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Abstract
The corner detection plays an important role in the area of image processing and computer vision. The current corner detection
methods often utilize few cues or single model to improve the detection correctness and repeatability. A composite model
of both intensity, pattern, curvature, and scale is proposed as a possible solution to these problems. Firstly, a corner measure
function that reflects both the intensity, pattern, and curvature difference is formulated based on the 8-neighbor pixel blocks.
Secondly, some scale-based global scale importance factors are formulated based on the contour distribution and corner
distribution. Thirdly, based on the corner measure and the importance factors, a high-performance corner detector (IPCS) is
derived. The experiments based on both the ground truth and the standard image set are conducted to evaluate the correctness
and repeatability of the proposed detector. The experiment results come up with that the proposed detector has remarkable
performance advantages among the comprising state-of-the-art detectors.
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1 Introduction

In the field of image processing, image corners[1,2] are
important structural points with local image features. They
usually refer to the interest points in the image that suddenly
change the intensity and/or contour in all directions. Cor-
ner detection is an important image processing method[3–5],
which is widely used in image feature extraction, image
match and retrieval, high-level face (emotion) recognition,
semantic image understanding, target detection and recog-
nition, motion tracking, robot navigation and other fields.
Corner detection is very natural for the human eye to recog-
nize the corners in the images. The human eye can distinguish
the real and false corners, accurately identify the position
of the corners, be robust to noise, and can distinguish the
importance of the corners. A corner detector has human eye
characteristics that should also meet these standards. Many
corner detection methods have been proposed in the past
few decades. Most of these methods can be generalized to
three categories: methods based on intensity change, meth-
ods based on contour angle, and methods based on intensity
model. The method based on intensity change usually uses
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the first derivative, second derivative and wavelet operator
of intensity to calculate the intensity change areas of the
image as the corners. The method based on contour angle
usually calculates the image contour first and then takes the
areas with large turning angle in the contour as the corner
points. The method based on intensity model locates the cor-
ner areas through the specific regional intensity models. At
present, these three kinds of methods still have some main
problems and have great room for improvement in detection
performance. They cannot meet the standards that a corner
detector with human eye features should meet. Additionally,
these methods have their own advantages in technology, but
they have not integrated various features such as intensity
change, contour angle, intensity mode.

In this work, we focus on the fusion of multiple cues, such
as intensity, pixel pattern, curvature, and scale, to come up
with a high-performance corner detector, which provides a
considerable solution to the main problems of the existing
corner detection methods. We noticed that the most of the
existing corner detection methods do not utilize the multiple
cues, such as intensity, pattern, curvature, and scale, to mea-
sure the corners. Therefore, we introduce a composite model
of both intensity, pattern, curvature, and scale as a possible
solution for these problems. Firstly, a corner measurement
function that reflects both the intensity, pattern, and curva-
ture difference is formulated based on the 8-neighbor pixel
blocks. Secondly, some scale-based global scale importance
factors are formulated based on the contour distribution and
corner distribution. Thirdly, based on the corner measure and
the importance factors, a high-performance corner detector
(IPCS) is derived. This method is a straightforward approach
to the human eye like corner detector; it tries to identity the
true and false corners, to compute the accurate position of
the corners, to be robust to noise, to provide an importance
evaluation metrics for corners. The experiments based on
both the ground truth and the standard image set are con-
ducted to evaluate the correctness and repeatability of the
proposed detector. The experiment results come up with that
the proposed detector has remarkable performance advan-
tages among the comprising state-of-the-art detectors. Our
contributions include: firstly, an effective model of intensity
changes, named as 8-neighbors corner block intensity differ-
ence, that utilizes both first derivative and second derivative;
secondly, a novel pixel patternmodel that is robust to different
types of corner conjunctions and noise; thirdly, a novel curva-
ture model that can compute the contour curvature directly
from intensity no considering the contour map; fourthly, a
global importance evaluation model of the corners that uti-
lizes multiple cues of global feature such as scale line factor
and texture factor; at last, a fusion method of these individual
measures that exhibit remarkable performance improvement.
The paper is organized as follows: In Sect. 2, the related
works are introduced; in Sect. 3, the individual local and

global measures of the corners are introduced; in Sect. 4, the
method of measure fusion is first introduced, and then the
complete corner detection algorithm is proposed; in Sect. 5,
the performance evaluation and experiment results are listed;
in Sect. 6, the conclusion and future work are made and dis-
cussed.

