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Abstract
Lane marks regulate the routes and define the prior drivable areas for a vehicle. Robust detection of lanes plays a vital role
in intelligent vehicle navigation. Lane detection algorithms are usually composed of two steps: lane candidate generation
and lane curve fitting. The latter is not only used for fitting lane mark candidates with concise curve forms but also for
removal of the outliers produced in the former step. Therefore, lane curve fitting is crucial for lane detection. In this step, a
common way is carrying out the curve fitting on the bird’s-eye view (BEV), which can mitigate the distortion caused by the
perspective projection and improve the fitting results. However, due to the sloping road surfaces in real scenarios, the relative
pose between the camera and the ground can change frequently, where using a fixed pre-calibrated projection matrix could
bring extra errors in curve fitting. In this paper, we propose a homography prediction network named HP-Net for robust lane
mark fitting under various sloping roads. The network can adaptively predict the homographic projection matrix for each
input image, producing a suitable BEV for lane fitting. Considering the parallel nature of multiple lanes, the HP-Net could
skillfully be trained by reusing the lane labels originally for the task of lane mark segmentation, without introducing any extra
manpower. Our method has been verified on a large dataset CULane and another dataset acquired by ourselves. Experiment
results show that the proposed model can effectively improve the robustness and accuracy of lane detection.

Keywords Deep learning · Lane detection · Curve fitting · Homography prediction

1 Introduction

Lane detection is an important task in the assistant driving
system (ADS) for intelligent vehicles. Accurate and robust
perception of lanes is crucial for reliable vehicle navigation.
However, lane detection in practice still remains a challenge
due to the diverse appearance of lane marks and complicated
driving scenarios. Lanemarks have a long and thin shapewith
a high degree of freedom.The pattern of the lanemarks can be
yellow or white, solid or dashed, straight or curving, merging
or detaching. Except for the internal nature of lane mark, the
external complex environment should also be considered.
Bad weather conditions, poor illumination conditions, and
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other unexpected factors would all affect the appearance of
lane marks, posing a great difficulty for the detection task.

A variety of researches on lane detection have been pro-
posed to handle these problems. Early conventional solutions
extract low-level features of lane marks like color or edges1,
2. These hand-crafted cues can be combined with Hough
Transform or filters3, 4 to generate lane segment candidates.
Then, post-processing techniques are used to eliminate the
detection errors and connect these lane segments together
to form the final results. These traditional methods depend
largely on hand-crafted features, which can only work in lim-
ited scenarios with strict constraints.

With neural networks, works on robust learnable fea-
tures have shown great potential to handle tasks of computer
vision5–7. Recent advances in lane detection can also be
attributed to the development of convolutional neural net-
works (CNN). Kim et al.8 use CNN to extract lane candidate
regions, followed by random sample consensus (RANSAC)
and line fitting. Jun Li et al.9 adopt CNN and RNN to
detect the lane boundaries with line clustering. VPGNet10
is proposed to jointly detect lane marks and other road mark-
ings, where a series of post-processing (e.g., point sampling,
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clustering, lane regression) was employed. Spatial CNN
(SCNN)11 is designed to capture the spatial relationships
of thin- and long-shaped lane marks, where the positions
with the highest probability response were searched and con-
nected by cubic splines to generate the final results.

From what is discussed above, it can be discovered that
most of the methods for lane detection have a two-step
pipeline, i.e., lane candidate generation and lane curve fit-
ting. Having estimated the candidate position or probability
map, it is necessary to describe them by a parametric expres-
sion through a fittingmodel. Curve fitting is crucial because it
is not only for the simpler description of lane mark curve but
also for achieving better detection accuracy through filtering
out the outliers.Most of theCNN-basedmethods only predict
candidates of the lane mark, the step of fitting them into lane
curves still relies on non-learning methods. Cubic polynomi-
als, splines and clothoids are some of the most popular fitting
models12–14. However, due to perspective distortion, fitting
lane curves directly into the image space could be an inferior
choice. A better alternative is converting the original image
into BEV using an inverse perspective projection and then
performing curve fitting there. Typically, camera calibration
and calculation of the homographic transformationmatrix are
both implemented before the vehicle startsmoving.However,
a fixed homography could not well remove the perspective
distortion effect when the relative pose between vehicle and
ground plane varies (e.g., by hilly ground or shaking of the
camera), which will lead to inaccurate lane fitting. There are
also situations where the camera cannot be pre-calibrated in
advance.

In this paper, HP-Net is proposed to predict the crucial
parameters of the adaptive homographic projection matrix
for each input image. With a more accurate homographic
prediction matrix, lane marks can be fitted in a more realistic
top-view space where the curves are free of perspective dis-
tortions.Utilizing the parallelismnature of lanes, the network
can be trainedwithout providing any extra annotations except
for the original lane labels. Finally, building upon SCNN11,
an improved lane detection algorithm is realized. Experi-
ments are carried out on a large-scale CULane dataset11 and
our own dataset. The evaluation results show that the pro-
posed method can effectively improve the accuracy of lane
detection. The contributions of our work can be summarized
as follows:

We integrate the perspective projection geometry into a
deep learning framework. A neural network that can learn to
predict parameters of the homographic transformationmatrix
between the input image and the ground is proposed. It is
adaptive to the pose changes between the camera and the
road plane.

