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Abstract
The non-blind deblurring approach can adequately deblur single-blur images by applying a suitable mathematical model.
In contrast, it cannot satisfactorily deblur images that have multiple blurs. The blind deblurring approach is able to remove
various kinds of blurs from an image. However, because the causes of blur in different regions differ, it is difficult to locate
and remove all the blurs accurately and also to recover the fine texture details. Considering these weaknesses and strengths of
both approaches, we propose a neural network that dynamically selects suitable blur kernels for deblurring. In the proposed
method, the most appropriate kernels are extracted by joint training from multiple datasets that contain specific types of blurs
to tackle local and global regions in one image. In addition, to further improve the image restoration quality, we designed an
edge-attention mechanism to compensate the edges and structures of specific objects. The results of experiments conducted
indicate that the dynamic selection of blur kernels combined with the edge attention algorithm not only improves PSNR and
SSIM, but also outperforms state-of-the-art methods.

Keywords Deep learning · Image deblurring · Blur Kernel selection · Attention mechanism · Edge perception · Multifeature
fusion

1 Introduction

Blurry images generally result from manmade causes such
as camera jitter and out of focus shots and natural causes
such as fog, rainy weather, and background noise [1]. Such
images can be viewed as resulting from the convolution of a
latent image and a blur kernel with additional noise. Existing
algorithms applied to deal with such images can be divided
into two categories according to whether the blur kernel is
known (non-blind image deconvolution (NBID)) or unknown
(blind image deconvolution (BID)).
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NBID methods [2,3] deblur images with a known blur
kernel. They establish a solid foundation based on math-
ematical analysis and theoretical statistics. However, it is
usually difficult to know the blur kernel in practical appli-
cations in advance. Further, NBID methods have difficulty
handling abnormal and multiple-blur images. Moreover, the
parallelism and performance of the approach are not suffi-
ciently stable.

BIDmethods [4–6] restore imageswith unknownblur ker-
nels and images with unknown blurs. They analyze and learn
the blurred images and can learn from datasets flexibly and
in parallel by combining deep learning methods and graph-
ics processing units. However, because they learn features by
comparing the pair of blur and sharp images or frames, they
may learn irrelevant image attributes such as color distortion
and fail to precisely deblur images.

To overcome the above issues, we propose training on
specific blur categories so that the image-deblurring learning
experience is solidified into a comprehensive training model
or checkpoint. During testing using this approach, the model
matched the blur kernel for the patches precisely. The strategy
of selecting specific kernels for multiple blurs in one image
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dynamically solves the challenges of image distortion and
the speed–accuracy balance.

In addition, considering that after deblurring the restored
image may have space dislocations and intermittent lines in
the image structure of real-world objects,we also designed an
edge attention algorithm that restores thekeypoints of objects
during the deblurring process. An edge attention algorithm
is used to focus, locate, and process the specific object to
enhance the low-level image restoration performance. Our
contributions are as follows:

• We propose a novel multipath edge attention network
(MEANet) for image deblurring. In terms of one sin-
gle image with multiple blurs in different areas, blur
kernels are selected to match various regions dynami-
cally to remove blurs precisely. Multiple strategies are
adopted to optimize the multipath refinement network to
achieve marvelous restoration visual effect quickly and
accurately.

• We combine the process of structural reconstruction and
attention mechanisms, proposing a novel edge attention
algorithm for image deblurring. The aim of the algorithm
is to focus on the main aspect of an image, recognizing
the category of blur in the image.

• Wedesign an iterative and recurrent network to reduce the
model’s occupation of theGPU.Residual and lightweight
strategies are adopted to reduce the neural network size.
Certain convolutional kernels are replaced from 5×5 and
3 × 3 to 3 × 3 and 1 × 1, which reduces the number of
model parameters.

The remainder of this paper is organized as follows: Sec-
tion 2 discusses various methods and related work. Section 3
presents themethodology and outlines the implementation of
our proposed network, illustrating how we resolve the afore-
mentioned challenges. We discuss our experimental results
in Sect. 4 and conclude the paper in Sect. 5.

2 Related work

Image blurring is a common phenomenon in real scenes. In
general, the blur causes are complex and vary in some parts of
the image. It is difficult to identify the causes of blur because
they occur simultaneously. In addition, blurring inversion is
a strongly ill-posed problem because the blurred image may
correspond with multiple clear images.

2.1 Image deblurring

2.1.1 Cause of blur and imaging principle

Before the introduction of deblurring methods, we need to
know the causes of blur images and videos through natural
and manmade processes. The natural image or frame may
be blurry when the light is dim and bad weather conditions
such as fog, rain, and wind exist. In such cases, it is essential
to evaluate the restoration quality of deblurring by statisti-
cal analysis. Manmade blur generation can be produced by
simulating the camera jitter, adding a specific blur kernel,
transforming images by mixture noise, and so on. As for
manmade causes, for example, different choices in aperture
size and focal length can lead to Gaussian blurring. Man-
made operational errors, camera jitter, and complex scenes
ofmoving objects can cause various kinds ofmanmade blurs.
Therefore, the natural blur causes are passive, while theman-
made blur causes are active.

