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Abstract
Image decomposition is a fundamental but challenging ill-posed problem in image processing and has been widely applied to
compression, enhancement, texture removal, etc. In this paper, we introduce a novel structure–texture image decomposition
model via non-convex total generalized variation regularization (NTGV) and convolutional sparse coding (CSC). NTGV aims
to characterize the detailed-preserved structural component ameliorating the staircasing artifacts existing in total variation-
based models, and CSC aims to characterize image fine-scale textures. Moreover, we incorporate both structure-aware and
texture-awaremeasures towell distinguish structural and textural component. The proposedmodel is numerically implemented
by an alternatingminimization scheme based on alternating directionmethod of multipliers. Experimental results demonstrate
the effectiveness of our approach on several applications including texture removal, high dynamic range image tone mapping,
detail enhancement and non-photorealistic abstraction.

Keywords Structure–texture image decomposition · Non-convex total generalized variation regularization · Convolutional
sparse coding · Alternating minimization scheme · Detail-preserving

1 Introduction

Image decomposition is a key step in image analysis to
extract two semantically meaningful components from an
image. That is, given an input image f , the image decom-
position problem can be written as f = uC + vT , where the
unknown uC represents structural component modeling the
well-structured homogeneous regions and the unknown vT
represents textural component defining oscillating patterns
such as texture and/or noise. Image denoising and structure–
texture image decomposition are two types of representative
decomposition problems, focusing on how to formulate two
parts with different priors. In this paper, we mainly focus
on the structure–texture decomposition and the difficulties
mainly reflect in two aspects. Firstly, this is an ill-posed prob-
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lem since the number of unknowns is twice as many as the
number of known variables, and how to employ appropriate
constraints to reach a unique solution is challenging. Sec-
ondly, as there is no clear distinction between structures and
textures among different images and even within one image,
how to define the scales of both parts and extract structures
and textures consistent with Human Visual System (HVS) is
an another difficult problem.

Numerous techniques have been developed to implement
decomposition models. For example, different variational
techniques have been developed to separate image struc-
tures and textures by utilizing different regularizations.
Early methods always applied total variation (TV) [50]
and its extensions including to extract the piecewise con-
stant structural part and characterized the textural part
with different functional spaces or norms, such as TV-
G [42], TV-div(L p) [57], TV-H−1 [46], TV-H−s [32], TV-
div(BMO) [30], TV-L1 [72], RTV [66], JCAS [19]. However,
these methods often over-smooth the structural component.
Filtering-based methods were proposed to filter out textures
from the structural image according to edge strength [12,
13,29,31,51,70,71] or spacial scale [17,24,67,75,77]. Com-
monly, the above work can remove weak or smaller-scale
edges and preserve the strong or larger-scale ones. However,
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these methods still cannot describe the distinction between
image structure and texture, especially when weak edges
belong to image structure, while strong ones correspond to
the texture. Recently, deep neural networks (DNNs) have
been proposed in the image decomposition [8,14,15,28,65].
Since there is no ground truth of image structure and tex-
ture, these methods are dependent on man-made datasets via
sparse annotations or a large number of external samples and
perform unstable on real-world data. In addition, STD [76]
proposed a model of self-example, unsupervised and online
learning, but still lost too many details of structural compo-
nent due to the TV regularization, especially for the examples
with undistinguishable image structures and textures.

In this paper, we take advantages of both the variational
framework and sparse representation for structure–texture
image decomposition. In particular, we propose to use non-
convex total generalized variation regularization (NTGV) as
a regularization term of image structure to capture more
structural details and extract image fine-scale texture with
convolutional sparse coding (CSC). To better distinguish tex-
tual edges from structural ones, both structure-aware and
a texture-aware measures are incorporated. We develop an
alternating minimization scheme based on alternating direc-
tion method of multipliers (ADMM) and show effectiveness
of our method on several applications both quantitatively and
qualitatively.

The rest of the paper is organized as follows. In Sect. 2, we
review related works on structure–texture image decomposi-
tion. We present the proposed model in Sect. 3 and introduce
the algorithm details in Sect. 4. A comprehensive analysis
is provided in Sect. 5. In Sect. 6, we present the numerical
experiments on several applications and make comparisons
with the corresponding state-of-the-art methods.

2 Related work

Generally, image decomposition is also known as image
layer separation including reflectance (albedo)-illumination
(shading) decomposition and structure (cartoon)-texture
decomposition. The former mainly involves intrinsic image
decomposition and Retinex-based decomposition designed
for image enhancement, surface re-texturing, object inser-
tion and scene relighting, etc. While the latter aims to
extract main information of the images successfully applied
to HDR image tone mapping, detail enhancement, seman-
tic image segmentation and non-photorealistic abstraction,
etc. We have explored the total generalized variation regu-
larization for Retinex-based decomposition in our previous
work [58] and consider the non-convex TGV to separate
a single image into structural and textural components in
this paper. Therefore, we give a brief overview of related
works on structure(cartoon)-texture decomposition in this

section. For the past few decades, many implementations
and improvements of structure–texture image decomposi-
tion have been studied, and we mainly discuss three classes
of methodologies that are most relevant to ours: adap-
tive neighborhood filter, variational framework and deep
learning-based method.