An annotation-sharingmethod is proposed to train the pro-
posed network. Utilizing the parallel nature ofmultiple lanes,
the lane annotations for the detection task could be reused in

this homography prediction task.No extramanual annotation
is required.

Combined with our adaptive homography prediction with
a lane instance segmentation network, a novel lane detection
pipeline is constructed. Our method is tested on a large-scale
public dataset CULane and our own dataset, achieving the
state-of-the-art performance.

2 Related work

Traditionalmethods for lane detection often involve four pro-
cedures: image pre-processing, hand-crafted feature extrac-
tion, curve fitting, and post-processing15. Choosing a region
of interest (ROI)16 helps to wipe off invalid non-lane areas
and reduces computation. Hand-crafted feature like color
is utilized for lane mark retrieval17. Filtering methods
and Hough Transform are further employed to extract line
features18. These model-driven approaches require sophis-
ticated pre-processing with strong geometric assumptions to
determine the positions of lane marks. They are sensitive to
noises, which mortifies their performances in complex envi-
ronments.

The emergence of deep neural networks and large-scale
datasets provide a more feasible solution to lane detec-
tion. Recent progress for lane detection mainly focus on
pixel-wise segmentation-basedmethods 11, 19, 20. SCNN11
utilizes slice-wise convolutions in a segmentation mod-
ule and aggregates information from different dimensions
through processing slice features. LaneNet19 adopts a shared
encoder for feature extraction, followed by two decoders:
one for binary lane segmentation and the other for pixel
embedding. Hsu et al.20 employ the pairwise relationship
between pixels to train the network for image pixel cluster-
ing, which shows the effectiveness in both lane detection and
generic instance segmentation. Other deep learning-based
approaches solve the problemof lane detection fromdifferent
aspects[21–23]. StripNet[21] treats lane detection as a local
boundary regression problem, predicting the boundary of tar-
get strip sequences after ROI alignment. Line-CNN[22] puts
forward a novel line proposal unit (LPU),which uses line pro-
posals as references to predict horizontal coordinate offsets
for lanes. Qin et al.[23] propose a lightweight lane detec-
tion scheme using row-based selecting with global image
features.

Although hand-crafted feature extraction has been largely
overtaken byneural networks, post-processing for lane detec-
tion has made little progress during recent years. Due to
the slender shape of lane marks and the imbalance with
background, segmentation results are often unsmooth with
noises. To eliminate the errors and integrate the detection
results with other perception tasks, curve fitting is neces-
sary. Frequently-used fitting models include straight lines,
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polynomial curves, splines, clothoids, and snakes13, 14,
24, 25. Least mean square(LMS), random sample consen-
sus(RANSAC), Hough transform and Kalman filter, etc.3,
4, 12, 25 are the most commonly adopted fitting algo-
rithms. Instead of fitting features, some end-to-end methods
directly predicted parameters of lanes26, 27. PolyLaneNet 26
regards lane detection as a polynomial regression problem.
Liu et al.27 formulate the lane shape model based on road
structures and camera pose, using a transformer to capture
slender structures and a richer context. Compared to these
works that directly output fitted parameters on image space,
we prefer implementing the fitting on an adaptive projected
ground plane.

Lane curve fitting in image space often suffers from
accuracy degradation because of the inconsistent scales
induced by perspective projection. An intuitive solution to
this problem is converting the original image to BEV by
using the inverse perspective mapping (IPM). It is frequently
adopted as a part of pre-processing both in conventional
and neural network schemes13, 28. Tom Bruls et al.29
propose an adversarial learning approach to generate an
improved IPM image using the Spatial Transformer Network
(STN)30. They adopted visual odometry to obtain ground-
truth BEV images for supervision and train the network
with a GAN loss. In contrast to these IPM-based works,
our work leverages fundamental computer vision theories
and integrates prior geometric knowledge into a deep learn-
ing framework, which can effectively predict an adaptive
homographic projection for lane fitting without BEV ground
truth.

3 Methods

An overview of our entire lane detection framework is illus-
trated in Fig. 1. Given an input image, SCNN [11] is adopted
to generate lane probability maps and predict the existence of
lane marks. Pixels whose probability responses are the high-
est in the local area along each row are preserved for fitting.
These candidate lane pixels are projected onto a homographic
matrix produced by HP-Net. Instead of directly fitting in
image space, we perform curve fitting in BEV. Finally, the
fitted lanes are projected back to the original image space
to obtain the final detection results. Thanks to the predicted
homographic projection, the lane marks could be fitted in
a more simple polynomial form and be less affected by the
varied slope of the road plane.