Equation (1) defines the imaging principle and formulates
the image generation process. Equation (2) defines the blur
accumulation during the continuous imaging process. The
image generation process of the camera sensors can be esti-
mated as:

Image(Object1 + Object2)

= Image(Object1) + Image(Object2). (1)

Object1 and Object2 are the patch content of an image.
Regardless of the presence of the patch in the image or frames
in videos, blur can accumulate when Object1 overlaps with
Object2. Here, B is the blur image and T is the exposure time.
s(t) and s(i) denote the single-time image capture.When the
camera sensor receives light during exposure, it accumulates
a clear image stimulus s[i] at each timestep, resulting in a
blurred image B [7]. Therefore, the exposure accumulation
of the CCD sensor can be defined as follows:

B = g

(
1

T

∫ T

t=0
s(t)dt

)
∼= g

(
1

m

m−1∑
i=0

s[i]
)

. (2)

Under the assumption of a fixed blurring kernel for the
sensor, we can treat it as a mean blurring operation and can
use it to model the blurring process as the convolution of a
latent image I and blurring kernel k as

B = k ∗ I + A, (3)

where B and A represent the blurred image and added noise,
respectively, and “∗” is the convolution operator. This is a
mathematically ill-posed problem because different I and k
pairs can produce the same B results.
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Equation (3) is the assumption of restoration from the
decomposition of the blur image into a kernel and latent
image with noise. Equation (4) is a technique for rough esti-
mation of the blur degree.

g(x) = x
1
γ (4)

As is well-known, as regards the nonlinear camera
response function (CRF) [8], there is noCRFestimation tech-
nique available for blurred images with spatial variations [9].
Therefore, when the basic true CRF is not given, the usual
practicalmethod is to approximate theCRFas a gammacurve
with γ = 2.2, because it is the approximate average of the
known CRF.

The CRF equation is used for artificial blur simulation on
a dataset. For the GOPRO and VisDrone datasets, various
specific blur kernels have been added according to Eqs. (2)
and (3). Therefore, by correcting the gamma function, we
obtain a sharp image according to the observed image, and
we can obtain a blurred image by fine-tuning the parameter
γ , as displayed in Eq. (4). VisDrone provides synthetic blur-
ring techniques and collects real blurry aerial scenarios [10].
GOPRO captures real-world motion-blurring scenarios [11].

2.1.2 Overview of image deblurring methods

Richardson [12] conducted seminal image restoration
research in 1972. Early work on image deblurring depended
on the assumption of restoration from the decomposition of
blur image into kernel and latent image with noise [13]. Sub-
sequently, some uncertain parameters in the blurring model
would be determined, such as the type of blurring kernel and
additive noise [2,14]. However, in real applications, these
simplified assumptions about sampled scenes and blurring
models can lead to performance degradation. In addition,
these methods are computationally expensive, and numer-
ous parameters usually need to be adjusted.

In recent years, the application of deep learning and
generative networks to computer vision tasks has led to
breakthroughs in many areas. Several regression networks
based on convolutional neural networks (CNNs) have been
proposed for image restoration, including somemethods that
deal with image deblurring [3]. Compared with traditional
methods, the methods based on deep learning are less depen-
dent on prior knowledge. The new models can reconstruct
images more accurately at global and local scales.

In general, networks may use a known fixed kernel to
deblur [2,15]. Recent studies have used end-to-end learn-
ing methods to deal with the blurring of spatial changes and
achieved state-of-the-art performance [16]. There are many
blind deconvolutionmethods that estimate a sharp image and
PSF using a joint optimization process [5,17,18]. There are
also many blind deconvolution methods (with and without

joint optimization) that do not rely on specific PSF models
[19]. Recent studies have attempted to solve the restoration
problem by adopting multiscale CNNs to deblur the images.
In these end-to-end frameworks, blurry images are used as
inputs to the neural network to immediately generate clear
images [2]. However, their performance is not satisfactory
owing to the assumption of a fixed blurring kernel. CNNs
are much faster than traditional methods, but their prediction
accuracy is poor, and a considerable amount of GPUmemory
is utilized.

2.1.3 Quantitative evaluation on image recovery quality

It is necessary to evaluate the confidence of the restora-
tion quality. Thus, the peak signal-to-noise ratio (PSNR) and
structural similarity (SSIM) are introduced to assess the sig-
nal sharpness and image similarity with respect to the noise
and between the original and reconstructed structure.

PSNR [20] is a widely used image quality objective eval-
uation index. It evaluates the quality of image restoration by
comparing the differences between the corresponding pixels
of the image. It can be expressed as follows:

MSE = 1

NM

N∑
i=1

M∑
j=1

∣∣∣I (i, j) − Î (i, j)
∣∣∣2 , (5)

PSNR = 10 ∗ log10

(
MAX2

MSE

)
, (6)

where M and N represent the height and width of the
image, respectively, MSE represents the mean-squared error
between two images, and MAX represents the largest value
2n − 1 (n is the number of bits of an image) in the image. I is
the pixel position (i, j) of an image. The lower the value of
MSE, themore similarity there is between two images, which
means the more details are restored. The PSNR usually takes
decibels (dB) as its unit, and the larger the value is, the smaller
is the degree of image degradation. Because it analyzes the
impact of noise on the image at the pixel level, this value
may differ from human subjective assessment, which must
be considered.

SSIM [20]measures the performance of image restoration
by extracting specific structural information from the image.
This effectively makes up for the deficiency of PSNR, which
only analyzes the error between image pixels, and is more in
line with human subjective assessments. It mainly compares
the structural similarity of the two images, that is, the degree
of image distortion is analyzed with respect to three factors:
image brightness, image contrast, and image structure infor-
mation.

