
each of them contained 6 typical expressions, i.e., anger
(AN), disgust (DI), happiness (HA), fear (FE), sadness (SA)
and surprise (SU) in 4 different intensities. Before using
the original dataset, the 3D expression models were typi-
cally rotated on the invariant views to generate 2D texture
images. Among the existing pose-invariant FER methods,
two mainstream methods of extended 2D facial expression
image sets were widely adopted. Next, this paper performed
experiments on these two extended pose-invariant datasets,
and compared the results with some previous methods.

For the first extended dataset of BU-3DFE (BU3DFE-E1),
it contains 5 × 4 × 6 × 100 � 12000 2D texture expression
images in 5 invariant yaw angles (0°, 30°, 45°, 60°, 90°) from
4 different intensities. The corresponding expression images
are shown in Fig. 3a, many previous works [10, 11, 30–32],
adapted BU3DFE-E1 dataset for pose-invariant FER experi-
ments and achieved remarkable results. This paper evaluated
these three network framework structures on the BU3DFE-
E1 dataset and analyzed the reasons for these results.

As show in Table 2, this study compares the results
of ST-SE-ResNet50 method with SE-ResNet50, ResNet50
and some previous works on BU3DFE-E1 dataset. It is
worth mentioning that BU3DFE-E1 dataset contains not
only 5 invariant yaw angles, but also 4 different intensi-
ties. The SE-ResNet50 network achieved 75.9% recogni-
tion accuracy, which was a little better than that of basic
ResNet50. In contrast, the ST-SE-ResNet50 model could
further improve the identification accuracy to 76.20%. Espe-
cially, the pose-invariant recognition algorithms that was
often referenced was superior to 2D JFDNN (72.5%), CNN
(68.9%), VGGNet16 (70.1%), and slightly better than the
DBN (73.5%) and LLCBL (74.60%). For the classical Local

binary patterns (LBP), the designed networkwas 5.1%higher
than the highest recognition accuracy.

Table 3 lists the specific recognition accuracy of 6 typ-
ical expressions under five yaw angles, and Fig. 4 shows
the corresponding confusion matrix. In Table 3, it easy to
find that the recognition accuracy varies with the yaw angle,
where the best yaw angle of expression recognition is 60°
with the accuracy rate of 78.6%, while the worst yaw angle
is 90° with the accuracy rate of 73.6%. In addition, for the
6 basic typical expressions, the performances of recognition
accuracies are also different. Happiness and surprise as the
most obvious expressions to distinguish are usually the eas-
iest to recognize in all different yaw angles, while fear is the
most challenging expressions, whose recognition accuracies
are less than 63%. Figure 4 shows the expression confusion
matrix in each yaw view, we can see that angry and sadness
expressions are more easily confused, which is the reason
why the recognition accuracies of these two expressions are
low. In the meantime, on the whole, all the misclassification
rates of fear expression relatively higher than other expres-
sions, which lead to the lowest recognition accuracy of fear
among the six typical expressions.

The second extended dataset of BU-3DFE (BU3DFE-E2)
contains 7 × 5 × 6 × 100�21000 2D texture expression
images with 7 invariant pan angles (0°, ±15°, ±30°, ±45°)
and 5 invariant tilt angles (0°,±15°,±30°). The correspond-
ing expression images are shown in Fig. 3b. Compared with
BU3DFE-E1 dataset, BU3DFE-E2 pays more attention on
the impact of different views on expression recognition. For
example, the BU3DFE-E1 dataset only contains a pan angle,
however, the pan angles are extended from− 45° to + 45° and
the title angles are set vary from − 30° to + 30° in BU3DFE-
E2 dataset. Besides, the BU3DFE-E2 dataset comprises only
the 4th intensity level of 2D texture expression images, but
the images in the BU3DFE-E1 dataset contains all intensity
levels. Some of the state-of-the-art methods [34, 35] also
adopt BU3DFE-E2 dataset for pose-invariant FER experi-
ments. This paper evaluates the proposed method with all
these expression images at 7 invariant yaw angles.