3.1 Networkmodel for homography prediction

Having estimated which pixels belong to the lane mark, we
are supposed to fit these pixels into a parametric curve with
outliers removed. The lane pixels are first projected into
a BEV representation, in which the lanes have a parallel-
like shape and their curvature can be fitted with low-order
polynomials. If a fixed transformation matrix is employed,
the projection becomes less accurate when sloping ground-
planes or camera vibrations are encountered. To remedy this
situation, we train a network to output certain crucial param-
eters in the perspective transformation.

A full projectionmodel describes themapping fromworld
to pixel coordinates. For this nonlinear projection, more
unknown model parameters mean a higher risk of unstable

Fig.1 Overview of the framework
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output. Fully constructing a 3× 3 homographic matrix needs
8 dependent components. However, treating each of them
as an independent parameter is not a good idea since they
are actually correlated. Therefore, we set up a homographic
model from the fundamental projection principle and try to
reduce the number of outputs to the least degrees of freedom
in H. Depending on whether the camera is pre-calibrated,
different outputs of the model are designed.

3.1.1 Homography model for a calibrated camera

Setting aworld coordinate systemXG � (xG, yG, zG) attached
to the ground, a rigid body transformation brings a point from
the ground to the camera coordinate system by a rotation
matrix and a translation vector. Let α, β, θ represent the roll,
pitch and yaw angles, respectively, with the translation vector
T � [t1, t2, t3] and the assumption ZG� 0 for the ground
plane, the mapping from the ground frame to the pixel frame
is given by:

Zc

⎡
⎣
u
v

1

⎤
⎦ �

⎡
⎣

fx 0 u0
0 fy v0
0 0 1

⎤
⎦

⎡
⎣

cosβ cos θ cosβ sin θ t1
− cosα sin θ + sin α sin β cos θ cosα cos θ + sin α sin β sin θ t2
sin α sin θ + cosα sin β cos θ − sin α cos θ + cosα sin β sin θ t3

⎤
⎦

⎡
⎣
xG
yG
1

⎤
⎦ (1)

where f x, f y and (u0, v0) separately represent the focal length
along xc and yc direction and the principle point coordinates
in the image plane.

The homographic projection matrix H projecting the
image plane to the ground can be expressed as:

H �
⎛
⎝

⎡
⎣

fx 0 u0
0 fy v0
0 0 1

⎤
⎦

⎡
⎣

cosβ cos θ cosβ sin θ t1
− cosα sin θ + sin α sin β cos θ cosα cos θ + sin α sin β sin θ t2
sin α sin θ + cosα sin β cos θ − sin α cos θ + cosα sin β sin θ t3

⎤
⎦

⎞
⎠

−1

(2)

Given a calibrated camera, the intrinsic matrix and the
initial position of the camerawith respect to the ground frame
can be well known. Only the change in relative rotations
needs to be considered during driving. Therefore, the network
is trained to predict three rotation angles: the roll angle α, the
pitch angle β and the yaw angle θ . Once they are predicted,
H can be reconstructed according to Eq. 2.

3.1.2 Homography model for an uncalibrated camera

For open-source datasets where the parameters of the camera
are not available, more unknowns are supposed to be con-
sidered. To predict a stable network output, it is necessary
to reduce the unknowns with some reasonable assumptions.
Firstly, among all three rotation angles, the depression angle
between the camera and the ground plane is the most influ-
ential, and the other two can be assumed to be zero.

Fig.2 Transformation from the word to the camera

As shown in Fig. 2, setting the original point of the world
frame XG right on the ground under the camera, the relation-
ship between XG and the virtual horizontal camera frame
XC1 is:

R1

⎡
⎣
xG
yG
zG

⎤
⎦ + T1 �

⎡
⎣
xc1
yc1
zc1

⎤
⎦ (3)

With R1 �
⎡
⎣
1 0 0
0 0 −1
0 1 0

⎤
⎦, T1 �

⎡
⎣
0
h
0

⎤
⎦, where h is the height

of the camera to the ground.
Defining the rotation angle about the x-axis of the virtual

horizontal camera frame XC1 as pitch angle θ , the transfor-
mation between the new rotated camera frame XC2 and XG
can be expressed with homogeneous coordinates as:

⎡
⎢⎢⎣
xc2
yc2
zc2
1

⎤
⎥⎥⎦ �

⎡
⎢⎢⎣
1 0 0 0
0 sin θ − cos θ h cos θ

0 cos θ sin θ −h sin θ

0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
xG
yG
zG
1

⎤
⎥⎥⎦ (4)
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Next, assuming fx � fy � f and ZG� 0, the mapping
from world coordinates to pixel coordinates becomes:

zc2

⎡
⎣
u
v

1

⎤
⎦ �

⎡
⎣

f 0 u0
0 f v0
0 0 1

⎤
⎦

⎡
⎣
1 0 0
0 sin θ h cos θ

0 cos θ −h sin θ

⎤
⎦

⎡
⎣
xG
yG
1

⎤
⎦ (5)