SSIM(x, y) = (2μxμy + c1)(2σxy + c2)

(μ2
x + μ2

y + c1)(μ2
x + μ2

y + c2)
(7)
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Here, μx is the average value of the pixels of image x,
μy is the average value of the pixels of image y, x is the
variance of the pixels of image X, y is the variance of the
pixels of image Y, and σxy is the covariance of image X and
image Y. The higher the value is, the lower is the distortion in
the image. When two images are exactly the same, the value
is one. SSIM uses the mean value of the image to estimate
brightness, the standard deviation of the image to estimate
contrast, and the covariance of the two images to estimate
similarity.

In this paper, the two quantitative indicators PSNR and
SSIM are used to evaluate the overall performance of the
analysis model for deblurring. To ensure the authenticity and
accuracy of the experimental results, we selected the PSNR
and SSIM values to analyze the proposed model on multiple
datasets.

2.2 Structure reconstruction

2.2.1 Edge detection

In this study, we concentrate on the generation of adversarial
edge reconstruction for the overall structure and extract dif-
ferent blurring features. Thus, an inferior performancewould
be achieved if we did not analyze the specific blurring rea-
sons for a specific image. Even a fast deblurring method does
not deblur the entire image because it is not the best option
[1,21]. Considering the computational costs, it is also bet-
ter to have an alternative kernel to deblur different objects
at different semantic levels [21]. For better image restoration
quality, it is beneficial to combine the blurring category loca-
tion and important structural information in terms of specific
artifacts and degree of blurring.

Regarding edge detection, the Canny edge detector [22]
performs well in local edge reconstruction, whereas nested
edge detection [23] works well in global reconstruction. The
edge recovery of a generative adversarial network (GAN)
tends to be slightly intermittent, but its restoration perfor-
mance is very good for complex structures. The edge GAN
(EGAN) exhibits promising performance for edge restora-
tion and image deblurring [24,25]. However, the restoration
introduces artifacts if the blurring area has uniform inten-
sity, because it selects the incorrect region for deblurring.
Deep learning approaches have been proposed for handling
complicated natural blurring. These methods use convolu-
tional layers to extract features by scanning blurred and sharp
images and subsequently fusing features with deconvolu-
tion layers and recording the learned results. Xu et al. [26],
Schuler et al. [27], and Zhang et al. [28] adopted this two-
stage traditional procedure, which is based on the use of an
encoder–decoder neural network. However, these methods
still adopt the traditional framework, which produces unsat-
isfactory prediction results.

2.2.2 Attention modules

In this paper, we review the global average pooling layer pro-
posed in [21] and illustrate how it explicitly enables CNNs to
have excellent location capabilities, despite being trained on
image-level annotations. Although this technique has been
previously proposed as a method for regularization in train-
ing, we have found that it actually establishes a universally
localizable deep representation that can be applied to a vari-
ety of tasks. We are able to locate objects with high accuracy.
Furthermore, we have proven that our network can locate dif-
ferentiated image regions for various tasks, even though the
networks were not trained for these tasks.

The latest work of Zhou et al. [29] shows that the convo-
lution units of each layer of a CNN act as object detectors for
the location of objects, even without supervision. This func-
tion will fail when classifying objects with fully connected
layers. Popular CNNs have recently been proposed to avoid
the use of the fully connected layer to minimize the num-
ber of parameters while maintaining high performance. To
achieve this goal, Lin et al. [21] used global average pooling
(GAP) as the structure regulator to prevent overfitting in the
training process.

It is important to highlight the intuitive difference between
GAP [21] and global maximum pooling (GMP) [30]. GMP
encourages the identification of only one discriminatory part,
whereas GAP encourages the network to identify a range of
objects. It is designed to replace fully connected layers in
classical CNNs. GMP has been used for weakly supervised
object location in the previous research [30]. In our experi-
ments, we found that the advantage of the GAP layer goes
beyond its functionality as a normalization regulator. With a
small adjustment, the network can retain its excellent local-
ization capabilities up to the last layer. Distinguishable image
areas can be easily identified in a single forward pass using
this adjustment to accomplish a variety of tasks, even those
for which the network was not initially trained.

Various attention modules have been designed to perceive
a meaningful object in an image. Some methods utilize an
edge prior for image structure reconstruction. The advantages
in edge detection or attention modules are obvious; they can
handle the objects in images flexibly and quickly, which is
ideal for essential or semantic reconstruction. However, they
do not exhibit stable performance, and they often need to be
embedded into deep learning models.

2.3 Performance enhancement on network
architecture

Recent image deblurringmethods heavily rely on deep learn-
ing models. There are four branches of network architecture:
GAN, multiscale, iterative, recurrent. These methods can
solve the general image deblurring problems very well.
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2.3.1 GAN architecture

GANs have shown promising performance in image deblur-
ring. Kupyn et al. [11] designed a new framework for
deblurring that calculates the differences between the gen-
erated and original images. Researchers have also achieved
substantial improvements using other sophisticated GANs
such as DeblurGAN [11], DeblurGANv2 [34], and EGAN
[25]. However, a GAN requires a large amount of computing
and memory resources when comparing the generated and
real images of the discriminator.

2.3.2 Multiscale architecture

Multiscale networks [31] can extract various features from
each scale by scaling an image to different sizes, as shown
in Fig. 1a. The input images are converted into feature maps,
and the sizes of the feature maps are halved at the next level.
In multiscale detection[35], the various scale features are
fused with different methods and contain a large quantity
of information, thus suggesting the results should have high
accuracy. However, the multiscale strategy strictly requires

the features to be extracted from small to large scale, which
means that large-scale concatenation cannot occur until the
computational results from the small scales are available,
which reduces the training speed.