Adaptive neighborhood filter Image structure can be
achieved easily by filtering out image details, and the well-
known adaptive filters include bilateral filter [54], guided
filter [22] and non-local filter [6]. To better preserve image
edges, some extensions appeared subsequently, e.g., fast
bilateral filter [13], gradient domain-guided filter [22],
hashed non-local filter [6]. To suppress the structure halos,
the filter of weighted least squares (WLS) [17] was proposed
by introducing gradient-based smoothness weights and has
beenwell applied toHDR tonemapping and detail manipula-
tion. Inspired byWLS, Li et al. [31] proposed an edge-aware
weighting strategy in the paradigm of guided filtering, the
tree filtering [3] was designed by spatial, range, and tree dis-
tances to achieve strong image smoothing, and side window
filtering (SWF) [70] was introduced to adaptively select the
support domain of filtering. In addition, anisotropic diffu-
sion equation [48] and zero crossings of the derivative of
histogram [26] were proposed in a different mathematical
form, and a pyramid of Laplacian filters [47] was presented
to characterize edges by large-scale edges or small-scale
details. Since the aforementioned methods are not designed
to explicitly describe both image structures and textures,
their performance on image decomposition is not satisfac-
tory. Recently, more and more works [24,67,75,77] focused
on the spatial scale of regions to distinguish image structures
and textures.The rollingguidancefilter (RGF) [75] employed
scale space theory [33] to remove the small-scale edges and
smoothed the large-scale edgeswith rolling guidancemethod
iteratively. Jeon et al. [24] used patch-based statistics to find
an optimal per-pixel smoothing scale. Zhou et al. [77] mea-
sured the scale with the help of a scanline along gradient
direction through iterative global optimization (IGO). Xu et
al. [67] adaptively adjusted the window size by the distances
from pixels to structures. The neighborhood filters on spa-
tial scale are intuitive and easy to implement, but still cannot
well distinguish image structures and textures, especially for
multiple scales of complex structures and textures.

Variational framework Variational models have been
widely applied to image decomposition during the last two
decades, aiming to find appropriate functional spaces to
describe structures and textures, respectively. One of the
most notable models is the TV approach [50], and early
researches discussed the TV-based models characterizing
textures bydifferent functional spaces or norms [2], involving
TV-G [42], TV-div(L p) [57], TV-H−1 [46], TV-H−s [32],
TV-div(BMO) [30], TV-L1 [72], etc. To well model textu-
ral component, sparse coding [19,52,74] and low rank [16]
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were proposed in TV-based models. However, these mod-
els often over-smooth structural component as the property
of TV. Beyond the TV [50], many other priors have also
been proposed. Xu et al. [64] put forward L0 gradient min-
imization to remove weak edges and retain strong edges.
Similarly, Ono [45] formulated L0-norm of gradients as the
hard constraint solved by L0 projection algorithm.Themodel
of relative total variation (RTV) [66] used a pixel-wise win-
dowed TV normalized by a windowed inherent variation,
which is treated as a great progress in describing image
textures. Many scale-ware measures in image decomposi-
tion models [21,24,67,77] essentially originated from RTV.
Although different scale-aware measures were discussed,
the resulting structure usually looked like piecewise con-
stant, and thus structural edges were regarded as textural
details. As a successful modified TV, total generalized vari-
ation (TGV) [4] has been applied in image decomposition
to preserve structural edges. Following adaptive TV [34,37],
Xu et al. [63] proposed the adaptive TGV to preserve the
key features such as object boundaries and Liu [35] devel-
oped a weighted TGV-Gabor model. Following Meyer’s
TV-G model [42], Xu et al. [62] just used TGV regulariza-
tion term in place of TV term in TV-G, aiming to capture
structural component with more details by TGV, and Lu
et al. [38] implemented TGV regularization term to model
structural component and its dual TGV∗ for textural compo-
nent.Although they all employedTGV to reduce the staircase
effect and preserve the edges, they failed to recover the rep-
etition or oscillation property of textures.

Deep learning-basedmethodDeep learning-basedmeth-
ods have been developed for image decomposition recently.
The deep edge-aware filters (DEF) [65] were proposed to
approximate various filters based on a deep convolutional
neural network with a gradient domain training procedure.
Fan et al. [14] solved this problem by constructing two cas-
caded sub-networks, named as edge prediction network and
image reconstruction network. Chen et al. [8] used a fully
convolutional network to approximate a wide variety of vari-
ational models including the TV [50], RTV [66] and L0 [64].
Kim et al. [28] learned the structure prior through context
aggregation network (CAN) and generated training data by
adding Gaussian noises to clean image patches. With the
similar idea, Lu et al. [39] trained two prediction networks
to highlight textural and structural parts on synthetic sam-
ples. However, all above data-driven approaches were highly
relied on a large number of man-made training data. To over-
come above difficulties, Fan et al. [15] employed a modified
CAN on external samples and Zhou et al. [76] adopted modi-
fiedU-net (MU-net) on self-example samples. Although both
methods were in the unsupervised fashion, the learning vari-
ational priors still failed to distinguish image structures and
textures well, especially for the complex cases.

3 NTGV + CSC decompositionmodel

In this section,we first review theTGV,NTGV regularization
in Sect. 3.1 and CSC in 3.2 and then formulate our optimiza-
tion for structure–texture image decomposition in Sect. 3.3.

3.1 Background of TGV and NTGV

TGV was first proposed by Bredies et al. [4] and has been
widely applied in image processing [20,55,58] and geometry
processing [36], written as follows:

TGVk
α(u) = sup

ν

{ ∫
Ω

udivk(ν)dx | ν ∈ Ckc (Ω,Symk(Rd)),

‖div j (ν)‖∞ ≤ α j , j = 0, . . . , k − 1

}
,

(1)

where α = (α0, α1, . . . , αk−1) is a fixed positive vec-
tor, Symk(Rd) denotes the space of symmetric k-tensors
on R

d as Symk(Rd) = {ξ : R
d × · · · × R

d | ξ is k −
linear and symmetric}, and Ckc (Ω,Symk(Rd)) is the space
of compactly supported symmetric tensor fields.