2 Related work

The first widely used corner detection algorithm is the Harris
algorithm [1] in 1988. The authors investigated the differ-
ent patterns of corner area, edge area, and flat area in the
images and came up with a statistics theorem about the cor-
ner points: The intensity of the around area of a corner point
will change significantly along with any direction. Based on
this theorem, they presented a rigid mathematic method to
evaluate the corner feature. Because of its solid mathematic
backbone, their algorithm is very concise, effective, and effi-
cient. In the later days, many revised methods based on the
Harris algorithm are presented, such as [6–9], and [10–12]
which apply second-order derivative representation to iden-
tify corners. Different from the algebra and statistics-based
methods, the methods based on pixel patterns make use of
the unique pixel patterns of a corner area to identify the cor-
ner points. The early well-known pattern-based algorithm
is the SUSAN algorithm [13] in 1997, and a newly pub-
lished successor is the FAST algorithm [14] in 2010, which
achieves a highly optimized computational efficiency. The
FAST algorithm is immediately used in the mobile devices
and embedded systems after its publication because it is the
only method that can do the online detection in the video
frames with acceptable delays in a resource-limited device
at that time. Another well-constructed corner detection the-
ory is the contour curvature-based methods, such as [15–19],
and [20]. In their viewpoint, a corner point is a point that is
in a contour line and has large curvature. Therefore, these
methods mainly have two steps: firstly, extract and polish
the contours from the image; secondly, compute the curva-
ture measure of the points along the contours. Because these
methods depend on the contour extraction results, on the
one hand, they have relatively high accuracy and repeatabil-
ity when there are high-quality contours even in a slightly
noised condition; on the other hand, their performance is
constrained because of that current contour extraction meth-
ods, such as [21–23] cannot always provide accurate results
in condition that the image is with varying light, noise, and
corner patterns. There are some main problems in the exist-
ing corner detection algorithms [10]. Firstly, the intensity
derivative (gradient) operators may be failed to extract pla-
nar curves or corner measuremetrics in some conditions[24].
For example, the T type corners in the ‘Geometric’ image
are the joints of a strong edge and a weak edge. The large
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derivative of the strong edge interrupts the small derivative
of the weak edge; thus, the large gaps are occurred and make
the T type corners are wrongly identified as edges in the
most of existing detectors. Secondly, the fragmental defini-
tion of pixel patterns makes the detector hard to be analyzed
and designed. For example, the existing contour-based meth-
ods [15–19,25], and [20] define mainly 5 types of corners:
L type, T type, Y type, X type, and star type. The model-
based methods [13,14,26], and [27] have even more types of
pixel pattern definitions. Thirdly, the existing contour-based
methods have problems in curvature calculation with local
variation and noise [20]. Therefore, these methods usually
have manymissed corners that are not detected. Fourthly, the
classic derivative measure-based methods and pixel pattern-
based methods have only local measures, which makes them
have many false corners caused by the noises or the wrong
scales[8].

3 The proposedmeasures of the corners

There aremainly three kinds of functions to evaluate corners.
Firstly, the intensity-basedmethods, such as [1,6,8], and [10],
use the intensity changes, i.e., first-order derivative, second-
order derivative, to evaluate corners; secondly, the model-
basedmethods, such as [13,14], and [27], use the pixel pattern
to evaluate corners; thirdly, the contour-based methods, such
as [15–19,25], and [20], use the contour curvature to evaluate
corners. In this section, the individual local and global corner
measures in our method that involves both intensity, pattern,
curvature, and scale are introduced.

3.1 Intensity measure

As we know that the corner points are in the cross edge
between two or more flat areas in different levels of intensity,
the two points that have the least intensity changes from the
corner points are on the two nearest cross edges. The can-
didate corner area is divided into eight square pixel block
sub-areas, the center block is the location of the corner point,
it has themiddle average intensity between the average inten-
sities of the two flat areas, the one area has high intensity, and
the other area has low intensity. There are two surrounding
blocks that are both in the edge area, and the two blocks have
the most similar average intensities as the average intensity
of the center block. In this candidate corner area, if the least
intensity changes of the 8-neighbors blocks are considerably
large, it means that the intensity will be largely changed from
the center block along with any direction. According to the
analysis of [1], this area can be considered as a corner point
location. Therefore, the intensity measure, i.e., corner block

intensity difference CB, is defined as:

CB(x, y) =
∑

((B(x, y) − B(x1, y1))
2)

+
∑

((B(x, y) − B(x2, y2))
2)

(1)

where B(x, y) is a w × w point block; B(x1, y1) and
B(x2, y2) are the two neighbor blocks with least intensity
difference to B(x, y). Furthermore, the corner intensity dif-
ference C I is defined as:

C I (x, y) = (I (x, y)− I (x1, y1))
2 + (I (x, y)− I (x2, y2))

2,

(2)

where I (x1, y1) and I (x2, y2) are the average intensities of
the two blocks in the 8-neighbors blocks with lest intensity
difference to I (x, y). The corner intensity second-order dif-
ference C2I is defined as:

C2I (x, y) = (I (x, y) − 2 ∗ I (x1, y1) + I (x3, y3))
2

+ (I (x, y) − 2 ∗ I (x2, y2) + I (x4, y4))
2,

(3)

where (x2, y2) is the neighbor point of (x1, y1) along the
(x, y) to (x1, y1) direction; (x4, y4) is the neighbor point of
(x2, y2) along the (x, y) to (x2, y2) direction.