2.3.3 Recurrent architecture

An input layer, loop hiding layer, and output layer constitute
a recurrent network [32,35,36], as shown in Fig. 1b. Recur-
rent networks can learn features and long-term dependencies
in sequential data. However, as the number of network
layers increases, so does the network’s complexity. The
process deteriorates if invalid features are extracted in the
last iteration because the concatenation of recurrent net-
works relies heavily on the results from the last iteration.
Subsequently, the deblurring inference becomes extremely
unstable if image restorations are poor in quality.

2.3.4 Iterative architecture

Ye et al. [33] proposed the scale-iterative upscaling network
(SIUN) that iteratively restores sharp images, as shown in

Fig. 1 Various deblurring network architectures. a Multiscale archi-
tecture for extracting features from different scales [31]. b Recurrent
architecture in which the next round of training is aided by the results
from the previous round [32]. c Multipatch architecture for directly
extracting features from image pairs by cropping images at different
scales [28]. d Scale-iterative architecture for training the model with

an upsampling path with the aid of the intermediate results from the
last iteration [33]. We combine the ideas of (a) and (b) and propose a
new framework called MEANet whose core module uses the multipath
refinement MEA. MEANet can operate at both multiple scales and in a
recurrent manner
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Fig. 1d. The super-resolution structure of an upsampling
layer is adopted between two consecutive scales to restore
image details. Image features are extracted from small to
large scales, with the aim of reconstructing high-resolution
images from low-resolution ones. The downsampling pro-
cess iteratively restores the image until it is equal to the size of
the original image. Moreover, the network’s weight sharing
can be preserved, and its training process is flexible. A deep
multipatch hierarchical network (DMPHN) is a CNN model
that appears to be a simple network but operates as an effec-
tive multipatch network, as shown in Fig. 1c [28]. An input
image is divided into different sizes at each iteration. Features
are then extracted using a multiscale architecture. However,
the method fails to achieve high deblurring precision and
network efficiency, and substantial memory is needed for the
iterative calculations. However, compared to the attention
modules that focus on the main area, these methods do not
perform well as part of a large model and thus yield low
efficiency.

3 Model design and implementation

The proposed multipath edge attention network (MEANet)
in Fig. 2 is constructed to ensure that accuracy and speed
are balanced. The backbone of the original MEA network is
RefineNet [37]. The blur kernels are selected tomatch for dif-
ferent regions of a single image dynamically to remove blurs
precisely. It is implemented by the edge-attention algorithm
in Sect. 3.1. We exploit recurrent and multiscale strategies

to learn multifeature information in Sect. 3.2. A structure is
designed with a branch depth and fusion module on the basis
of a lightweight process [4] and remote residual connections
[9]. Finally, a multiscale refinement loss function is used to
train the network in a coarse-to-fine manner in Sect. 4.2.
MEANet has a modular architecture for multiple attention
modules. It is also modular for several edge detection net-
works for image information priors and feature extraction,
and multiple attention modules can also be added in the mul-
tiscale dataflow path. An iterative and recurrent strategy is
first designed to train a lightweight yet efficient network.

3.1 Edge attention algorithm

Blurring cannot be avoided in real-world image capture. For
instance, Fig. 3a shows fast cars moving on the street, which
causes motion blurring. The distance from the lens to the
car causes a defocus blur. MEANet restores images in three
steps—edge reconstruction, localization of the blurring cat-
egory, and deblurring of the patches—and suitable preset
kernels are adopted to process the good regions.

3.1.1 Edge reconstruction

Edge information (high-frequency features) is very impor-
tant for reconstructing images because a sharper background
helps to refine different blurring kernels [9]. The inputs are
blur and ground-truth pairs. The edge generative network
then predicts the structure of the entire image. Subsequently,
the pretrained networks preprocess the edge feature informa-

Fig. 2 MEA framework. The input image is augmented into different
scales from top to bottom. a Path for extracting features at different
scales. b Fusion of the recurrent last-round results and the upsampling

feature maps as a single refinement process. All four refinement paths
compute the final loss in the scale refinement loss function, and then,
the best deblur results are obtained
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Fig. 3 Multifeature extraction for edge and sharpness. Neither edge
attention priors nor multimodel training can focus on the core objects in
the foreground and select the correct kernels for restoration.An attention
mechanism acts in a similar manner to biological neural cells, and it
focuses on objects of interest using a broad viewpoint [6], classification
[38], and location [3]. Therefore, we design a new algorithm consisting
of three steps: focus, location, and processing. The idea underlying
the proposed algorithm is that the restoration of the key objects can
significantly enhance the visual effect of the whole image and retain the
most important semantic information. Selecting the correct kernels to
process specific regions is better than deblurring the whole image aided
solely by just one kernel

tion to ensure that the location and class are associated with
the deblurred kernels.