As a result, for an uncalibrated camera, the homographic
projection matrix H is:

H �
⎛
⎝

⎡
⎣

f 0 u0
0 f v0
0 0 1

⎤
⎦

⎡
⎣
1 0 0
0 sin θ h cos θ

0 cos θ −h sin θ

⎤
⎦

⎞
⎠

−1

�
⎛
⎝

⎡
⎣

f u0 cos θ − u0 h sin θ

0 f sin θ + v0 cos θ f h cos θ−
0 cos θ −h sin θ

v0 h sin θ

⎤
⎦

⎞
⎠

−1

(6)

For simplicity, the coordinates of the principle points are
set as (u0, v0) � (W/2, H/2), where W and H are the known
width andheight of the image in the pixel unit. In public large-
scale datasets like CULane, vehicles mounted with different
cameras are used during data collection, therefore the camera
height h and focal length f are unknown and changeable.
Finally, in the case of an uncalibrated camera, our network is
trained to predict three parameters for homography: f , θ and
h.

It should be noted that our aim is to predict some crucial
parameters for reconstructing the homography matrix rather
than accomplishing an accurate camera calibration. As long
as the reconstructed homographic matrix is able to map the
imaging lanes to parallel ones on the ground plane, the pre-
dictions can be acceptable.

3.1.3 Network architecture

The network architecture of HP-Net is illustrated in Fig. 3.
Three convolution blocks are designed to extract the features
of the input image. Each block consists of two 3 × 3 convo-
lution layers and one 2 × 2 max-pooling layers to decrease
the dimension. Batch-normalization and ReLUs are used for
each convolution layer. At the end of the network, we adopt
a global average pooling layer and a linear output layer. As
described in the previous section, HP-Net predicts three dif-
ferent parameters of the homographic matrix, depending on
whether the camera is calibrated.

3.2 Loss functions and annotation-shared training

HP-Net takes the entire image as input and is trained with
a loss function that is tailored to the lane fitting problem.
Training of the network is challenging since it is extremely

Fig. 3 The network architecture

difficult to obtain the required ground truth for the homo-
graphic matrix. Inspired by the self-supervising training, we
develop a training approach that only needs the annotations
of lane marks, which is originally just for the segmentation
task.

As shown in Fig. 4, HP-Net takes the RGB image as
input and predicts the parameters to generate the homography
matrix. Then, the lane pixels are projected onto the obtained
BEV space and fitted by a group of parallel lines. Finally, we
re-project the fitted lanes back to the original image space
via the inverse homography matrix and compute the loss by
comparing the results with the ground truth of lanes. Through
this way, themodel can be trained effectively.We explain this
process in detail in the following section.

3.2.1 Curve fitting

Ground-truth lane points are defined as P where each point is

denoted with pi � [
xi yi 1

]T ∈ P . With the homographic

matrix H, the projected pixel p′
i � [

x ′
i y

′
i 1

]T � Hpi ∈ P ′
can be obtained. The least-squares algorithm is then used to
fit a group of polynomials through the transformed pixels P ′.
The polynomial curves are sampled at different y-positions
y′
i to get the fitted x-position x

′∗
i with x ′∗

i � f
(
y′
i

)
. Thenwith

the fitted points P ′∗ and each point p′∗
i � [

x ′∗
i y′

i 1
]T ∈ P ′∗

i ,
we re-project them back to the original image space via the
inverse transformation matrix to get: p∗

i � H−1 p′∗
i where

p∗
i � [

x∗
i yi 1

]T
. Note that the y-positions of lane points

remain the samewhile the x-positions are changed after curve
fitting. The above process is illustrated in Fig. 5.
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Fig.4 Scheme of network training

Fig.5 Illustration of curve fitting. a Ground-truth lane points (green) in
the original image are projected into BEV space by the predicted trans-
formation matrix H. b A group of parallel curves are jointly fitted upon
the transformed points (blue) to obtain the fitted points (red). c The

fitted points are projected back to the original image space (marked by
yellow points) and compared with the lane labels to produce the training
loss

3.2.2 Loss function

In order to train HP-Net, the loss function has been properly
designed. One innovation for our network is that it could be
trained by sharing the lane mark annotations with the seg-
mentation task. Thus, no extra annotation work is required.

In the projected ground plane, we jointly fit all the lane
curves on the image with the same polynomial parameters,
with the assumption that these lanes are parallel to each
other. As described earlier, the ground-truth lane points pi �[
xi yi 1

]T ∈ P in each image are firstly projected to: p′
i �[

x ′
i y

′
i 1

]T � Hpi ∈ P ′. Then the lane mark fitting with
polynomials can be applied. Taking the 3rd order polynomi-
als with the form f

(
y′) � ay′3 +by′2 +cy′+d as an example,

the joint curve fitting process is described as follows:.