Therefore, the contour intensity differenceCT I is defined
as:

CT I (x, y) = √
CBI (x, y) ∗ C2I (x, y) + CBI (x, y),

CBI (x, y) = √
CB(x, y) ∗ C I (x, y).

(4)

In the target area, the neighbor area of a point is divided
into nine blocks. By applying a Gaussian filter as follows:

hg(x, y) = exp

(−(x2 + y2)

2σ 2

)
,

h(x, y) = hg(x, y)∑
hg(x, y)

,

Ig(x, y) = I (x, y) ⊗ h(x, y).

(5)

Considering the first-order derivative CBI of a block with
its two neighbor blocks with the most equal intensities, the
more the points close to the corner point, the largerCBI will
be detected. In the same way, the more the points close to the
corner point, the larger the second-order derivative C2I will
be detected.

3.2 Patternmeasure

It is known that the pixels of a corner have certain patterns.
However, there are no uniform pattern measures for differ-
ent types of corners. For example, the existing contour-based
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methods define mainly 5 types of corners: L type, T type, Y
type, X type, and star type, and they use the different for-
mulas for different corner types to calculate curvature. The
fragmental definition of corner patterns makes the detectors
hard to be analyzed and designed.

To cope with this problem, a corner pattern factor based
on a local binary pattern is developed. In this definition, each
of the 8 neighbors is a four squares block that has the widthw

and heightw, (w = 1, 2, ...). The 8 neighbor blocks of a point
are ordered clockwise and marked in this way: a neighbor is
marked as 1 if the neighbor block has larger intensity than
the intensity of the center block; otherwise, it is marked as 0.
By scanning themarkers, themaximum length of a continues
set of all 1 or all 0 is denoted as chr(x, y). Therefore, the
corner pattern factor α(x, y) of a point (x, y) is defined as:

α(x, y) = 1 + min(chr2(x, y), 4 − chr2(x, y)),

chr2(x, y) = min(chr(x, y), 8 − chr(x, y)),
(6)

where chr(x, y) is the boundary line distance between two
connected 0 part and 1 part. Necessarily, the sub-pixel bound-
ary line distance is interpolated by the intensity difference
between the neighbor blocks and the center block.

According to the definition of the corner pattern factor α,
the corner patterns can be uniformly measured. Because the
chr is the length of the max connected 0/1 blocks, it not only
reflects the main character of a junction but also avoids to
measuring the patterns of all the blocks.

3.3 Curvature measure

3.3.1 Average contour curvature

The average contour curvature curv provides an initial cur-
vature measure, and it is used to locate candidate corner area,
evaluate the image quality, and choose the proper parameter
set. It is defined as:

curv(x, y) = 1

n

n∑

i=1

ai ,

ai = min(bi , π − bi ),

bi = |atan(dx, dy) − atan(dxi , dyi )|,

(7)

where (xi , yi ) are the contour points in the w × w neighbor
area, e.g., w = 5, of point (x, y), dx, dy are the first-order
derivative (gradients) of intensity alone the x- and y-axis.

3.3.2 Intensity-based measure

Different from the existing contour curvature-based method,
in our method, the curvature is calculated through the gradi-
ent vectors of two points (x1, y1) and (x2, y2), corresponding

to B(x1, y1) and B(x2, y2) that are the two neighbor blocks
with least intensity difference to B(x, y). It is known that
the corner points are usually having much different gradient
direction from its neighbor points.

Suppose the gradients of (x, y), (x1, y1), and (x2, y2)
are dx1, dy1, dx2, dy2, dx3, dy3, respectively, the cosine
angle between (x, y) and (x1, y1) and cosine angle between
(x, y) and (x2, y2) can be computed from the angle between
their gradient vectors v = [dx, dy], v1 = [dx1, dy1], v2 =
[dx2, dy2].

Therefore, the contour curvature difference CTV is
defined as:

CTV (x, y) = (w1 ∗ sinn(a1) + w2 ∗ sinn(a2))

(w1 + w2)
,

sinn(a1) =
√
1 − cos(a1)2 + √

(1 − cos(a1))/2,

sinn(a2) =
√
1 − cos(a2)2 + √

(1 − cos(a2))/2,

w1 = ABmax − AB|a1,
w2 = ABmax − AB|a2,

ABmax = max(AB|a = 0,
π

8
,
π

4
,
3π

8
,
π

2
,
5π

8
,
3π

4
,
7π

8
)

AB|a = CB|a + C I |a
(8)

where CB|a and C I |a are the block intensity difference and
the point intensity difference in the 8 directional neighbors
as defined in the intensity measure section.