In the same way as BU3DFE-E1 dataset, this paper com-
pares the method with previous works [9, 30, 32, 33] and
presents the results in Table 4. It can be seen that ST-
SE-ResNet50 achieves 83.7%, while the best result among
state-of-the-art method is only 81.2%,which is far lower than
the algorithm in this paper. Moreover, the recognition accu-
racy of ST-SE-ResNet50 is 4.1% higher than that of basic
ResNet50,which demonstrates that the designedmethod also
performs well under mixed multi-view. Table 5 lists the spe-
cific recognition accuracy rates under different angles, where
the best yaw angle of expression classification is −30° with
the accuracy rate of 85.17%, and the worst yaw angle is 45°
with the accuracy rate of 82.83%. In addition, for the aver-
age recognition results of each expression, they are roughly

123



2644 C. Liuet al.

Table 2 The comparison with different methods on the BU3DFE-E1 dataset

Method Pose Expressions Feature Accuracy (%)

Number Pan Tilt Number Levels

Zheng et al. [10] 5 (0°, + 90°) (−0°, + 0°) 6 1, 2, 3, 4 LBP 66.0

Moore et al. [11] 5 (0°, + 90°) (−0°, + 0°) 6 1, 2, 3, 4 LBP 65.0

Moore et al. [11] 5 (0°, + 90°) (−0°, + 0°) 6 1, 2, 3, 4 LGBP 68.0

Moore et al. [11] 5 (0°, + 90°) (−0°, + 0°) 6 1, 2, 3, 4 LGBP/LBP 71.1

Zhang et al. [30] 5 (0°, + 90°) (−0°, + 0°) 6 1, 2, 3, 4 CNN 68.9

Zhang et al. [31] 5 (0°, + 90°) (−0°, + 0°) 6 1, 2, 3, 4 DBN 73.5

Wu et al. [28] 5 (0°, + 90°) (−0°, + 0°) 6 1, 2, 3, 4 LLCBL 74.6

Jung et al. [29] 5 (0°, + 90°) (−0°, + 0°) 6 1, 2, 3, 4 2D JFDNN 72.5

Zhang et al. [12] 5 (0°, + 90°) (−0°, + 0°) 6 1, 2, 3, 4 VGGNet16 70.1

ResNet50 5 (0°, + 90°) (−0°, + 0°) 6 1, 2, 3, 4 ResNet50 74.8

SE-ResNet50(Ours) 5 (0°, + 90°) (−0°, + 0°) 6 1, 2, 3, 4 SE 75.9

ST-SE-ResNet50(Ours) 5 (0°, + 90°) (−0°, + 0°) 6 1, 2, 3, 4 ST-SE 76.2

Table 3 Average recognition
accuracies under different yaw
angles on BU3DFE-E1 dataset

Expression Results (%)

0° 30° 45° 60° 90° Average

Angry 72.0 74.0 76.0 76.0 70.0 73.6

Disgust 78.0 76.0 79.0 79.0 75.0 77.4

Fear 67.0 60.0 59.0 68.0 60.0 62.8

Happy 83.0 81.0 82.0 85.0 80.0 82.2

Sad 72.0 69.0 70.0 71.0 67.0 70.0

Surprise 92.0 91.0 91.0 92.0 90.0 91.2

Average 77.3 75.1 76.1 78.6 73.6 76.2

consistent with BU3DFE-E1 dataset. As shown in Fig. 5h,
the fear is still the most challenging expressions, and anger
and sadness are also the most confusing expressions, but the
overall recognition accuracy of each expression has been sig-
nificantly improved.

4.2 Experiments withmulti-PIE dataset

The Multi-PIE captured by a closely real-world scene con-
tained 755,370 facial expression images of 377 different
samples. Unlike BU-3DFE database, it included not only
different postures, but also unbalanced illumination, and
background transformations. In this work, same experimen-
tal setting for facial expression recognition as reporting in
[11, 28–30, 34] was adopted, where only 100 subjects pre-
sented in all four recording sessions were selected. For
each subject, six different emotions (disgust, neural, scream,
smile, squint and surprise) and 7 invariant yaw angles (0°,
15°, 30°, 45°, 60°, 75° and 90°) were selected in the experi-
ments. Therefore, a total of 7× 6× 100�4200 images were

selected in the experiments. The sample of six subjects per-
forming 42 facial images can be found in Fig. 2c.