Given k lane and N lane points on an image, the coeffi-
cients w of 3rd polynomials can be computed by a closed-
form least square solution as:

w �
(
Y T Y

)−1
Y T x ′ (7)

where w � [
a b c d1 d2 · · · dk

]T
, x ′ � [

x ′
1 x ′

2 · · · x ′
N

]
,

and

Y �

⎡
⎢⎢⎢⎣

y′3
1 y′2

1 y′
1 1 0 · · · 0

y′3
2 y′2

2 y′
2 0 1 · · · 0

...
...

...
...
... · · · ...

y′3
N y′2

N y′
N 0 0 · · · 1

⎤
⎥⎥⎥⎦ (8)
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In the expressions of Y , row vector [1 0 0 0…0] is
appended to the rows whose y-positions (or their power) are
on the first lane, and [0 1 0 0…0], [0 0 1 0…0], …, [0 0 0
0…1] are for the 2nd,3rd …, and kth lane, respectively. With
Eq. 8, we use the assumption that the lane curves are paral-
lel and thus can have the same coefficients in the polynomial
except for the constant terms. In other words, once the curves
can be jointly fitted by a polynomial with little error, we con-
clude that the predicted homographicmatrix has successfully
projected the image to the ground plane.

After fitting, we can get the fitted prediction x ′∗
i for each

y′
i location with the resulting w:

x ′∗ � Y × w (9)

To utilize the lane annotations in image space as the super-
visory signal, the fitted points in the ground plane are then
projected back to the original image by the inverse homo-

graphicmatrixwith p∗
i � H−1 p′∗

i , where p′∗
i � [

x ′∗
i y′

i 1
]T

and p∗
i � [

x∗
i yi 1

]T
are the lane points before and after the

projection. Finally, keeping the y-positions unchanged, the
differences between x∗ and the ground truth x could be cal-
culated to construct L2 loss:

Loss � 1

N

N∑
i�1

(
x∗
i − xi

)2 (10)

In this way, HP-Net can be trained by sharing the supervi-
sory annotations originally employed for the lane detection
tasks. The comparison among the use of L1 or L2 loss as well
as the different polynomial fitting models will be presented
in Sect. 4.

Note that in the training stage, we assume the lanes are
parallel. This is reasonable and practical formost of the train-
ing images in datasets. For some special scenes like cut-in or
spread-out lanes, we find the training can still proceed well.
When the network works in the inference model, fitting with
separate polynomials for each lane could be carried out to
handle those special merging or splitting lanes.

4 Experiments

4.1 Dataset and experimental setup

First, we adopted CULane11, which is a challenging large-
scale dataset for lane detection. The images with a resolution
of 1640 × 590 are captured by different uncalibrated cam-
erasmounted on vehicles. In each image, the ego-lane as well
as its left and right lane are annotated as ground truth. Both
SCNN and HP-Net are trained separately. The original train-
ing set of CULane is used to train SCNN. As for HP-Net, we

selected 2340 images for training, 300 for validation. The
original images are down-sampled to 128 × 64 to accelerate
the training and inference process.

To evaluate the model for the calibrated camera, we built
our own dataset to further verify the proposed method. A
calibrated camera is mounted on the top of a car to col-
lect road image data. The images are acquired under a wide
range of scenarios including sloping ground, shadow, glare,
tunnel, bridge, and occlusion. The original images are down-
sampled into 512× 384 before storing. Some examples with
annotated ground truths are shown in Fig. 6. Here, SCNN is
pre-trained by images from CULane and fine-tuned on our
own dataset. We divided our own dataset into three subsets:
2187 for training, 274 for validation, and 1093 for testing.

Our model is implemented on Tensorflow 31 framework.
The network is trained using Adam optimizer with a learning
rate of 1e-8 and batch size of 5. During testing, SCNN is run
first to output probability maps of lane curves. Then we keep
those lanes whose confidence is larger than 0.5. For fixed
intervals along each lane, the positions with the local highest
probability are sampled as lane candidate points for curve
fitting. Using the homographic matrix H predicted by HP-
Net, these candidate lane points are fitted to the projected
ground plane. In this step, each curve is fitted separately to
handle the non-parallel lane situation.

4.2 Ablation for the loss function

During training we used polynomial functions for projected
lane candidate fitting, where 2nd or 3rd polynomials could
be employed. Then the fitted points are projected back to
the original image space to compute the L1 or L2 loss with
the ground truth. To select the best form of the entire loss
function, we evaluated these different training settings under
F1 metric. The correct lane predictions are regarded as those
whose intersection-over-union (IoU) with GT lanes is higher
than a threshold. Here, we consider IoU � 0.7 as a threshold
for the strict metric of true positives (TPs). Then F1-measure
� 2× Precision×Recall

Precision+Recall is adopted as the final evaluation indi-

cator, where Precision � T p
T P+FP and Recall � T p

T P+FN .
The evaluation results in Table 1 show that using the 3rd

polynomial (poly3) and L2 loss works the best. Therefore,
we choose poly3 and L2 loss as the default training settings
for later experiments.