3.3.3 Contour-based measure

In the corner refining procedure, the contour curvature is
measured more accurately in a larger w × w neighbor area,
e.g., w = 15, and in a contour-based manner. In this mea-
sure, the corner area is separated from two sub-areas (center
area and surround area), and the contour is departed from
serval departing branches by excluding the contour in the
center area. Give a candidate corner point (x, y), and its
w×w neighbor area, the refined contour curvature difference
CTV 2 and average contour curvature curv2 is defined as:

CTV 2(x, y) = max(2 ∗ sin(0.5 ∗ A)),

curv2(x, y) = mean(B),

A = {arccos(cos(ai ))|i = 1, ..., n},
B = {arccos(cos(bi ))|i = 1, ..., n},

(9)

where ai is an angle between two contours branches in the
w × w neighbor area excluding the inner centrum area; bi
is angle between a contour point in the centrum area and a
contour branch in the w × w neighbor area.
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3.4 Global scale importance factors

The most of existing corner measures provide the local
weights of the corners and provide no global weights in a
large scale. In following section, 5 global scale importance
factors are derived from the corner measures CTV , curv,
the contour distribution, and the corner points distribution.
Given a contour map C , a connected contour map C2 is
produced by labeling each connected contour component a
unique number; a connected line map C3 is produced by
labeling each straight part of a connected contour compo-
nent a unique number.

[CTV factor]

GT (x, y) = 1

3

(
1

2
(mean (CTV (xi , yi )))

)

+ std
(
CTV

(
x j , y j

))

+ mean (CTV (xk, yk))

+ mean (CTV (xii , yii ))

+ mean
(
CTV

(
x j j , y j j

))

− std (CTV (xii , yii )) ,

(10)

where (xi , yi ) are the points in the same connected contour
component as (x, y), (x j , y j ) are the points in the same con-
nected contour component and have lower CTV than the
mean CTV of this component, (xk, yk) are the points in the
same connected contour component and have higher CTV
than the mean CTV of this component, (xii , yii ) are the
points in the same connected contour component of C2 as
(x, y) of thew×w neighbor area, (x j j , y j j ) are the points in
the same connected contour component of the w × w neigh-
bor excluding the inner centrum area.

[Curv factor]

GV (x, y) = 1

3

(
1

2
(mean (curv (xi , yi )))

)

+ std
(
curv

(
x j , y j

))

+ mean (curv (xk, yk))

+ mean (curv (xii , yii ))

+ mean
(
curv

(
x j j , y j j

))

− std (curv (xii , yii )) ,

(11)

where (xi , yi ) are the points in the same connected contour
component as (x, y), (x j , y j ) are the points in the same con-
nected contour component and have lower curv than the
mean curv of this component, (xk, yk) are the points in the
same connected contour component and have higher curv
than themean curv of this component, (xii , yii ) are the points
in the same connected contour component of C2 as (x, y) of
the w × w neighbor area, (x j j , y j j ) are the points in the

same connected contour component of the w × w neighbor
excluding the inner centrum area.

[Line factor]

GN (x, y) = Num(connected(curv(xi , yi ) < Nb))

Num(uniuqe(C3(xi , yi )))
,

(12)

where (xi , yi ) is the points in the same connected contour
component of C2 as (x, y); the numerator of GN is the
number of the connection points that have lower curv than
the curvature bound Nb, Nb is usually a considerable small
value, e.g., 0.3; the denominator ofGN is the number of con-
nected straight-line components ofC3 in the same connected
contour component of C2 as (x, y).

[Texture factor]

GT (x, y) = max(sort(I (x j , y j ))|a − sort(I (xi , yi )))

a = 0,
π

8
,
π

4
,
3π

8
,
π

2
,
5π

8
,
3π

4
,
7π

8
.

(13)

where sort(I (xi , yi )) is the sorted intensities of the center
block of (x, y); sort(I (x j , y j )) is the sorted intensities of
the 8-neighbors blocks of the center block of (x, y).

[Composition factor]
Given the raw corner map CC , the corner distribution

map G is produced by counting the number of corners in the
w × w neighbor areas, and w should be considerably large.
Given the intensity map I and a large enough σ , e.g., σ = 5,
a texture suppressed gradient magnitude map mag2 is gen-
erated. Based on the corner distribution map G, the texture
suppressed gradient magnitude mapmag2, the corner evalu-
ation map F , and the corner intensity mapC I , a composition
factor β for global scale importance can be derived to refine
the corners.

β(x, y) =
√
mean(G) ∗ GN (x, y) ∗ v f n(x, y)

G(x, y) ∗ mean(GN )
,

v f n(x, y) = v f (x, y)

mean(v f )
,

v f (x, y) = 3
√
F(x, y) ∗ C I (x, y)2 ∗ mag2(x, y)

(14)

where (xi , yi ) is the detected corner points in the raw corner
map CC .