Meanwhile, TGVk
α can be interpreted as a k-fold infimal

convolution by employing the Fenchel−Rockafellar duality
formula, as follows:

TGVk
α(u) = inf

u j

k∑
j=1

αk− j

∫
Ω

|E(u j−1) − u j |dx, (2)

where u0 = u, uk = 0, u j ∈ Ck− j
c (Ω,Sym j (Rd)) for

j = 1, . . . , k, and E represents the distributional sym-

metrized derivative, i.e., E(u j−1) = ∇u j−1+(∇u j−1)
T

2 . Thus,
TGVk

α automatically balances the first to the k-th derivatives
of u among themselves and reduces the staircasing effects of
the TV.

Recently, studies [25,43,44] have demonstrated that the
non-convex variant of TGV performs better than the convex
one for image restoration by preserving edges, which can be
written as follows:

NTGVk
α(u) = inf

u j

k∑
j=1

αk− j

∫
Ω

φi (|E(u j−1) − u j |)dx, (3)

where {φi } are a list of non-convex prototype functions, such
as the regularized �p-normφi (s) = (s+εi )

p with 0 < p < 1
and εi > 0, or log-function φi (s) = 1

μi
log(1 + μi s) or

φi (s) = 1
μi

log(1 + μi s2) with μi > 0.
It is hard to solve the minimization problem involving the

non-convex �p-norm regularizer because finding a limiting-
supergradient of ‖·‖q at zero is difficult.Moreover, according
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to the researches in [25,44,56], the log-function is suitable
for the reconstruction of images being piecewise smooth and
having some sharp jump discontinuities. Structural images
are mostly piecewise-smooth; thus, we particularly utilize
the second-order NTGV denoted by NTGV2

α in this work.

3.2 Background of CSC

Sparse representation encodes a signal vector y as the linear
combination of a few atoms in a dictionary D by solving the
following inverse problem:

argmin
x

1

2
‖Dx − y‖22 + λ‖x‖1, (4)

Over the past two decades, this optimizationwas solved inde-
pendently on a set of overlapping image patches covering the
image[9,53] and has achieved state-of-the-art results in var-
ious computer vision tasks [41,49,61,68]. As a category of
sparse representations, the CSC was first proposed by Zeiler
et al. [73] to decompose the input image into N sparse feature
maps by N filters, instead of sparsely representing a vector
by the linear combination of dictionary atoms, replacing (4)
with

argmin{xm }
1

2
‖
∑
m

dm ∗ xm − y‖22 + λ
∑
m

‖xm‖1, (5)

where {dm} is a set of N dictionary filters, ∗ denotes convo-
lution, and xm is a set of coefficient maps, each of which is
the same size as y.

The convolutional decomposition avoids dividing the
whole image into overlapped patches and can naturally uti-
lize the consistency prior in the decomposition procedure.
The convolutional decomposition has made great progress
in numerical optimization. Zeile et al. [73] adopted an alter-
natingminimization of two splitting subproblems, where one
problem is how to solve a large linear system by an iterative
method, and the other problem is about a simple shrinkage.
Other algorithms operating in the spatial domain have been
proposed including coordinate descent [27] and a proximal
gradient method [7]. Bristow et al. [5] proposed a fast CSC
algorithm by considering the property of block circulant with
circulant block (BCCB) matrix in the Fourier domain, and
Wohlberg [60] further improved above algorithm by intro-
ducing an efficient method for solving the linear systems
that is linear in the number of filters, instead of cubic.

3.3 Proposedmodel

Here, we present our NTGV + CSC model for structure–
texture decomposition, recovering the structural component
with more details by NTGV and the textural component
with repetition property by CSC, for an m × n input image

y, we characterize its structural part u with NTGV2
α(u),

approximate textural part v by the sum of N convolutions
of s × s filter f i and sparse feature map Zi with size
(m + s − 1) × (m + s − 1). The image decomposition is
achieved by solving the following objective function:

min
u, f ,Z

1

2
‖ y−u−

N∑
i=1

f i ∗ Zi‖2F +ωsNTGV
2
α(u)+λ

N∑
i=1

‖Zi‖1,

s.t. ‖ f i‖2F ≤ 1 f or i = 1, . . . , N

(6)

where λ is a positive parameter controlling the L1 penalty,
ωs is a weight function defining on each pixel to distinguish
structural edges or textural edges, and the inequality con-
straints on the filter f i prevent the dictionary from absorbing
all the system’s energy. The term 1

2‖ y−u−∑N
i=1 f i ∗ Zi‖2F

is used for fidelity, and NTGV2
α(u) is minimized over all gra-

dients of the deformation field p = (p1, p2) on image space
Ω , which reads

inf
p∈C2

c (Ω,R2)
α1

∫
Ω

φ1(|∇u − p|) dx + α0

∫
Ω

φ2(|E( p)|) dx,
(7)

where α0 and α1 are positive parameters balancing between
the first- and second-order derivative of u,φi (s) = 1

ρi
log(1+

ρi s)with the parametersρi >0 controlling the non-convexity
of the first- and second-order regularization terms.

The Setting of ωs Theweight functionωs plays an impor-
tant role in highlighting the pixels from structural edges
or textural edges and guiding a good image decomposi-
tion. Following the work [76], we introduce two measures:
structure-awaremeasure and texture-awaremeasure. The for-
mer can reveal the main structural information of an image,
and the latter describes the repetition property of textures.