4.3 Evaluation

4.3.1 Comparisons with existing methods

A variety of learning-based methods for lane detection are
proposed, including ENet-SAD32, SCNN11, Ultra-Fast23,
ERFNet-E2E33, PINet34, CurveLanes35, LaneATT36,
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Fig.6 Sample images with lane
annotations in our own dataset

Table 1 F1 values on different training settings(“%” is omitted).
“poly2” or “poly3” in the first column denotes the polynomials used
in L1 or L2 loss (second column) during training. Fit_* denotes the
fitting function used in producing the F1 metric in the final output lane
points, i.e., 2nd, 3rd order polynomials or cubic splines, respectively

Training Setting Fit_2nd Fit_3rd Fit_cub

F1(poly2) L1 68.81 76.06 77.61

L2 70.48 76.32 77.73

F1(poly3) L1 69.16 76.32 77.58

L2 70.77 76.70 77.87

SGNet37, FOLOLane38,CondLaneNet39. The results of our
approach and state-of-the-art methods on CULane are shown
in Table 2. For a fair comparison, the IOU threshold of the
F1 measure is set at 0.5 and the fitting model adopts a cubic
spline. Except for sub-categories of hlight and noline, our
method achieves the best performance in the F1 measure,
showing great robustness to different scenarios. It is worth

noting that for some confusing cases, such as crowd and
arrow, our method has obvious advantages with 2.91% and
3.58% improvements relative to the second-best one.

4.3.2 Ablation study on CULane

Absolute mean error (AME) metric is used for directly
evaluating the accuracy of curve fitting. Given the same y-
coordinate, the x-coordinates of the points in the fitted lane
curves are compared to the ground truth. The absolute mean
error (AME) of x-coordinates is calculated as:

AME � 1

N

N∑
i�1

|�xi | � 1

N

N∑
i�1

∣∣x f i t − xgt
∣∣ (11)

where N is the total number of the sampling points in
the image, x f i t and xgt are the fitted and ground truth x-
coordinates, respectively.

Table 2 Comparisons with
state-of-the-art methods on the
CULane test set. F1-measure
with an IoU threshold of 0.5 is
used to evaluate the results of 8
sub-categories and the total

Methods Normal Crowd Hlight Shadow Noline Arrow Curve Night Total

ENet-SAD [32] 90.10 68.80 60.20 65.90 41.60 84.00 65.70 66.00 70.80

SCNN [11] 90.60 69.70 58.50 66.90 43.40 84.10 64.40 66.10 71.60

Ultra-Fast [23] 90.70 70.20 59.50 69.30 44.40 85.70 69.50 66.70 72.30

ERFNet-E2E [33] 91.00 73.10 64.50 74.10 46.60 85.80 71.90 67.90 74.00

PINet [34] 90.30 72.30 66.30 68.40 49.80 83.70 65.60 67.70 74.40

CurveLanes [35] 90.70 72.30 67.70 70.10 49.40 85.80 68.40 68.90 74.80

LaneATT [36] 91.74 76.16 69.47 76.31 50.46 86.29 64.05 70.81 77.02

SGNet [37] 92.07 75.41 67.75 74.31 50.90 87.97 69.65 72.69 77.27

FOLOLane [38] 92.70 77.80 75.20 79.30 52.10 89.00 69.40 74.50 78.80

CondLaneNet [39] 93.47 77.44 70.93 80.91 54.13 90.16 75.21 74.80 79.48

Ours 94.51 80.71 75.15 81.81 51.11 93.74 76.69 74.81 79.74

Bold data indicates that the corresponding results are better
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Table 3 AME Errors of
different fitting models in image
and projected space. The units
are in pixels

AME Normal Crowd Hlight Shadow Noline ARROW curve Night Total

Img_2nd 14.964 17.240 29.054 29.846 41.712 14.491 33.681 20.890 19.584

Proj_2nd 13.646 16.109 26.313 25.429 41.117 12.250 32.078 19.421 18.082

Img_3rd 16.317 18.747 30.778 30.797 43.536 16.347 35.433 21.644 20.804

Proj_3rd 14.235 16.945 28.550 28.385 41.365 13.353 32.882 20.214 18.967

Img_cub 18.036 20.447 31.546 32.504 45.006 17.932 35.861 22.515 22.203

Proj_cub 17.988 20.140 32.145 32.548 44.829 18.020 34.201 22.409 22.116

Bold data indicates that the corresponding results are better

Table 4 F1-measure values of
different fitting models in image
and projected space