4 The new corner detector

4.1 The fusionmethods

The measures of our method are categorized into two types:
local measure and global measure. The local measures
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include the contour intensity difference CT I , the corner pat-
tern factor α(x, y), the refined contour curvature difference
CTV 2, and average contour curvature curv2. The global
scale importance factors include CTV factor, curv factor,
Line factor, Texture factor, Composition factor. The first
fusion includes the three local measures formulated by com-
posing the first- and second-order intensity derivative-based
contour intensity difference CT I (x, y), the intensity-based
contour curvature difference CTV (x, y), and the pattern-
based alpha factor α(x, y) as follows:

F(x, y) = (0.5+α(x, y))×CT I (x, y)×CTV (x, y) (15)

The local fusion function F(x, y) is used to locate corner can-
didates that are the locally maximum points in the F value
map, and then the global importance factors are computed
only for those candidate corner areas. By applying the impor-
tance threshold rules for each global factor, the accurate and
relatively important corners that is considered similar to the
human eye standards will be filtered out.

4.2 The detection algorithm

Based on the definition of the new corner evaluation function
F(x, y), a complete corner detection method is organized as
three parts: the first pre-processing part that evaluates the
noise rate of the image and does the Gaussian smooth filter
and median de-noising filter; the second local measure com-
puting part that computes the local measures and identifies
the corner candidates by the local thresholds; the last global
measure computing part that computes the refined corner
measures and the global factors for the corner candidates, and
locates the final corner points. For the sake of efficiency, the
algorithm needs to address some problems. Firstly, to avoid
doing the F(x, y) calculation for every pixel, the newmethod
only scans the candidate areas whose edge pixels have large
curvature within a 5x5 window. Secondly, to avoid manually
tuning the parameters, the newmethod calculates the average
curvature, or noise rate, (nsr = mean(curv)) in advance. If
an image whose average curvature is high, i.e., nsr > 0.5,
the image may be a noised image. Thus, the method con-
volves the image by a median filter and adopts a relatively
larger sigma and filter window to do the Gaussian smooth-
ing. Thirdly, to identify those local important corner points,
the initial candidate corners are generated from the func-
tion F(x, y) and the F thresh parameter (th), CT I thresh
(th2), CTV thresh th3. Fourthly, to identify those globally
important corner points, the initial candidate corners need to
be refined according to the refined curvature and the global
importance factors. The detailed algorithm is listed as fol-
lows.

Algorithm 1 IPCS Corner Detector
Require: A gray scale input image I ;
Ensure: A set of detected corner points Pts of row-column coordina-

tions [x, y];
1: doGaussian filteringwith sigma = 1 on the input image I , and obtain

the Gaussian smoothed image Im, the Gaussian gradient dx and dy;
2: using dx and dy to calculate the contour map C , the curvature map

curv, the average curvature nsr = mean(curv), and a 15 × 15
averaged curvature map CURV ;

3: if nsr > 0.5 then do a 3 × 3 median filter de-noising on the I ;
4: automatically select parameters (sigma,w) according to nsr and the

size of I ;
5: use a new sigma to do the Gaussian smooth on I, and obtain Im, dx ,

dy, curv, CURV , and nsr2;
6: use a large sigma, e.g., 5, to do the Gaussian smooth on I, and obtain

gradient magnitude M , which are used to suppress texture;
7: locate the candidate area E according to the curvature map curv;
8: use the smoothed image Im, the scale parameter w = 1, 2, 3, ...,

and the candidate area E to calculate the 8 directional BI and C I ,
and scale average smoothed image Im2;

9: use Im2, BI , C I , E , and w to calculate the α, CT I , CTV , and F ;
10: automatically select parameters (th, th2, th3, threshold) according

to F , nsr2 and the size of I ;
11: do a Gaussian smooth on F and get a smoothed F2;
12: do a local adjust on F2(x, y) = F(x, y) + 2 ∗ abs(F(x, y) −

F2(x, y));
13: do a global adjust on F2(x, y) = F2(x, y)/densi ty(x, y), where

densi ty(x, y) is the normalized relative average F2 in a neighbor
window;

14: do 3 × 3 maximum filter on α, CT I , CTV and get α2, CT I2,
CTV 2;

15: identify initial corner points X which have maximum F(x, y) in the
w × w neighbors, and confirm the following requirements:

1. F2(x, y) > th
2. CT I2(x, y) > th2
3. CTV 2(x, y) > th3

16: compute the global importance factors GT , GV , GN , GT , and β;
17: automatically select texture threshold Tb;
18: compute the refined CTV 2 and curv2;
19: identify final corner points Pts which confirm the following global

importance requirements:

1. there are no corner points that have larger curv value in the
connected contour in 15x15 neighborhood;

2. GT (x, y) > Tb;
3. CTV 2(x, y)/GT (x, y) > threshold and

CTV 2(x, y)/GT (x, y) > threshold ∗ β(x, y)
and curv2(x, y)/GV (x, y) > threshold and
curv2(x, y)/GV (x, y) > threshold ∗ β(x, y);