Taking advantage of anisotropy property, structural gradi-
ents would have a dominant orientation, representing by one
of the eigenvectors of the following positive semi-definite
matrix J [1]:

J(i) =
[
gTx (i)gx (i) gTx (i)gy(i)
gTy (i)gx (i) gTy (i)gy(i)

]
,

where i indicates the location of the patch, and gx and gy are
the vectors containing gradients of each pixel in the patch
along the abscissa and the ordinate, respectively. The matrix
J has two non-negative eigenvalues denoted as λ1 and λ2, and
its dominant direction can be represented by the eigenvectors
corresponding to the lower one. For any patch, its anisotropy
degree A can be calculated by [23]

AJ = max (λ1, λ2) − min (λ1, λ2)

λ1 + λ2
, (8)
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where max(·, ·) and min(·, ·) return the maximum and mini-
mum value of their two arguments, respectively. From Eq. 8,
the range of AJ is from 0 to 1, and the larger AJ of one patch
indicates that it ismore likely to be a patch of image structure.
Taking edge strength into consideration, the structure-aware
measure Ms is designed as

Ms(i) = AJ(i)
‖∇ f (i)‖2

R
, (9)

where f (i) is the pixel intensity at pixel i , ‖∇ f (i)‖2 denotes
the gradient magnitude in L2 norm, R is fixed as 255 for 8-bit
images.

To define texture-aware measure, we employ the his-
togram of oriented gradients (HOG) [10] for feature extrac-
tion same as [76]. Specifically, given a pixel i , we determine
repetitive patterns by going through all its nearby pixels and
calculate the texture-aware measure Mt as follows

Mt (i) = 1

#(CN (i))

∑
j∈CN (i)

cos θi j exp(−DKL(h j ||hi )), (10)

where θi j is the angle between edge direction vi j and gradi-
ent direction, DKL(·||·) denotes the Kullback-Leibler (KL)
divergence, hi and h j are the HOG features of pixels i and
j , respectively, #(CN (i)) counts the element number in the
set consisted of pixels with noticeable gradients in the neigh-
borhood of pixel i .

Based on above, it is straightforward to combine both
structure-aware measure and texture-aware measure to guide
our decomposition instead of using the same value among all
pixels. For the edge pixel from structural edges, i.e., Ms is
higher and Mt is lower, we hope they can be preserved as
sharp as the input by reducing the impact of the NTGV2

α(u).
For the edge pixel from textural edges, i.e., Ms is lower and
Mt is higher, we hope they can be removed by increasing the
impact of NTGV2

α(u). So the weight function ωs on pixel i
is defined as

ωs(i) = (1 − t)(1 − Ms(i)) + tMt (i), 0 < t < 1. (11)

4 Optimization algorithm for image
decomposition

In this section, we develop an efficient implementation for
solving problem (6). First of all, we define linear operators
Fi such that Fi zi = f i ∗ Zi , where zi is the vectorization of

the feature map Zi . Based on this, problem (6) is equivalent
to

min
u, f ,z

1

2
‖ y − u −

N∑
i

Fi zi‖2F + ωsNTGV
2
α(u) + λ

N∑
i=1

‖zi‖1,

s.t. ‖ f i‖2F ≤ 1 f or i = 1, . . . , N

(12)

where Fi is the correspondingBCCBmatrix of filter f i .Note
that the three unknowns u, f and z are coupled in (12), our
idea is to update three variables alternatively and the details
of each subproblem are summarized in Algorithm 1.

Algorithm 1 Image decomposition via NTGV and CSC.
Input: Image y, regularization parameter λ.

Initialization: feature map z0 = 0, weight function ωs
by (11).

for t = 1 : K do
Update ut by (16);

if t == 1, initialize { f 1i }i=1,...,N as the PCA basis of
the patches in the residual image y − u1;

Update {zti }i,1,...,N by (21);

Update { f ti }i=1,...,N by (23);

end for
Output: Structural part ut and textural part vt =∑N

i Ft
i z

t
i .

Updating uFixing { f i }i=1,...,N and {zi }i=1,...,N , we solve
the u subproblem by optimizing the following problem:

min
u

1

2
‖ y − u −

N∑
i

Fi zi‖2F + ωsNTGV
2
α(u) (13)

where the NTGV2
α(u) is introduced in Sect. 3.1. Denote x =

y − ∑N
i Fi zi , and we adopt the iteratively reweighted l1

algorithm (IRLA) [43]. Introducing auxiliary variables d and
w, we can reformulate the unconstrained problem in (13) into
the following constrained problem as

min
u

1

2
‖x − u‖2F + ωsα1φ1(|d|) + ωsα0φ2(|w|)

s.t. d = ∇u − p,w = E( p).
(14)

Hence, the IRLA can be applied to (14), and a convex min-
imization problem to update (uk+1, pk+1, dk+1, wk+1) is
given by

min
u, p,d,w

{
1

2
‖x − u‖2F + ωsα1〈d̃k , |d|〉 + ωsα0〈w̃k , |w|〉

}

s.t. d = ∇u − p,w = E( p).

(15)
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where d̃k = 1
ρ1|dk |+1

and w̃k = 1
ρ2|wk |+1

.

Problem (15) can be solved by ADMM algorithm, which
yields

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dk+1=argmin
d

ωsα1〈d̃k , |d|〉−(λk1)
ᵀd+ μ

2
‖d−∇uk+ pk‖22,

wk+1=argmin
w

ωsα0〈w̃k , |w|〉−(λk2)
ᵀw+ μ

2
‖w−E( pk)‖22,

uk+1=argmin
u

(λk1)
ᵀ∇u+ μ

2
‖dk+1−∇u+ pk‖2+ 1

2
‖x−u‖2F ,

pk+1=argmin
p

−(λk1)
ᵀ p+(λk2)

ᵀE( p)+ μ

2
‖wk+1−E( p)‖22,

+ μ

2
‖dk+1−∇uk+1+ p‖22,

λk+1
1 =λk1−γμ(dk+1−∇uk+1+ pk+1),

λk+1
2 =λk2−γμ(wk+1−E( pk+1)).