F1 Normal Crowd Hlight Shadow Noline Arrow Curve Night Total

Img_2nd 69.86 52.32 47.76 37.47 27.87 65.75 42.85 45.44 51.76

Proj_2nd 76.75 59.33 49.95 45.92 29.75 72.84 48.51 49.73 57.32

Img_3rd 69.73 52.52 47.98 37.47 27.80 67.04 44.01 45.14 51.70

Proj_3rd 76.18 59.05 48.64 46.73 29.10 72.10 50.11 49.06 56.85

Img_cub 55.60 39.76 38.60 30.45 23.85 51.20 35.88 35.64 40.79

Proj_cub 70.45 53.32 42.31 40.81 25.52 63.26 41.98 42.68 50.98

Table 5 F1-measure values of
the detection by curve fitting
with different projections. The
suffix “uncal” and “cal” denotes
the uncalibrated and calibrated
camera

IOU_tr � 0.7 TP FP FN Precision Recall F1

Img_2nd 2339 1091 1073 0.68192 0.68552 0.68372

Proj_2nd_uncal 2407 1023 1005 0.70175 0.70545 0.70360

Proj_2nd_cal 2421 1009 991 0.70583 0.70955 0.70769

Img_3rd 2459 971 953 0.71691 0.72069 0.71880

Proj_3rd_uncal 2581 849 831 0.75248 0.75645 0.75446

Proj_3rd_cal 2624 806 788 0.76501 0.76905 0.76703

Img_cub 2429 1001 983 0.70816 0.71190 0.71003

Proj_cub_uncal 2598 832 814 0.75743 0.76143 0.75943

Proj_cub_cal 2664 766 748 0.77668 0.78077 0.77872

The final output of lane points in the image is up-sampled
to the original resolution of CULane to compute AME.
The results are shown in Table 3, where the prefix “Img_”
and “Proj_” represent fitting in the image and the projected
ground, respectively, and the suffix “2nd”, “3rd” and “cub”
separately present the fitting model of 2nd, 3rd order poly-
nomial, and cubic spline. The results show that in all cases,
fitting in the projected space leads to superior results, espe-
cially when simple 2nd and 3rd order polynomials are used.

We further compare the resulting F1 measure for different
fitting models. As shown in Table 4, no matter what curv-
ing models are used, fitting in the projected ground space
achieves better performance than in the image space. This is
due to the better capability of outlier rejection when fitting
the curves in the projected ground plane.

Some qualitative results are shown in Fig. 7. The predicted
lanes from SCNN (marked with green points in the left col-
umn) are first projected into the ground using the predicted
homographic matrixH (blue solid lines in the right column).
Then, a group of polynomial curves or cubic splines (red dot

lines) are fitted upon these projected lane points. After that,
we project the fitted curves back to the original image as the
final results (marked yellow). Thanks to the fitting in the pro-
jected ground plane, most of the outliers are removed and the
position accuracy of lane marks is improved.

4.3.3 Verification on our own dataset

In this section, we evaluate the model on our own dataset,
where the camera is calibrated in advance and the full three
degrees of rotation is predicted by HP-Net. Some rectified
images and their respective projection results are shown
in the same column of Fig. 8. Yellow lane points sampled
with an equal interval in y-direction become red lane points
after using the predicted projection. In the bottom BEV-like
images, lane marks become parallel with each other and lane
points become uneven(nearby points are dense, distant points
are sparse),which conforms to the situations in the realworld.
Thus, the correctness of the proposed model output is intu-
itively verified.
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Fig.7 Qualitative results on CULane dataset. Left column: original images with detected lane points (green) and re-projected points (yellow). Right
column: projected lanes (blue solid lines) and 2-order polynomial fitting curves (red dot lines) in the ground

Fig.8 Examples of the projection results on our own dataset. Top rows: the acquired images after rectification. Yellow points represent the original
sampled lane points. Bottom rows: ground plane projection by the predicted homographic matrix. Red points denote the projected lane points

Similar to the evaluations in CULane, F1 metrics are used
for our own dataset and the results are shown in Table 5.
We can observe that in all cases fitting lanes in the predicted
ground plane achieves a higher F1 value than in the original

image space. To further verify the actual gain of the camera
calibration, we compare them with the uncalibrated model
as well. The results show that the projection using calibrated
camera (denoted by suffix “cal”) model works better than the
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Fig.9 Curve fitting results by the
fixed (calibrated once) and the
predicted projection in sloping
roads. The yellow points in left
images are the detection results
in the image. The red and blue
lines shown in the right column
are the fitted lane marks in the
ground by the fixed and the
predicted projection,
respectively

uncalibrated (denoted by suffix “uncal”). This is reasonable
becausemoreparameters are known in the calibrated case and
the network outputs all 3 degrees of freedom of the rotation.

Some qualitative results are further demonstrated in Fig. 9.
We can observe that the fitted lane curves in the predicted
ground plane are more parallel and equally spaced than
using homographic projection with the fixed (pre-calibrated)
parameters. This ismore consistent with the real cases, where
the lanes are usually parallel to each other and the distance
between them is equal. When navigating an autonomous
vehicle, accurate lane positions in the ground frame are very
important because it can be directly used in lane tracking
mode for the vehicle.