An overview of the edge boundaries is illustrated in
Fig. 3b. The ground-truth images are then preprocessed into
grayscale images for further edge-feature extraction and are
sent to the discriminator for the comparison benchmark. The
generator produces various generated edge maps for the dis-

criminator D so that it can evaluate how real the generation
is

Ledge = min
Ge

max
De

LGe

= min
Ge

(aadv,1 max
De

(Ladv,1) + aFMLAM). (8)

3.1.2 Blurring category location

First, we search the background using convolutional layers
to create a broad view for determining the latent meaningful
objects and extracting semantic information through a mul-
tipath edge attention unit. The second step is classification.
For a given image, gl(a, b) is the spatial information in the
l-th layer. Gl then represents the sum of gl(a, b). Thus, for
a specific object class, the input

∑
AlGl is the input of the

softmax function. A is the weight corresponding to the class,
and it predicts the essential level of Gl . Finally, S is the out-
put of the softmax function and is denoted as exp(S)∑

e exp(S)
. The

score S is defined as follows:

S =
∑

A
∑

Gl(a, b)∑
(a, b)

∑
Al

∑
Gl(a, b)

(9)

The score of the global average pooling predicts the impor-
tance of the location of (a, b), thus leading to the classifica-
tion of a blurry object in the image.

Next, the deblurring category is located. Based on the
edge maps, we can search for, locate, and itemize the blurry
objects into six categories: sharp areas, random deviation,
changeable blur size, changeable shaking angle, changeable
shaking length, and motion blurring. In terms of each cate-
gory, MEANet has a different deblurring kernel to refine the
blurring features for specific objects. The attention module
is able to find and locate the general objects and apply differ-
ent deblurring approaches through a deep learning training
process.

Subsequently, the specific objects are deblurred into sharp
objects, aided by the edge generative modules and contextual
attention mapping.

From Fig. 3e–g, we can conclude that changing the recep-
tive field generates different contextual attention results.
When the receptive field is large, objects are perceived in
their entirety. When the receptive field is small, each object
in the image is perceived and the texture is detailed.

3.1.3 Patch deblurring

The structure information, predicted object, and candidate
blur class can be determined when the data flow from the
edge feature extraction and contextual attention are located.
Subsequently, we use the deblurring feature prior network
to deblur the images into sharper ones. In this way, we can
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Fig. 4 Different parts of the network. a Fusion unit, b improved CRP
module, c lightweight network structure of RCU, and d MEA unit.
The main purpose for each unit is activation by a visual pattern in its
receptive area. Therefore, a map of the visual mode is required. The
class activation graph is the weighted linear sum of the existence of

these visual patterns in different spatial locations. The image areas that
are most relevant to a particular category can be identified by sim-
ply sampling the class activation graph until it is the size of the input
image

restore the image by applying different blurring strategies
in various image areas. Consequently, the reconstruction of
the object structure is meaningful and clear, and the target is
more specific, which improves the performance.

The edge attention process can be divided into three steps:
abstraction of the edge information by the edge prior, refining
the intermediate features by attention modules, and recon-
struction of the whole image. We not only obtain the best
visual performance, but also enhance the efficiency of patch
processing. We adopt an edge generative approach to recon-
struct the overall image structure, refining the image from
coarse to fine and achieving good performance on a wide
range of blurred scenes. The modules satisfy the multilevel
requirement of concatenating different types of feature maps
and help train an accurate network.

3.2 Multiple strategies

3.2.1 Multiscale and recurrent learning strategies

Multiple strategies are employed in this study. The basic
idea of the multiscale learning strategy is to extract features
from large- and coarse-scale maps and upsampled results,
as shown by the green lines in Fig. 2a. Meanwhile, in the

recurrent learning strategy, the high-level feature extraction
path acquires fusion information from the low-level refine-
ment maps and the final feedback, as shown by the purple
flow lines in Fig. 2a. In our study, the two strategies are com-
bined by designing four refinement paths to extract features
in different scales, instead of directly predicting the entire
deblurred image. Thus, the network only needs to focus on
learning highly nonlinear residual features, which is effective
in restoring deblurred images in a coarse-to-fine manner.

In themultipath input stream illustrated in Figs. 2a and 4d,
the upper MEANet layer takes blurred and sharp images as
the input and processes the deblurring datasets in a total of
four scales, i.e., k varies from 2 to 4. The four-scale blur-
ring feature maps are denoted as bk , while the refinement
results are denoted as lk . First, the k level of the multipath
input stream concatenates the same scale feature maps bk
and upsampling feature maps lk+1 into a middle feature map
denoted as

ck = bk ⊕ lk+1(2 ≤ k ≤ 4) (10)

The fusion unit then adds ck and the results from the last
iteration l(k−1) to obtain the final outcome,which is denoted
as lk . This process briefly describes how the recurrent path
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works. The entire process can be calculated as:

lk = ck + lk−1(2 ≤ k ≤ 4) (11)

3.2.2 Lightweight and residual-connection modification

A large number of parameters and floating-point operations
of our original MEANet originate from the commonly used
3 × 3 convolution. Therefore, we focus on the replacement
of these elements with simpler counterparts without com-
promising performance. The original design of MEANet
employs an encoder–decoder structure equipped with four
feature extraction and downsampling layers. Each path has a
fusion unit. The basic block uses a 3× 3 convolution, which
we call the fusion unit. Herein, the 1×1 fusion unit in Fig. 4a
is replaced with a 3 × 3 convolution. A chained residual
pool (CRP) is also considered to naturally illustrate how the
lightweight process works and how the three former units
are reshaped. The lightweight process is applied to the CRP
unit by substituting the 5 × 5 and 3 × 3 convolutions with
the 5 × 5 and 1 × 1 convolutions, respectively, as shown in
Fig. 4b.