(16)

where the penalty parameter μ > 0 is a fixed constant, and
the relaxation γ ∈ (0, (

√
5 + 1)/2] is required for the con-

vergence of the ADMM algorithm.
To solve the above problem, we first utilize forward dif-

ferences to approximate ∇u and the symmetrized derivative
E( p) in the following, respectively.

∇u = Du = (D1u, D2u)ᵀ,

E( p) = (D1 p1, (D2 p1 + D1 p2)/2,

(D2 p1 + D1 p2)/2, D2 p2)
ᵀ.

where D1 and D2 are the circulant matrices corresponding to
the forward finite difference operators with periodic bound-
ary conditions along x-axis and y-axis, respectively.

The subproblems for dk+1 and wk+1 in (16) have closed-
form solutions using shrink operator as follows:

dk+1 = shrink

(
λk1

μ
+ ∇uk − pk,

ωsα1 d̃k

μ

)
, (17)

wk+1 = shrink

(
λk2

μ
+ E( pk),

ωsα0w̃k

μ

)
, (18)

where the shrink operator is defined as shrink(s, t) =
s

|s|1 max(|s|1 − t, 0).

The subproblems for uk+1 and pk+1 in (16) are both least
square problems, and their corresponding normal equations
are as follows:

(μDᵀD + I )uk+1 = μ(x − Dᵀλk1)

+Dᵀ(dk+1 + pk+1), (19)

(E∗E + I ) pk+1 = E∗(wk+1 − λk2

μ
) + λk1

μ

+(Duk+1 − dk+1). (20)

where E∗ denotes the adjoint operator of E .
The block matrices DᵀD and E∗E can be diagonalized

by the Fourier transform under the periodic boundary con-
dition. Thus, solutions uk+1 and pk+1 in our algorithm can
be achieved explicitly and easily using the Fourier transform
and the block matrix inversion formula.

Finally, the IRLA with ADMM algorithm for u-step
in (16) is summarized in Algorithm 2.

Algorithm 2 The IRLA with ADMM algorithm for u sub-
problem
Set parameters: α0, α1, γ, μ, ρ1 and ρ2.
Initialize: k = 0, u0 = y − v0, p0 = 0, d0 = ∇u0,
w0 = 0 and λk1 = λk2 = 0.
Repeat

1) Compute dk+1 according to (17),
2) Compute wk+1 according to (18),
3) Compute uk+1 according to (19),
4) Compute pk+1 according to (20),
5) Update Lagrange multipliers λk+1

1 and λk+1
2 according

to (16),

Until ‖uk+1−uk‖2
‖uk+1‖2 < ε3,

Return uk+1.

Updating z Fixing structural partu andfilters { f i }i=1,...,N ,
we solve the following subproblem to obtain zt+1:

min
z

1

2
‖ y − u −

N∑
i

Fi zi‖2F + λ

N∑
i=1

‖zi‖1. (21)

The optimization in (21) is a standard convolutional sparse
coding problem, which can be solved by the ADMM algo-
rithm in the Fourier domain to substantially reduce compu-
tational cost [60].

Updating f To recover f , we first apply an efficient
variable reordering

∑N
i Fi zi = Ẑ f , where f is writ-

ten as the vectorization of all the filters f i , i = 1, . . . , N ,
Ẑ = [Ẑ1, . . . , Ẑi , . . . , ẐN ] and Ẑi is generated by collect-
ing the patches in Zi . The f subproblem can be re-written
as the following equivalent form:

min
f

1

2
‖ y − u − Ẑ f ‖2F ,

s.t. ‖ f i‖2F ≤ 1 f or i = 1, . . . , N
(22)

Following the optimization in JCAS [19],we adopt a prox-
imal gradient descent scheme to solve (22), which namely

f t+1 = Prox‖∩‖≤1( f t − τ Ẑ
ᵀ
( y − u − Ẑ f t )). (23)
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Since our proposedmodel is non-convex, it is important to
set an appropriate initialization and the optimization order of
the variables to ensure the convergence of algorithm. In our
implementation, we initialize the textural part as an all-zero
matrix and solve the u1 subproblem first. Then, we initial-
ize filters { f 1i }i=1,...,N as the PCA dictionary of the residual
image y − u1. Based on u1 and f 1, we recover the feature
map z1 by solving convolutional sparse coding problem (21).
These steps can guarantee that texture details are estimated
from the residual image gradually, while keeping the details
of the structural part.

5 Analysis

5.1 Implementation details

The proposed method is implemented using MATLAB
R2018b on a windows 10 platform with an Intel Corei7 at
3.2 GHz and 8GBRAM.We fix the regularization parameter
λ = 10−2 in objective function discussed in Sect. 5.4. For
the parameters in Algorithm 2, the default setting is as fol-
lows: α0 = 0.1, α1 = 0.2, μ = 10, γ = 1.618, ρ1 = 0.005,
ρ2 = 0.2 and ε3 = 5e−4. To calculate { f i }i=1,...,N , we fix
the size and numbers of filters are 5×5 and 7, respectively. To
calculateωs , we set balance parameter t to 0.6, the batch size
of Ms to 3 and the neighborhood size of Mt to 6. Since our
idea is to remove textual edges from structural image grad-
ually, so we update Ms during the iterations and gradually
reduce the impact of the second term by decreasing t in ωs

of (11). In our implementation, Mt is calculated once from
the input and Ms is re-estimated from the updated structural
result of previous step.