Compared with the ResNet50 and SE-ResNet50 at 7
invariant yaw angles, the corresponding average recogni-
tion accuracy are 80.0% and 83.1%, respectively, while the
method proposed in this paper is 86.1%, which is higher than
other methods. Table 7 lists the specific identification results
under different facial yaw angles, where the optimal expres-
sion recognition is different for each angle of view, and the
best ones are often kept between 0° and 30°,which are 88.1%,
87.3% and 89.0%, respectively. Figure 6 shows each yaw
angle and the overall confusion matrices. It can be seen from
Table 7 and Fig. 6 that among the six typical expressions,
the recognition accuracies of scream and surprise are higher,
and their average recognition rates are 96.4% and 92.6%,
respectively. On the contrary, squint and disgust, as the most
difficult expressions to identify, has the average recognition
accuracies less than 80%. Moreover, from the overall confu-
sionmatrix,we can see that the expressions squint anddisgust

123



Soft thresholding squeeze-and-excitation network for pose-… 2645

Fig.4 The confusion matrices on the BU3DFE-E1 dataset. Where a–e denotes the confusion matrices of five invariant yaw angle, and f denotes the
overall recognition confusion matrices

Table 4 The comparison with different methods on the BU3DFE-E2 dataset

Method Pose Expressions Feature Accuracy (%)

Number Pan Tilt Number Levels

Zhang et al. [9] 35 (−45°, + 45°) (−30°, + 30°) 6 4 Geometry features 76.6

Jampour et al. [33] 35 (−45°, + 45°) (−30°, + 30°) 6 4 HOG + LBP 78.6

Wu et al. [30] 35 (−45°, + 45°) (−30°, + 30°) 6 4 LLCBL 80.2

Zhang et al. [30] 35 (−45°, + 45°) (−30°, + 30°) 6 4 DBN 75.2

Zhang et al. [31] 35 (−45°, + 45°) (−30°, + 30°) 6 4 CNN 77.2

Zhang et al. [31] 35 (−45°, + 45°) (−30°, + 30°) 6 4 GAN 81.2

Can et al. [32] 35 (−45°, + 45°) (−30°, + 30°) 6 4 VGGNet16 73.1

ResNet50 35 (−45°, + 45°) (−30°, + 30°) 6 4 ResNet50 79.6

SE-ResNet50 35 (−45°, + 45°) (−30°, + 30°) 6 4 SE 82.2

ST-SE-ResNet50 35 (−45°, + 45°) (−30°, + 30°) 6 4 ST-SE 83.7

Table 5 Average recognition
accuracies under invariant angles
on BU3DFE-E2 database

Expression Results (%)

−45° −30° −15° 0° 15° 30° 45° Average

Angry 81.0 83.0 81.0 79.0 81.0 80.0 79.0 80.5

Disgust 85.0 87.0 83.0 81.0 83.0 84.0 83.0 83.7

Fear 67.0 75.0 72.0 75.0 73.0 74.0 68.0 72.0

Happy 90.0 90.0 94.0 90.0 92.0 94.0 92.0 91.7

Sad 80.0 81.0 78.0 78.0 81.0 78.0 78.0 79.1

Surprise 94.0 95.0 95.0 96.0 95.0 97.0 97.0 95.5

Average 82.8 85.1 83.8 83.1 84.1 84.5 82.8 83.5
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Fig.5 The confusion matrices on the BU3DFE-E2 database. Where a–g denotes the confusion matrices of 7 invariant yaw angle, and h denotes the
overall recognition confusion matrices

Table 6 The comparison with
different methods on the
Multi-PIE dataset

Method Poses Expressions number Feature Accuracy (%)