The refinement path adopts a convolution layer with a
stride of one followed by a convolution layer with a stride of
two, such that they consistently shrink the featuremap size by
half. The two convolution layers act as a residual connection
unit (RCU) [4]. Two RCUs are installed in the encoder and
three in the decoder. All of the blocks use 1 × 1, 3 × 3, and
1× 1 convolutions compared with those in the RCU that use
3 × 3 and 3 × 3 convolutions. We call the two convolution
layers the lightweight residual connection unit (LWRCU), as
illustrated in Fig. 4c.

Intuitively, a convolution with a relatively large core size
is designed to increase the size of the receptive field aswell as
the global context coverage. The 1× 1 convolution can only
transform the features of each pixel locally from one space to
another. Herein, we empirically prove that the replacement
with a 1 × 1 convolution does not weaken the network per-
formance. Specifically, we replace the 3× 3 convolutions in
the CRP and fusion block with their 1 × 1 counterpart. We
alsomodify the RCU to LWRCUwith a bottleneck design, as
shown in Fig. 4c. This reduces the number of parameters by
more than 50%and the number of triggers bymore than 75%,
as shown in Table 1. The convolutions have been shown to
save considerable computation time without sacrificing per-
formance.

We also enhanced the MEA unit illustrated in Fig. 4d.
Deep residual networks obtain rich feature information from
multisize inputs. The residual block originally derived for
the image classification tasks is extensively used to learn
robust features and train deeper networks. Residual blocks
can address vanishing gradient problems. Thus, we replaced
the connection layer with the MEA unit.

Table 1 Specific parameters of the proposed multipath edge attention
network (MEANet)

Network Kernel Stride Padding

Conv1 5 × 5 × 32 1 2

Conv2 1 × 1 × 64 1 1

Conv3 5 × 5 × 128 2 2

Conv4 1 × 1 × 128 1 1

Conv5 3 × 3 × 256 1 2

Conv6 1 × 1 × 256 1 1

Conv7 3 × 3 × 256 1 2

Conv8 1 × 1 × 256 1 1

Conv_r1_1 3 × 3 × 256 1 1

Conv_r1_m1 3 × 3 × 256 1 1

Conv_r1_m2 3 × 1 × 256 1 1

Conv_r1_m3 3 × 3 × 256 1 1

Conv_r1_m4 3 × 1 × 256 1 1

Deconv1 4 × 4 × 128 1 2

Conv_r2_1 3 × 3 × 128 1 1

Conv_r2m2 1 × 1 × 128 1 1

Conv_r2m3 3 × 3 × 128 1 1

Conv_r2m4 1 × 1 × 128 1 1

Deconv2 4 × 4 × 64 1 2

Conv_r3_1 3 × 3 × 64 1 1

Conv_r3_m1 3 × 3 × 64 1 1

Conv_r3_m2 1 × 1 × 64 1 1

Conv_r3_m3 3 × 3 × 64 1 1

Conv_r3_m4 1 × 1 × 64 1 1

Deconv3 4 × 4 × 32 1 2

Conv_r4_1 3 × 3 × 32 1 1

Conv_r4_m1 3 × 3 × 32 1 1

Conv_r4_m2 3 × 3 × 32 1 1

Conv_r4_m3 1 × 1 × 32 1 1

Conv_r4_m4 3 × 3 × 32 1 1

Herein, the MEA is specifically designed as a combina-
tion of multiple convolution layers, conv-f-1 to conv-f-5, and
each convolution layer is followed by a rectified linear unit
activation function. conv-f-2 uses feature maps generated by
conv-f-1 to generate more complex feature maps. Similarly,
conv-f-4 and conv-f-5 continue to use the feature map gen-
erated by conv-f-3 for further processing. Finally, the feature
maps obtained from multiple paths are fused together. The
specific calculation is as follows:

y = f2 ( f1(x)) + f4 ( f3 ( f2 ( f1(x)))) (12)

where f , x , and y represent the convolution operation, char-
acteristic graph of the input, and characteristic graph of the
output, respectively. We construct a shortcut connection in
each path of MEANet. In the process of forward transmis-
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sion, the remote connections transmit low-level features,
which are used to refine the visual details of the coarse
high-level feature maps. The inner connections of the convo-
lutional layers allow the gradients to propagate directly to the
early convolution layers, thus contributing to more accurate
feature transfer.

We set the number of paths from one to six for the
multipath process. The operation uses the least number of
parameters when the number of paths is three, whereas best
accuracy is achieved when the number of paths is four.When
the number of paths is less than three, the extracted features
are not accurate. When the number of paths exceeds four,
the deblurring encounters severe performance degradation.
The training loss remains at a high level all the time. Con-
sequently, we chose the four-path refinement setting as the
final backbone.

4 Performance evaluation

In this section, we compare MEANet to recently adopted
methods—specifically, DeepDeblur [39], DeblurGAN [11],
DeblurGANv2 [34],DMPHN[28], andSIUN [33]—in terms
of accuracy and time efficiency.

4.1 Experimental setup

MEANet was implemented using the Caffe deep learning
framework. The model was trained with Adam
(β1 = 0.9, β2 = 0.999). Input images were randomly
cropped to 256 × 256 in the training process. A batch size
of 16 was used for the training on four NVIDIA RTX2080Ti
GPUs. At the beginning of each epoch, the learning rate was
initialized to 10−4 and subsequently halved every 10 epochs.
We trained 170 epochs for VisDrone and 150 epochs for
GOPRO. For the sake of time efficiency, we evaluated the
inference time of the existing state-of-the-art CNNs on 11
GB RAM RTX2080Ti GPUs.