5 Performance evaluation and experiment
results

In this section, the performance of the proposed corner
detector is evaluated and compared with the state-of-the-art
corner detectors in a serial of experiments [17,28], and the
experiment results are reported. The 5 state-of-the-art corner
detectors (ATCSS[16], ARCSS[17], CDPA[18], ANDD[19],
and MTCSS[20]) are compared with the proposed detector
in our experiment. To avoid the use of posterior knowledge,
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each of the detectors uses a default fixed parameter set sug-
gested by the authors’ implementation codes if no automatic
procedures to optimize the parameters are provided. There
are 5 evaluation indexes (Missed corners (Mn), False corners
(Fn), Average repeatability (R), Average match error (Me),
and Average localization Error (Le)) are used in our exper-
iment. The first index is defined as the number of missed
corners. Missed corners are the corners of ground truth that
are not detected by a detector in their k-neighborhood; k is
usually between 5 and 8 pixels. The second index is defined
as the number of false corners. False corners are the corners
detected by a detector that are not in the N-neighborhood of
ground truth corners. The third index is Average repeatabil-
ity. It is defined as

R = Nr

2 ∗ (1/No + 1/Nt)
(16)

where No and Nt denote the number of detected corners from
the original and transformed images by a detector, and Nr
denotes the number of matched corner pairs in the original
and transformed images. In case of that multiple transformed
corners are matched to a single original corner, it can only
be counted once. The fourth index is average match error
Me; it is defined as Me = 1...R. The fifth index is average
localization error Le; it is defined as:

Le = 1

N

∑ √
(t xi − xi )2 + (t yi − yi )2) (17)

where (t xi , t yi ) is the coordination of the matched trans-
formed corners, (xi , yi ) is the coordination of their corre-
sponding original corners, N is the number ofmatched corner
pairs.

5.1 Evaluation of detection performance based on
ground truth

Firstly, the images with labeled ground truth corners are used
to evaluate the correction of corner detection in normal and
noisy circumstances. Figure 1 lists the four commonly used
ground truth images (Geometric, Chessboard, Block, and
Lab), which are used in this experiment.

The image ‘Geometric’ has 60 corners in varying intensity
and curvature; the image ‘Chessboard’ has 80 corners with
camera distortion and noise; the image ‘Block’ has 57 corners
in varying light and shadow; the image ‘Lab’ has 249 corners
in varying scale and pattern. The 6 detectors are applied on
the four test images, and the proposed detector (short for P)
executed in fivemodes, the fourmodes are in fixed thresholds
(0.5, 1.0, 2.0, 4.0), and the one mode is in automatically
selected threshold by experimental formula. The detection
results are compared with the ground truth, and the missed

corners (Mn), false corners (Fn), average match error (Me),
and average localization error (Le) are listed in Table 1:

As shown in Table 1, the proposed detector has better per-
formance in themost of test subjects. Specifically, for missed
corner subject, the proposed detector finds more correct cor-
ners in the all four images than the comparisons; for the false
corner subject, the proposed detector has slightly more false
corners in ‘Block’ and ‘Lab’ than the best records; for the
match error subject, the proposed detector has less match
error in the all four images than the comparisons; for the
localization error subject, the proposed detector has slightly
more localization error in ‘Geometric’ and ‘Lab’ than the
best records. For different thresholds of the proposed detec-
tor, a small threshold trends to lead a sensitive result that
has less missed corners and more false corners; in contrary,
a large threshold trends to lead a insensitive result that has
more missed corners and less false corners. The automatic
threshold leads to a general balanced good result.

To investigate the performance of the individual measures
(Intensity, Pattern, Curvature, Scale), we conduct a test on
the ground truth figures for the individual measures. The test
results are listed in Table 2

As shown in Table 2, the intensity measure (P-I) misses
least true corners and reports least false corners, least mea-
sure, and location error among the three individual measures
(P-I, P-P, P-C). The combination of intensity, pattern, curva-
turemeasures (P-IPC) has overall better performance than the
individual measures. The scale importance factor improves
the overall performances of the individual measures and
combination measure, while the full combination P-IPCS
achieves the best performance.

The detection result images of the 6 corner detectors on
the four ground truth images are listed as follows.

As shown in Fig. 7, the proposed detector has better
results in human vision because it is both locally and globally
weighted to select final corners. The significant corners that
in large scale and strong measure response are more possible
to be found and remained, while the corners in small scale
and weak measure response are less possible to be remained.
Specifically, in the ‘Geometric’ image, the proposed detector
finds the most of the T type corners that are the junctions of
a strong edge and a weak edge, while none of the compar-
ing detectors find these corners; in the ‘Chessboard’ image,
the proposed detector not only has the 100% match rate but
also has the least localization error; in the ‘Block’ image, the
proposed detector finds the most true corners even 3 detected
corners near to the ground truth corners are labeled as false
corners because they exceed the distance threshold; in the
‘Lab’ image, the proposed detector finds the most true cor-
ners and slight more false corners than the best records.