Number Pan

Moore et al. [11] 7 (0°, + 90°) 6 LBP 73.3

Moore et al. [11] 7 (0°, + 90°) 6 LGBP 80.4

Zhang et al. [30] 7 (0°, + 90°) 6 DBN 76.1

Zhang et al. [30] 7 (0°, + 90°) 6 CNN 77.8

Jung et al. [29] 7 (0°, + 90°) 6 JFDNN 82.9

Wu et al. [28] 7 (0°, + 90°) 6 LLCBL 80.9

Fan et al. [34] 7 (0°, + 90°) 6 VGG16 71.7

ResNet18 7 (0°, + 90°) 6 ResNet18 80.13

ResNet50 7 (0°, + 90°) 6 ResNet50 81.0

SE-ResNet50 7 (0°, + 90°) 6 SE 83.1

ST-SE-ResNet50 7 (0°, + 90°) 6 ST-SE 86.1

Table 7 Average recognition
accuracies under invariant angles
on Multi-PIE dataset

Expressions Results (%) Average

0° 15° 30° 45° 60° 75° 90°

Disgust 82.0 81.0 78.0 77.0 79.0 76.0 74.0 78.1

Neutral 88.0 87.0 93.0 86.0 87.0 84.0 82.0 86.7

Scream 97.0 97.0 97.0 97.0 93.0 97.0 97.0 96.4

Smile 92.0 89.0 90.0 83.0 89.0 83.0 83.0 87.0

Squint 77.0 76.0 82.0 75.0 76.0 71.0 71.0 75.4

Surprise 93.0 94.0 94.0 93.0 92.0 93.0 90.0 92.6

Average 88.1 87.3 89.0 85.1 86.0 84.8 82.8 86.1
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Fig.6 The confusion matrices on the Multi-PIE dataset. Where a-g denotes the confusion matrices of 7 invariant yaw angle, and (h) denotes the
overall recognition confusion matrices

are more prone to misclassification, and the most likely the
fact that they achieve low recognition accuracies.

4.3 Experiments with pose-RAF-DB
and pose-AffectNet dataset

To evaluate the performance of the model in pose-invariance
under real-world scenarios, Wang [35] et al. also col-
lected two sub-datasets, namely, Pose-RAF-DB and Pose-
AffectNet, respectively, from the test datasets of FAF-DBand
AffectNet for facial expression recognition. Where the head
pitch or yaw angles larger than 30° and 45° were selected as a
set of pose-invariant facial images, and 7 typical expressions
(anger (AN), disgust (DI), happiness (HA), fear (FE), neu-
tral (NE), sadness (SA) and surprise (SU)) were considered.
Therefore, Pose-RAF-DB consisted of 12,271 facial images
for training, and 1,248 and 558 facial images were selected
to test sub-datasets at 30° and 45°, respectively, while Pose-
AffectNet consisted of 283,901 facial images for training,
and 1,948 and 985 facial images were selected to test sub-
datasets at 30° and 45°, respectively. In this work, the same
experiment setting in [35, 35, 37, 38] was adopted. How-
ever, it is needed to mention that both Pose-RAF-DB and
Pose-AffectNet treat forward and reverse facial images as
a pose-invariant dataset, which enriches the database and
increases the difficulty of classification, as shown in Fig. 3d.

This paper conducted experiments on databases Pose-
RAF-DB and Pose-AffectNet, and the experimental results
are listed in Table 8. The recognition accuracies of ST-
SE-ResNet50 on Pose-FAF-DB database were 85.00% (>

30°) and 84.42% (> 45°), while those on Pose-AffectNet
database were 56.57% (> 30°) and 57.00% (> 45°), respec-
tively. Figure 7 shows the corresponding confusion matrices,
from which can be found that happiness is the easiest rec-
ognizable expression in all databases; Sadness is relatively
easy to identify in thePose-FAF-DBdataset; Fear is relatively
easily identified in Pose-AffectNet dataset; and disgust is the
most difficult expression to classify. It is easier to be confused
with neutral in Pose-RAF-DBdataset, and it is generally con-
fused with anger in Pose-AffectNet database, which reduces
the expression recognition accuracy in these two datasets.