5.2 The detail-preserving property of our model

It isworthy to note that howourmodel removes textural edges
while keeping sharp features of structural component. Firstly,
the weight function ωs plays an important role in locating
structural and textural edges, which is a good guiding of our
model to distinguish image structures and textures. Secondly,
the non-convexTGVcanwell construct smooth regionswith-
out staircasing effects while preserving edges and details,
especially for the images with much structures and strong
edges or complex textures. Based above, our model can bet-
ter preserve the details guided by ωs . Here, we compare our
proposed method with two most related works. Lu et al. [38]
adopted the convex TGV to capture structural edges, and
Gu et al. [19] employed synthesis sparse representation to
capture textural edges, bothmethods either focused on recov-
ering structural edges or textural edges, but cannot pursue
both. We take account of both advantages and also combine
the weight function ωs to guide a good image decomposi-

tion. A visual example is given in Fig. 1, and the regions of
red boxes are highlighted. The input images given in Fig. 1a,
b and e show the image structures from different methods.
From Fig. 1b, we can see that TGV-TGV∗ cannot remove
the textural edges totally from structural component due to
ignoring considering the repetition property of textures. For
JCAS in Fig. 1c, small-scale structures are blurred or even
removed because of the staircase effects from TV just as
shown in the highlighted parts. Figure 1d shows the results of
our decomposition model without ωs , and NTGV improves
the detail-preserving property greatly compared with JCAS.
The best results are achieved by adding the weight function
ωs shown in Fig. 1e, from which we can observe that the
structural edges are much sharper and the textural edges are
removed clearly.

5.3 Convergence analysis

Note that the three unknowns u, f , z are coupled in (6), it is
effective to apply an inner alternating minimization scheme
to decrease the energy monotonically. However, it should be
mentioned that such an alternating scheme does not guaran-
tee the whole sequence convergence to the minimizer of the
original problem. For fixed f , z, the problem is non-convex
to u in (14) and we can obtain a partial convergence of the
IRLA with ADMM algorithm in (15) (see [25,43,44] for
more details). That is, the sequence {uk, vk, dk,wk} gener-
ated by (15) is bounded and has at least one accumulation
point. However, since the non-convex log function in (14) is
not a sum of a convex function, we cannot even assure the
global convergence of the algorithm in (15). For fixed u, f ,
the problem is convex to z. And for fixed u, z, the problem
is convex to f . Since our objective function has a general
lower bound 0, the f and z subproblems can be guaranteed
to converge to their minimum, respectively.

Here, we compute average value of per-pixel intensity
differences during iterations. Figure 2a shows the how the
differences ‖uk+1 − uk‖2 and ‖ y − uk − vk‖2 change over
iterations. From the figure, we can see that our algorithm
converges to a fixed point within a few iterations and both
differences are less than 1.0×10−5 after 10 iterations.Mean-
while, Fig. 2a–d shows that textural edges are removed from
structural edges gradually during iterations.

5.4 Parameters impact

The regularization parameter λ is important to distinguish
structural edges and textural edges, controlling the sparsity
of repetitive textures. In other words, the larger value of λ

produces the more sparser textures, yielding less smooth-
ing effects (and vice-versa). We show the resulting structural
image u with various choices of λ in Fig. 3. The number
of iterations K is fixed to 12 and feature map is initialized
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(a) Inputs (b) TGV-TGV∗ [38] (c) JCAS [19] (d) Ours without ωs (e) Ours

Fig. 1 Illustration on the detail-preserving property of our model. a
input images; b image structures obtained by TGV–TGV∗ [38] where
TGV regularization and its dual TGV∗ were adopted tomodel structural
and textural component, respectively; c image structures obtained by
JCAS [19] where ASR and CSC priors were integrated to separate two

image layers, respectively; d image structures obtained by our decom-
positionmodel withoutωs ; e image structures obtained by our proposed
model. Our proposed model achieves more accurate and sharper struc-
tures and removes multiple-scale or extremely varying textures

(a) Input (b) k=3 (c) k=6

(d) k=10 (e) change of differences dur-
ing iterations

Fig. 2 Illustration on the convergence of Algorithm 1. Our algorithm
gradually separates textures from the input image and converges to a
fixed point within few iterations

with zeros for all cases. As can be observed in Fig. 3, tex-
tures can be removed from the structural part gradually with
the decreasing of λ. Different from JCAS [19], our method
can well avoid over-smoothing of structural part thanks to

the weight function ωs and achieves almost the same results
although the λ is less than 10−2, just shown in Fig. 3e, f.
Therefore, we fix λ to 10−2 for almost examples. Further-
more, compared with STD [76] in Fig. 3b, both results in
Fig. 3e, f contain more sharper details and overcome the
staircase effect of TV regularization.

5.5 Runtime

Since our algorithm is an alternating minimization scheme
updating u, f and z, respectively, and the most time-
consuming part is the u updating which consists of four sub-
problems. We compare the runtime of our method with those
of the several decomposition methods including RTV [66],
JCAS [19], IUL [15], SWF [70] and STD [76] and measure
the runtime of the proposed method using gputimeit func-
tion built in MATLAB. We select 80 images with the same
size of 350 × 350 and record the average running time over
these images on the same computing machine provided in
Table 1. Among the methods, IUL is the fastest due to its
one forward propagation and RTV is the second since only
the optimization of structures is considered. The efficiency of
STD is dependent on the initialization of network, the scheme
using standard initialization is time-consuming, while the
one using pre-trained MU-net is comparable. Similar with
traditional filters, SWF needs to perform calculations over
multiplewindows, and its computational cost is higher. JCAS
and our method are both time-consuming mainly because

123



Structure–texture image decomposition via non-convex total generalized variation... 1129

(a) Input (b) STD [76] (c) λ = 0.5

(d) λ = 10−1 (e) λ = 10−2 (f) λ = 10−4

Fig. 3 Impact of parameter λ. a Input image; b structural image
obtained by STD [76]; c–f structural images obtained by our method
with various choices of λ. The smaller value of λ removes more tex-
tures, while almost similar results can be achieved when λ is less than
or equal to λ = 10−2

both involve the structural and textural image estimation via
the alternating minimization scheme. However, both meth-
ods can guarantee a fast convergence in several iterations, so
we set the maximum number of iterations as 10. With code
optimization and implementing C programming, the compu-
tational speed may be significantly improved.