We used two benchmark datasets to train and evaluate the
performance of MEANet: VisDrone [10] and GOPRO [11].
The image size in the GOPRO dataset is 1280×768, whereas
that in theVisDrone dataset is 256×256. The training dataset,
validation dataset, and testing dataset were divided using a
ratio of 7:2:1. The total number of images (besides the data
augmentation) was 25,000. Gaussian blur was used to deal
with the static blurred images in VisDrone. The dynamic
blurred images in GOPRO were processed by shooting the
motion scene in the field.

To prevent our network from overfitting, several data
enhancement techniques are employed. Of the 24,000 pairs
of images, 22,000 pairs were used for training and the rest
for testing. We augmented the data in VisDrone by including
augmentations with extreme blur, distorted texture, cropping

patches, and image rotation. For geometric transformations,
the patch is flipped horizontally or vertically and rotated at
a random angle. For color, the RGB channel is randomly
replaced. To consider the image degradation, saturation in
the HSV color space is multiplied by a random number in
the range [0, 5]. In addition, Gaussian random noise is added
to the blurred image. To make our network robust to noise at
different levels, the standard deviation of noise is also ran-
domly sampled from a Gaussian distribution N (0 ∼ 1). In
the form of a preset blur kernel, blur is artificially added to
the clear image to ensure that pairs of training data can be
obtained.

4.2 Loss design and training strategy

Given a pair of sharp and blurred images, MEANet produces
four groups of feature maps at different scales. The input
image size is H ×W . The four scales of the feature maps are
H/4×W/4, H/8×W/8, H/16×W/16, and H/32×W/32.
In the training process, we adopted an L2 loss between the
predicted deblurring result and the ground truth, as follows:

L2 = 1

2N

N∑
i=1

∥∥∥xis − F
(
xil

)∥∥∥2 (13)

where xis is the ground-truth patch and F is the mapping
function that generates the restored image from the N inter-
polated training patches xil . Herein, the patch size is defined
at different levels.

Themultiscale refinement loss function is useful for learn-
ing the features in a coarse-to-fine manner. Each refinement
path has a loss function that can be used to evaluate the train-
ing process. Moreover, our scale refinement loss function
computes the results at different scales,which leads to amuch
faster convergence speed and an even higher inference pre-
cision. The final loss is calculated as follows:

Lfinal = 1

2K

K∑
k=1

1

CkWkHk
‖Lk − Sk‖2 + Ledge (14)

where Lk represents the model output of the scale level K ,
and Sk denotes the k-scale sharp maps. The loss at each
scale is normalized by the number of channels Ck , width
Wk , and height Hk . The multiscale refinement loss function
takes each subtask as an independent component within a
joint task, allowing the training process to converge more
rapidly and perform better than other methods, as displayed
in Fig. 5. The training losses of other approaches markedly
decrease during the first round and then consistently remain
at a 6% smooth trend in the following training sessions. The
MEANet method, aided by the loss weight scheduling tech-
nique, exhibits a dramatic downward trend at first and then
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Fig. 5 Training loss of the four
methods. Only the first two
epochs are shown

remains at approximately 4%. The model accuracy improve-
ments (approximately 10–21%) attributed to the multiple
rounds of training for the four loss weight groups verify the
convergence and advantages of our method’s training strat-
egy.

4.2.1 Progressive weighted training process

In the multipath refinement extraction and fusion stages, the
task is to fuse the deblurring feature and edge feature from
the outputs to generate the final restored frame. The patches
with blurry and refined features and the ground truth are input
during the training process.

First, the edge feature is extracted from the ground-truth
patches, and the hyperparameter α is initially set to 0 to con-
trol the proportion of the refined resource. Second, the refined
and mixed edge feature patches are fused in the contextual
attention module, which uses the softmax function to pre-
dict the foreground and generate the preliminary activated
heatmaps. Third, α is set to one, and the deblurred, refined
feature patches are sent to the attention module in the mid-
dle of the training process and are then predicted again by
the attention module. The results are compared with the syn-
thesis loss function between the predicted deblurring results
and patches with sharp features. Therefore, the deblurring
feature refines the input of blurry images and benefits the
edge feature extraction at the beginning of the training. In
the middle of the training process, the deblurring and edge
features are fused by controlling parameter α. Finally, each
path containing different scales of double feature patches is
refined and matched with the use of the multipath context
attention module with activated heatmaps to infer the final
predictions.

4.3 Comparative experiments

We conducted comparative experiments with DeepDeblur
[39], DeblurGAN [11], DeblurGANv2 [34], DMPHN [28],
and SIUN [33] to verify the performance of our model. The
visual effects of the different methods are shown in Fig. 8.
MEANet achieved state-of-the-art performance compared
with SIUN and exhibited clear object boundaries without
artifacts. The PSNR and SSIM values for MEANet were
much higher than those for DeblurGAN, DeepDeblur, and
DMPHN.

Moreover, our method performed better than SIUN and
DMPHN and much better than DeblurGANv2 in addressing
the GOPRO motion blurs. The results in Table 2 demon-
strate the superiority of the MEANet framework based on
the PSNR and SSIM values. Other methods show consid-
erable limitations in SSIM, which means that they lack
the capacity to restore a large amount of missing structure
information and perform deblurring on images with extreme
blur.