To evaluate the detection robustness in noisy circum-
stances, the four original test images are added with zero-
mean Gaussian white noise with variance from 1 to 20, and
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Fig. 1 Images with labeled ground truth corners

then the six detectors identify corners in these noised images.
The average match errors and average localization errors are
listed in Fig. 8.

As shown in Fig. 8, the proposed detector has better
average match performance among the 6 detectors, and its’
average localization error is also better than the most of the
comparisons.

5.2 Evaluation of detection performance based on
average repeatability

The USC-SIPI image database is a commonly used image
processing test set. In this experiment, the volume 3 (Miscel-
laneous) of USC-SIPI is used for the evaluation of detection
repeatability because this representative volume contains
both artificial images and natural images, noise-free images
and noisy images, indoor images and outdoor images, and
many other scenes.

123



IPCS: An improved corner detector... 2507

Table 1 Detection correctness
of the 6 corner detectors for
ground truth (max Le = 5)

Detector Geometric Chessboard Block Lab

Mn Fn Me Le Mn Fn Me Le Mn Fn Me Le Mn Fn Me Le

ATCSS 24 4 0.25 0.76 0 52 0.20 1.12 8 3 0.10 1.76 83 72 0.32 2.28

ARCSS 50 4 0.56 1.52 55 1 0.36 1.67 38 3 0.38 1.94 153 28 0.42 2.20

CDPA 29 2 0.27 0.74 1 14 0.08 1.10 24 0 0.20 1.70 114 16 0.28 2.24

ANDD 29 0 0.24 0.21 0 2 0.01 1.55 5 2 0.06 2.09 81 69 0.31 2.16

MTCSS 29 0 0.24 1.00 0 21 0.10 1.14 6 1 0.06 1.44 96 26 0.27 2.08

P(0.5) 2 0 0.02 1.15 0 0 0 0.67 3 7 0.08 1.63 46 74 0.23 2.16

P(1.0) 2 0 0.02 1.15 0 0 0 0.67 3 7 0.08 1.63 47 58 0.21 2.16

P(2.0) 2 0 0.03 1.15 0 0 0 0.67 5 6 0.09 1.60 53 29 0.17 2.14

P(4.0) 9 0 0.08 1.16 0 0 0 0.67 12 2 0.12 1.66 82 11 0.20 2.09

P(auto) 2 0 0.02 1.15 0 0 0 0.67 3 6 0.07 1.64 48 30 0.16 2.16

Table 2 Detection correctness of the individual measures of IPCS for ground truth (max Le = 5)

Detector Geometric Chessboard Block Lab

Mn Fn Me Le Mn Fn Me Le Mn Fn Me Le Mn Fn Me Le

P-I 3 39 0.23 1.21 0 0 0 0.72 3 19 0.15 1.90 46 172 0.32 2.14

P-P 21 99 0.53 2.52 2 2 0.02 0.69 6 21 0.19 1.78 43 175 0.32 2.11

P-C 18 100 0.50 1.84 0 2 0.012 0.62 3 19 0.15 1.90 42 168 0.31 2.32

P-IPC 2 40 0.22 1.15 0 0 0 0.65 3 17 0.14 1.64 32 150 0.27 2.18

P-IS 20 0 0.17 1.27 0 0 0 0.72 3 5 0.07 1.94 68 42 0.23 2.01

P-PS 21 15 0.31 2.55 2 1 0.02 0.69 6 16 0.17 1.78 52 107 0.28 2.11

P-CS 18 32 0.37 1.88 0 0 0 0.62 5 15 0.15 1.80 55 110 0.29 2.31

P-IPCS 2 0 0.02 1.15 0 0 0 0.67 3 6 0.07 1.64 48 30 0.16 2.16

Fig. 2 ATCSS corner detection results on the ground truth images

We had a total of 8,268 transformed test images which
were obtained by applying the following six different trans-
formations on the 39 original images:

Rotations: The original image was rotated at 18 different
angles within [−π/2, π/2] with a π/18 interval.

Uniform scaling: The original image was scaled with
scale factors Sx = Sy in [0.5, 2.0] with 0.1 interval, exclud-
ing 1.0.

Non-uniform scaling: The scale factors Sx and Sy were
chosen by sampling the ranges [0.7, 1.5] and [0.5, 1.8] with
a 0.1 interval.

Shear transformations: The shear factor c was chosen
within the range [-1, 1] with a 0.1 interval, excluding 0.

JPEG compression: A JPEG quality factor was chosen
within the range [5, 100] with an interval of 5.
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Fig. 3 ARCSS corner detection results on the ground truth images

Fig. 4 CPDA corner detection results on the ground truth images

Fig. 5 ANDD corner detection results on the ground truth images

Gaussian noise: Zero mean white Gaussian noise was
added to the original image at the standard deviations chosen
within [1, 20] with an interval of 1.

The results of average repeatability with different rota-
tions, uniform scalings, non-uniform scalings, shear transfor-
mations, JPEGcompressions, andGaussian noises are shown
in Fig. 9.