6 Applications

In this section, we demonstrate the effectiveness of our
approach on several image decomposition applications,
including texture removal, HDR tonemapping, detail manip-
ulation and non-photorealistic abstraction. Meanwhile, we
compare the proposed method with several state-of-the-art
methods in each application. The code of the LowRank [16]
is written by ourselves, while the results of other compet-
ing methods for comparison are from the source codes or
already-trained models obtained from the original authors

Fig. 4 Test images for the texture removal

and parameters are set to be optimal according to the origi-
nal papers.

6.1 Texture removal

Texture removal is a direct application of image decompo-
sition extensively used in image analysis, recognition and
composition. To demonstrate the performance of our pro-
posed model on textural removal, we compare it with seven
popular methods. Among these competitors, RTV, LowRank
and JCAS are the models of variational framework, RGF
and SWF are filtering-based methods, and IUL and STD are
two unsupervised methods based on DNNs. We use the test
imageswhich contain different kinds of textures in Fig. 4, and
the comparison results of different methods are presented in
Figs. 5 and 6.

In Fig. 5, we present both structural and textural compo-
nents to visualize where textures are removed. The corre-
sponding zoomed parts are shown with enlargements in red
rectangles. One can observe that some structural edges are
treated as textural edges removed in the textural components
for most competitors. For example, the abdomen region of
the man and the eye region of the horse are highlighted in
Fig. 5. Visually, both parts belong to structures, but they are
removed from structures leading to the smooth and blurred
results inFig. 5a–g. InFig. 5h, ourmethod removes the square
patterns only and preserves these structural edges effectively.

Table 1 Average running time of different methods on 80 images of size 350 × 350

Methods RTV [66] JCAS [19] IUL [15] SWF [70] STD [76] Ours

Standard INIT pre-training INIT

Time(s) 1.53 183.82 0.012 174.36 41.72 9.79 203.86
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(a) RTV [66] (b) RGF [75] (c) LowRank [16] (d) JCAS [19]

(e) IUL [15] (f) SWF [70] (g) STD [76] (h) Ours

Fig. 5 Texture removal results from different methods in Fig. 4a. For
each method, the first row is the result of the texture removal and
the second row is the result of the corresponding texture. The corre-
sponding zoomed parts are shown with enlargements in red rectangles.

Our method effectively preserves structural edges (first row), removes
textural edges (second row) and does not suffer from staircasing
artifacts

For other examples, we only exhibit the results of tex-
ture removal to save spaces in Fig. 6. From Fig. 6a, we can
observe that RTV always fails to distinguish the small-scale
structures and textures, and blurs the structural parts. The
results of LowRank method always contain different scales
of textures and blocking artifacts,which is insufficient to only
extract complex textures with low rank theory, as illustrated
in Fig. 6b. Suffering from the staircase effect of TV, JCASand
STD methods always remove the small-scale structures and
achieve piecewise constant results, as shown in Fig. 6c, e. The
drawback of SWFmethod is that some complex textures sur-
rounding structural edges are always incorrectly preserved as
shown in Fig. 6d. Our results are exhibited in Fig. 6f, from
which we can observe that image textures can be clearly

removed from image structures and structural edges are sep-
arated clearly and sharply.

6.2 HDR tonemapping

Tone mapping aims to compress the intensity of a high
dynamic range image, preserving the details and colors of
the HDR image. To apply our method to HDR tone map-
ping problem, we first compute the luminance image using
lin = (0.299rin + 0.587gin + 0.114bin); then, we apply
our model to decompose the logarithm of luminance lin into
base and detail components. The output luminance lout is
obtained from the detail component plus the base compo-

123



Structure–texture image decomposition via non-convex total generalized variation... 1131

(a) RTV [66] (b) LowRank [16] (c) JCAS [19] (d) SWF [70] (e) STD [76] (f) Ours

Fig. 6 More comparisons of the texture removal in Fig. 4b–c. The corresponding zoomed parts are shown with enlargements in red rectangles. Our
method removes textural edges from image structures clearly and keeps much sharper structural edges

(a) Input (b) Durand [13] (c) WLS [17]

(d) JCAS [19] (e) STD [76] (f) Ours

Fig. 7 Comparison of several HDR tone-mapping methods. The corresponding zoomed parts are shown with enlargements in red rectangles. Our
method achieves the best balance between detail-preserving and naturalness

nent compressed with a factor of 0.4. Finally, we adopt the
color restoration [18] to reproduce chrominance information.