DeblurGAN required the least amount of GPU mem-
ory (4538 MB), whereas our proposed method required a
slightly higher amount for GOPRO, as shown in Fig. 6.
This is because DeblurGAN only adopts a generative net-
work for training, which means the model is unstable and
the restored color deviates from the expected color, as shown
in Fig. 9. MEANet consumed the least amount of GPU
memory in the VisDrone dataset for a batch size of 16.
The lightweight process reduced the number of parame-
ters of the model and contributed to low memory usage.
The average time consumed inferring images is presented in
Fig. 7.
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Table 2 PSNR and SSIM
values obtained on blurry image
datasets

Method GOPRO VisDrone
PSNR SSIM PSNR SSIM

DeepDeblur [39] 29.430280 0.750671 27.150020 0.540512

DeblurGAN [11] 28.225590 0.750112 28.301160 0.611832

DeblurGANv2 [34] 32.204130 0.869930 28.440420 0.615312

DMPHN [28] 34.220210 0.902231 28.538990 0.526201

SIUN [33] 34.458470 0.901142 28.278690 0.544013

MEANet 34.635120 0.908103 29.409320 0.863548

Fig. 6 Memory consumption of
graphics cards

Fig. 7 Average time consumed
inferring images

4.4 Ablation experiments

In these experiments, the original network benchmark is
denoted asRefineNet [37].We added the lightweight shortcut
connection to the benchmark and referred to it as LR-
RefineNet.We then added the generative edge reconstruction
and attention modules to the refinement path in RefineNet
and referred to it as EA-RefineNet. Finally, we combined
the lightweight short cut connection, and attention mod-
ules in the benchmark and referred to it as MEANet. As
shown in Table 3, LR-RefineNet and EA-RefineNet per-
formed slightly better than RefineNet. MEANet has the best
numerical results.

Several techniques were applied in the ablation experi-
ments to explore the deep learning strategies. In this paper,
we verify that image deblurring performs better in joint
training than transfer learning or multimodel training. The
edge attention algorithm, lightweight shortcut connection,
fine-tuned weight, and multipath refinement loss function
were developed to be plug and play to adapt to different
demands for image-processing efficiency, GPU occupation
of the model, speed and accuracy balance, and training effi-
ciency. We modified the network in a lightweight manner
by combining the iterative and recurrent architectures. The
design of a lightweight convolution and residual connection
makes themodelmore streamlined, efficient, and fast. Exper-
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Table 3 Quantitative numerical PSNR and SSIM results

Method GOPRO
PSNR SSIM GPU(MB)

RefineNet [37] 34.178260 0.894369 8399

LR-RefineNet 34.228410 0.910892 6861

EA-RefineNet 34.402120 0.903506 6311

MEANet 34.640220 0.908021 6052

Method VisDrone
PSNR SSIM GPU(MB)

RefineNet [37] 28.739910 0.854758 8561

LR-RefineNet 29.252100 0.858932 7930

EA-RefineNet 29.041380 0.860325 7329

MEANet 29.410030 0.863126 6912

iments were conducted to demonstrate the substantial impact
of the lightweight process and the residual connection on
the enhanced accuracy and decreased complexity of the pro-
posed network. State-of-the-art deblurring performance can
be achieved according to the quantitative numerical analysis
of the PSNR and SSIM.

The experimental results indicate that MEANet could
achieve considerable precision, as shown in Fig. 8. Fur-
thermore, MEANet executed much faster than the other

deblurring models, such as SIUN and DMPHN. Compared
withDeblurGANandDeblurGANv2, the proposedMEANet
model performed well in terms of the speed (increased by
7.4%) and deblurring quality of images (increased by 4.2%).
The GPU memory use remained low owing to the added
lightweight process. Our method could also recover more
details and achieved relatively high SSIM and PSNR values.
Images remained unstable and sometimes contained artifacts
and color distortions for other models. Conversely, MEANet
performed image deblurring in a stable manner and resulted
in high image sharpness.

5 Conclusions and future work

In this paper, we proposed amultipath edge attention network
called MEANet deals with the variety of blurs on differ-
ent regions by dynamically selecting blur kernels. MEANet
concentrates on three main challenges in image deblurring:
(i) blur kernel estimation for image retrieval; (ii) structure
reconstruction and focusing on the main aspects for essen-
tial or semantic reconstruction; and (iii) multiple strategies
to enhance the efficiency of the neural network.

The network exploits multiple strategies, including a
lightweight process, remote residual connection, edge atten-
tionmechanism, and scale refinement loss function, to handle

Fig. 8 Results of comparative
experiments: a input image, b
ground truth, c DeblurGAN, d
DMPHN, e SIUN, and f
proposed MEANet
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Fig. 9 Results of comparative
experiments. The sequence is
blurry, DeblurGAN, DMPHN,
SIUN, MEANet, and
ground-truth images

real blurring scenarios, preserving fast inference speed and
high precision. It can extract different features by schedul-
ing the weight of joint training losses and produces a fusion
guided by attention modules. This results in efficient image
restoration. The proposed MEANet model was compared
with existing models on two popular benchmark deblurring
datasets. It achieved state-of-the-art performance compared
with the other methods on the benchmark datasets.

In futurework, wewill develop faster deblurringMEANet
inferences. The computational capability will likely be much
higher than that of the GPUs used in our experiments. Model
compression techniques, including pruning and quantization,
will also be explored. This model will also be applied to
video deblurring or deblurring of inpainting results at the
post-processing stage.
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