4.4 Experimental results analysis

From the recognition results of four pose-invariant datasets,
it can be found that multi-channel soft thresholding SE resid-
ual network can achieve the same accuracy as the previous
methods. Compared with the original Resnet50, the accuracy
of the method in this paper on BU3DFE-E1, BU3DFE-E2,
Multi-PIE, Pose-RAF-DB and Pose-AffectNet dataset can
further improve by 1.6%, 4.1% and 5.1%, (0.44% (> 30°),
0.15% (> 45°)) and (0.26% (> 30°), 0.08% (> 45°)), respec-
tively. Two reasons can explain this improvement. The first
is that squeeze-and-excitation (SE) block serves as a bridge
between different channels, whose function is to improve the
quality of the designed network by using the interdependen-
cies between the channels of its convolutional features; And
the second is that GAP and SE block can be regarded as
an attention mechanism, whose task is to learn global infor-
mation to selectively emphasize valuable features from the
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Table 8 Average recognition
accuracies under invariant angles
on Pose-RAF-DB and
Pose-AffectNet dataset

Method Pose Pose-RAF-DB Pose-AffectNet

Number Pan Pose > 30 Pose > 45 Pose > 30 Pose > 45

Wang et al. [35] 7 ± (30°, 90°) 86.74 85.20 53.90 53.19

Gera et al. [36] 7 ± (30°, 90°) 86.12 84.41 59.17 57.66

Gera et al. [37] 7 ± (30°, 90°) 89.82 89.07 60.41 60.86

Zhao et al. [38] 7 ± (30°, 90°) 87.89 87.99 57.51 57.78

VGG16 7 ± (30°, 90°) 81.27 80.15 51.94 52.33

ResNet18 7 ± (30°, 90°) 84.04 83.15 56.31 56.62

ResNet50 7 ± (30°, 90°) 84.56 84.27 56.38 56.83

SE-ResNet50 7 ± (30°, 90°) 86.67 87.17 58.82 58.79

ST-SE-
ResNet50

7 ± (30°, 90°) 85.00 84.42 56.57 57.00

Fig.7 Where a-b denotes the
confusion matrices on
Pose-RAF-DB dataset,
c-d denotes the confusion
matrices on Pose-AffectNet
dataset

current view and suppress the influence of intensity, pose,
background and so on,which are necessary for pose-invariant
FER.

As for the database of different scenarios, we also com-
pared the performance of ResNet50, SE-ResNet50 and
ST-SE-ResNet50 in controlled and real-world scenarios. The
detailed results are provided in Fig. 8a–d, and the correspond-
ing average recognition accuracies can be referred toTables 4,

5, 6, 7, and 8. For the controlled setting, it can be observed
that under the influence of different views, the performance
of the three models is globally consistent, among which ST-
SE-ResNet50 is the lowest, followed by SE-ResNet50, and
ResNet50 is the lowest. The stand deviation (SD) of fivefold
cross-validations indicates that ST-SE-ResNet50 provides
more stable identification accuracy than ResNet50 and SE-
ResNet50. This phenomenon is even more pronounced in
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Fig. 8 a-d the accuracies of Resnet50, SE-Resnet50 and ST-SE-Resnet50 on BU3DFE, Multi-PIE dataset, Pose-FAF-DB and Pose-AffectNet
datasets

the Multi-PIE dataset, where the minimum SD values of
yaw angle is above 0.7, while that of SE-ResNet50 and ST-
SE-ResNet50 is only 0.49 and 0.18, respectively, illustrating
that ST-SE block can enhance the stability of the network
structure, and it is more robust for pose-invariant FER. For
the real-world settings, their recognition accuracy also main-
tains the same trend, among which ResNet50 is the lowest,
followed by ST-SE-ResNet50, and then SE-ResNet50. ST-
SE-ResNet50 performs slightly better than ResNet50 on
Pose-FAF-DB (0.44% (> 30°), 0.15% (> 45°)) and Pose-
AffectNet (0.26% (> 30°), 0.08% (> 45°)) database while
compared with the SE-ResNet50, which reduced by (1.67%
(> 30°), 2.75% (> 45°)) and (2.25% (> 30°), 1.79% (> 45°)).
This result shows that the algorithm in this paper cannot
achieve good results in databaseswith non-normalized poses.