To further quantitatively evaluate the projected lane
curve’s parallelism and equality of distance, we carry out
another quantitative evaluation. Given the points projected
by the fixed (pre-calibrated) or learned homographic matrix,
2nd order polynomials are used for fitting, and then the curves
are sampled every 2 m along the y-direction within the range
of 20, 30 and 40 m, respectively. As illustrated in Fig. 10,
the lane width �X is sampled along the y direction for every
2 m.

For statistics and fair comparison, images without obvi-
ous merging and splitting branches are selected out for this
evaluation. First, the mean and standard covariance of �X
for each lane are calculated with:

Wl � 1

n

n∑
i�1

�xi (12)

Fig.10 Illustration of measurement of parallelism and distance between
fitted lane curves. The projected lane points form the image are marked
blue and the fitted lane curves are in orange

W_stdl � (
1

n

n∑
i�1

(�xi − Wl )
2)1/2 (13)

where n is the number of samples on the lane,Wl andW_stdl
are the mean and standard deviation of the width for the lth
lane, respectively. Given an image with K lanes, the mean
width W and the mean difference of width E over the image
can be computed as:
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Table 6 Comparison of lane’s parallelism and width equality error with
the fixed (pre-calibrated) or learned projection

Sampling Range (m) Projection PE(m) MAE(m)

[0,2,20] fixed 0.23571 0.50888

learned 0.22070 0.40506

[0,2,30] fixed 0.42226 0.57595

learned 0.40336 0.48781

[0,2,40] fixed 0.72114 0.73834

learned 0.69894 0.67366

W � 1

K

K∑
l�1

wl (14)

E � 1

K

K∑
l�1

|wl −w| (15)

Finally, the mean absolute error of the width (MAE) and
the parallelism error (PE) of the lanes over the entire testing
dataset are defined as:

MAE � 1

N

N∑
i�1

Ei (16)

PE � 1

NK

N∑
i�1

K∑
l�1

W_stdik (17)

where K and N are the number of lanes in each image and
the number of images in the dataset, respectively. In short
words, MAE and PE separately represent the extent of width
equality and lane parallelism in the projected ground plane.
The smaller these errors are, the better the homographic pre-
diction is. The results are listed in Table 6, where we can see
that under all cases using the predicted projection produces
better results than using a fixed projection.

Figure 11 illustrates the histogram of MAE in the range
of 0~40 m. We can see that for the predicted projection the
error peak lies in the area near zero,while for the fixed projec-
tion the peak appears in the range of 0.4 to 0.6 m. It further
proves that using the learned projection can achieve more
parallel and equal width lane, which is helpful for vehicle
navigation.

The computation speeds of the proposed method on dif-
ferent datasets are shown in Table 7. The proposed lane mark
fitting module is implemented on a GTX 1080Ti GPU and
a mobile computing platform NVIDIA Xavier NX, respec-
tively. It can achieve high efficiency on both testing datasets.

5 Discussion

Despite satisfactory results obtained by our HP-Net, we do
observe some failure cases when fitting the lane points in the

Fig.11 The histogram of MAE for the fixed and learned projection

Table 7 Running speeds (frame rates) of our lane mark fitting module

Dataset GTX (FPS) NX (FPS)

CULane(128 × 64) 285.7 82.5

Ours(512 × 384) 50 15

projected ground plane. Most of the noticeable failures are
caused by the incorrectly predicted probability map, which is
produced by SCNN in the experiment. In other cases, parallel
lanes may be projected incorrectly due to some practical fac-
tors. In Fig. 12a, car occlusion causes the leftmost line to be
not parallel with the others. Figure 12b shows a phenomenon
that some abnormal lane points would be projected too far
to be fitted within a reasonable distance. As illustrated in
Fig. 12c, inaccurate lane mark candidates can also be caused
by the actual uneven road surface. Although these projec-
tion situations are less appropriate, the fitting process can
still be successfully carried out and normal lane points can
be obtained after projecting back into the image space, as
shown in the right column of Fig. 12.

6 Conclusion

In this work, the HP-Net for adaptively predicting the homo-
graphic projection between the image and the sloping ground
plane is proposed. By projecting the detected lane mark can-
didates onto the predicted ground, the lane curves can be
optimally fitted with better outlier removal. The detailed pro-
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Fig.12 Some typical examples
of inappropriate projection. The
blue dots in the left column are
the fitted lane marks in the
projected ground plane. The
corresponding final detection
results are marked by yellow
dots in the right image aside

jectionmodel for both calibrated and uncalibrated cameras is
presented. Exploring the parallelism nature of the lanes, the
network features the capability of being trained by reusing
the lane annotations originally for the segmentation task. The
existence of a small part of non-parallel lane samples in the
training datasets does not affect the convergence of train-
ing. Combined with lane segmentation network SCNN, a
complete lane detection pipeline is designed. During test-
ing, the lane candidates are fitted separately in the projected
ground plane in consideration of possiblemerging or splitting
lanes. The quantitative and qualitative experimental results
demonstrate that superior detection performance is achieved
by introducing this homography prediction CNN.
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