As shown inFig. 9, the proposed detector has better perfor-
mance in all the six transformations. Specifically, because the
8-neighbors blocks or 8-directional first and second deriva-

tive provide more accurate direction and corner measure, the
remarkable improvements are achieved on the rotation and
shear transformations; benefit from the scalable 8-neighbors
block, the noticeable improvements are achieved on the
uniform/non-uniform scaling transformations; due to the
robustness of the corner importance factors, the moderate
improvements are achieved in the JPEG compression and
the Gaussian noising transformations.
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Fig. 6 MTCSS corner detection results on the ground truth images

Fig. 7 Proposed corner detection results on the ground truth images
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Fig. 8 Average detection repeatability of the 6 corner detectors with Gaussian noise
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Fig. 9 Average detection repeatability of the 6 corner detectors (max Le = 5)

Additionally, the proposed detector is examined in 5 dif-
ferent threshold modes (0.5, 1.0, 2.0, 4.0, auto) to test its
average repeatability. The test result is listed in Fig. 10.

As shown in Fig. 10, the proposed detector usually has bet-
ter repeatability with a lower threshold, while it usually has
more false corners at the same time. The automatic threshold
selection usually achieves similar repeatability as the best
records of the fixed threshold mode while remaining better
detection correctness.

The results of the general averagematch error and average
localization errors of the all transformed test images in the
average repeatability experiments are listed in Table 3:

As shown in Table 3, the proposed detector has both the
better repeatability and the better localization performance.

5.3 Average runtime

The six detectors are implemented in MATLAB R2015, and
their average running time is evaluated in a PC with 3.5GHz
CPUand 16GBMemory. The time of the six detectors used to
perform the average repeatability experiments on the USC-

SIPI test images and their transformed images are used to
evaluate the computational efficiency. The test images are
categorized into 3 types (256×256, 512×512, 1024×1024)
by the sizes of images. The average time usage of the six
detectors is listed in Table 4:

As shown in Table 4, the proposed detector usually needs
2 to 5 times time of the best records of the comparisons. It
is remarkable that the time usage of the proposed detector is
becoming closer to the best records when the image size is
increasing.

6 Conclusion and future work

In this work, we proposed a corner detection approach that
is a fusion of multiple cues, such as intensity, pixel pattern,
curvature, and scale. Different from the most of existing cor-
ner measure functions, a new corner measure that reflects the
influences of intensity, pixel pattern, and curvature in the 8-
neighbors blocks is introduced. In this measure, the intensity
difference is an 8-directional invariant derivative operator;
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Fig. 10 Average detection repeatability of the proposed detector in 5 threshold modes

Table 3 Average repeatability and localization error

Detector Repeatability Localization error
(percentage) (pixel)

ATCSS 0.63 1.40

ARCSS 0.48 1.14

CPDA 0.59 1.12

ANDD 0.61 1.32

MTCSS 0.64 1.17

Proposed 0.72 1.04

the uniform pattern factor is a local binary pattern opera-
tor, which can suppress the noise and edge influence; the
8-neighbors curvature calculation needs no trace of curves
along the contour. In addition, a refined curvature calcula-
tion method based on contour curvature and some global
importance factors is used to refine the results by eliminating
substantial corners and remainingmajor corners according to
both local and globalweights. Therefore, a high-performance

Table 4 Average runtime

Average Runtime (second)
Detector 256 × 256 512 × 512 1024 × 1024 General

ATCSS 0.05 0.42 1.47 0.36

ARCSS 0.06 0.42 1.47 0.36

CPDA 0.07 0.50 1.51 0.41

ANDD 1.26 3.42 5.15 2.72

MTCSS 0.07 0.68 2.00 0.55

Proposed 0.19 0.89 1.60 0.68

corner detector is developed based on the proposed measure.
In this detector, before the measure calculation, the aver-
age contour curvature is used to limit the candidate corner
area, rate the image quality, and choose the proper param-
eter set. After the corner measure calculation and the local
extreme localization, a global refine procedure is conducted
to identify the final corners. A set of experiments based
on both ground truth and standard test image sets are con-
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ducted to evaluate the correctness and repeatability of the
proposed detector. The experiment results confirm that the
proposed detector has an overall better performance compar-
ing with the 5 state-of-the-art detectors. The main reasons
for this advantage include: Firstly, the general model of
pattern, intensity, curvature, and scale provides a more accu-
rate corner measure; secondly, the usage of both local and
global weights makes the detection results are more reason-
able in human vision. At last, although the proposed method
achieves considerable advances, the problem still remains,
especially in the global corner refining procedure. We found
that the proposed detector can always find sufficient raw
corners efficiently, but the refining procedure is not always
effective and efficient. Therefore, a more advanced corner
importancemeasuremaybe apossibleway tomake the detec-
tion more correct, more reasonable, and faster.
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