For the influence of expressions intensities, as shown in
Tables 2 and 4, the recognition accuracy on the BU3DFE-E1
dataset is much lower than that of the second ones, which can
be attributed to the micro-deformation of the low intensities
expressions and even more variable yaw angles. In order to
illustrate the impact of intensity on facial expression recog-
nition, the classification accuracy of the ST-SE-Resnet50 on
the BU3DFE-E1 dataset is shown in Fig. 9. As described
in Sect. 4.1, the BU3DFE-E1 dataset contains four differ-
ent expression intensities. It can be seen from Fig. 9 that the

Fig. 9 Influence of four intensities on BU3DFE-E1 dataset

accuracy of expression recognition improves with the inten-
sity level. For the III and IV intensity levels, these textures
of the six basic expressions are more obvious than those of
low intensity. In this case, the high-level intensity expression
images contain more powerful representation capabilities
than I and II level intensity. Therefore, the recognition rate of
these three methods on BU3DFE-E1 dataset is higher than
that on BU3DFE-E2 dataset.

For the misclassified emoticons in the experiment, it is
closely correlated to the facial expression image texture. As
described in [39], each type of expression can be expressed
as a combination of a similar type of textures. When two
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expressions contain the same type of textures they are more
likely to be misclassified. As shown in Figs. 4f and 5h, anger
and sadness have a high probability of being misclassified in
BU-3DFE dataset, while anger and squint have a high prob-
ability of being misclassified in the pose-invariant dataset.
This may due to the fact that these expressions include more
similar types of textures in their datasets, which can be found
in Fig. 3a and c. When the texture types of expressions are
notable, the probability of misclassification is relatively low.

For different views, the best recognition results remain
between−60° and 60°. In the experiment, when the views are
larger than 60°, the recognition accuracy decreases sharply,
especially in ResNet50. The reason is that as the view rotate,
themain regions of interest (such as eyes,mouth and chin) are
gradually blocked, which will reduce the accuracy of recog-
nition. In addition, as can be seen from Tables 3, 5 and 7, the
optimal recognition angle is usually not 0°, and they tend to
concentrate on near-frontal views. For frontal face images,
most of them are symmetrical images, that is to say, half or
more than half images can represent the characteristics of the
entire expression image. On the contrary, the entire expres-
sion images often includemuch redundant features compared
with near-frontal expression images. Therefore, a small yaw
angle can not only preserve the frontal facial features, but also
add some detailed feature information on the side,whichmay
be more conducive to the task of expression classification.

5 Conclusions

In this paper, a ST-SE-ResNet50 network base on ST-SE
blocks was proposed for pose-invariant FER. Herein, the
GAP was employed to flatten the feature map into a 1D vec-
tor, and then the flattened feature maps were sent to SE block
to filter out salient information. The absolute value GAP
multiplied SE operation can be regarded as a self-attention
mechanism, whose purpose is to force the network to pay
more attention to the feature information in the current view
and reduce the influence of pose and occlusion on the recog-
nition accuracy. The proposed method was evaluated on four
famous datasets, i.e., BU-3DFE, Multi-PIE, Pose-RAF-DB
and Pose-AffectNet, and the results indicate that the method
is superior to many previous methods in controlled scenar-
ios. However, in the real-world scenario, especially the facial
images with different horizontal and pitch angles, the change
of recognition accuracy are not obvious relative to the back-
bone architecture.

Acknowledgements National Natural Science Foundation of China
(No:31872399), Advantage Discipline Construction Project (PAPD,
No.6-2018) of Jiangsu University

Declarations

Conflict of interest The authors declare that they have no known com-
peting financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

1. Shu, X., Yang, J., Yan, R.: Expansion-squeeze-excitation fusion
network for elderly activity recognition. arXiv e-prints (2021).
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