We compare our method with state-of-the-art tone map-
ping methods including filtering-based method [13,17],
optimization-based method [19] and DNNs-based meth-
ods [76]. With a better image decomposition result, tone-
mapped images can better preserve structural details and also
be natural-looking. Visual examples of tone mapping results
are provided in Fig. 7. As can be seen, for Durand and WLS,
the results are over-enhanced and look unnatural, as shown
in Fig. 7b, c. By contrast, the results from JCAS and STD do
not suffer from such a problem, but they always lose struc-
tural details in relatively darker regions, as shown in Fig. 7d,
e. In comparison with the competitors, the results from our

method achieve the best balance between detail-preserving
and naturalness, as shown in Fig. 7f. For example, the crack-
ing bark and the leaves with white dots in red rectangles are
recovered well. In addition, we use the tone-mapped image
quality index (TMQI) [69] to compare different methods on
a subject-rated image database of 15 HDR images quantita-
tively. FromTable 2, one can see that ourmethod achieves the
highest TMQI values on most images (10 out of 15 images).

6.3 Detail enhancement

Given an imagedecomposition result, the detail enhancement
can be achieved by superimposing the enhanced textu-
ral component on the structural component. Following the
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Table 2 TMQI values of different methods on a subject-rated image
database[69]

DurandBF WLS JCAS STD Ours

1 0.8382 0.9107 0.9211 0.9517 0.9529

2 0.7733 0.8830 0.8997 0.9012 0.9118

3 0.8213 0.9357 0.9513 0.9553 0.9488

4 0.7890 0.9341 0.9786 0.9803 0.9811

5 0.8993 0.8495 0.9717 0.9548 0.9702

6 0.8092 0.8695 0.8758 0.8961 0.8873

7 0.8697 0.8567 0.8799 0.8691 0.8834

8 0.8003 0.8946 0.9169 0.9188 0.9254

9 0.8377 0.9073 0.9548 0.9818 0.9835

10 0.8526 0.8794 0.9287 0.9516 0.9409

11 0.8362 0.8588 0.9610 0.9810 0.9827

12 0.8217 0.8781 0.9701 0.9747 0.9759

13 0.8298 0.9086 0.9553 0.9692 0.9598

14 0.8171 0.8832 0.9177 0.9354 0.9533

15 0.8187 0.9305 0.9697 0.9586 0.9614

implementation of SWF [70] for detail enhancement, we
obtained the enhanced imageby ye = u+(α+1)v,whereα is
an amplification parameter and is fixed to 5 in all experiments
of this application. Here, the compared methods include
RTV [66], JCAS [19], EGIF [40] and SWF [70]. If struc-
tural part and textural part are separated in a satisfactory
way, edges of image details would be much sharper, while
structural edges would be better preserved from being over-
sharpened or overshot. On the contrary, if structural edges
are extracted in textural part, they can be enhanced as the
textural edges and halo artifacts will appear.

Visual examples of detail-enhanced experiments are pro-
vided in Fig. 8. As can be observed, for the results fromRTV,
JCAS andEGIF shown in Fig. 8b, c and d, respectively, struc-
tural edges of the leaves are over-enhanced as the structural
edges are incorrectly separated in the textural component.
Instead, SWF does not suffer from such a problem, but the
detail edges of SWF in Fig. 8e are under-enhanced for the
reason that the details needed to be enhanced are extracted
in the structural component. In comparison with the com-
petitors, our method can enhance the details in a better way
while preserving the structural edges, as shown in Fig. 8f.

(a) Input (b) RTV [66] (c) JCAS [19]

(d) EGIF [40] (e) SWF [70] (f) Ours

Fig. 8 Results of detail enhancement from different methods. The corresponding zoomed parts are shown with enlargements in red rectangles. Our
method can enhance the details in a better way while preserving the structural edges
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(a) Input (b) JCAS [19] (c) IUL [15]

(d) SWF [70] (e) STD [76] (f) Ours

Fig. 9 Results of non-photorealistic abstraction from different methods. The corresponding zoomed parts are shown with enlargements in red
rectangles. Our result fits non-photorealistic abstraction with simultaneous edge highlighting and texture suppressing

6.4 Non-photorealistic abstraction

Non-photorealistic abstraction aims to decrease the complex-
ity of the scene while protecting important structures. Fol-
lowing the traditional methods [11,59], we perform the edge
extraction with difference-of-Gaussian (DoG) on the struc-
tural component and highlight extracted edges to achieve
non-photorealistic abstraction effect. If the structural edges
are incorrectly removed in textural component, the structural
component always is too over-smooth to detect in the abstrac-
tion results. Meanwhile, if the textural edges are incorrectly
preserved in the structural component, redundant edge maps
will appear in the abstraction results.

Figure 9 shows the visual examples of non-photorealistic
abstraction results. It can be found that, for the methods
of JCAS and IUL, as shown in Fig. 9b, c, respectively, the
color and edges are over-smooth. For SWF, the textural edges
retained clearly in the structural component lead to themussy
edges of abstraction results, as shown in Fig. 9d. For STD,
the structural edges are more sharper than above, but still
lose several structural details such as the white petals shown
in Fig. 9e. However, our method removes the repetitive tex-
tures from the structural component but never smooth the
structural edges, such as the colorful leaves shown in Fig. 9f.
Furthermore, we recover the white petals and blue flower
cores in a better way.

7 Conclusion

In this paper, we have presented an efficient structure–
texture image decomposition model, which took advantages
of both NTGV and CSC to separate the complex textures
from richly detailed structural component. Meanwhile, the
weight function has been incorporated to better distinguish
structural and textural edges. We solved the model by an
alternating minimization algorithm based on ADMM and
gave a comprehensive analysis to the proposed algorithm.
The experimental results have demonstrated the effective-
ness of our approach on several applications including texture
removal, HDR image tone mapping, detail enhancement and
non-photorealistic abstraction.

In the future, we hope to increase the efficiency of our
algorithm by GPU programming or DNNs. How to extend
these techniques to decompose the digital images of wall
paintings full of various diseases will also be a future work.
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