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Abstract
Non-rigid multi-part shape matching has proven to be essential and challenging in many applications. This paper analyzes the
aforementioned problem and proposes a novel multi-part shapematchingmethod to simultaneously compute correspondences
between a full shape and its multiple parts undergoing a non-rigid deformation. The main idea is to simultaneously integrate
the Hamiltonian eigenvalue equivalence strategy as a part regularization term being fully spectral with the partial functional
map.Moreover, we introduce a new upsampling refinement approach based uponZoomOut in conjunctionwith the regularized
point-wise map recovery algorithm to obtain high-quality partial matches. Our method naturally handles various challenges
and noise that commonly occur in real scans, like non-rigid deformations, strong partiality, topological noise, and symmetric
ambiguity. Finally, we demonstrate superior qualitative and quantitative results on several datasets. We show that our method
produces more accurate, smoother results than other competing methods in realistic scenarios.

Keywords Multi-part shape matching · Partial functional maps · Fully spectral · Hamiltonian eigenvalue equivalence ·
Upsampling refinement

1 Introduction

Shape correspondence between 3D shapes is a fundamental
problem in computer graphics and computer vision.Different
flavors of this problem arise in a variety of applications rang-
ing from animation [1], texture transfer [2], statistical shape
analysis [3, 4], and shape retrieval [5], to robotic vision [6]
and computational archaeology [7, 8].

Finding dense matches among multi-part shapes is a
research topic that has receivedmuch attention in recent years
[9, 10]. Particularly, challenging settings of this problem
include: non-rigid correspondence, where the near-isometric
shape undergoes certain degrees of elastic deformations [11];
partial matching, where a subset of the shape has to be
matched to another full shape; and multiple part shape cor-
respondence, where a reference shape is given and multiple
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parts partially matching the reference. Each of these parts
may contain overlapping parts and have additional clutter.

In general, such multi-part shape matching problems,
which can be described as solving multiple pairwise partial
matching problems simultaneously, are more computation-
ally difficult than pairwise matching issues. Practical scenar-
ios combine the above settings and clutter and topological
noise, which are notoriously hard. Most existing methods
for computing correspondence within shape collections can
only be suitable for full shapes and do not consider these
practical scenarios.

While working in the same general setting, we proposed
a novel method for computing a detailed, high-quality cor-
respondence between non-rigid multiple parts and full shape
in the collection. Our work is motivated by the fact that
this formulation can be used as a first step toward auto-
matic reconstruction of the deformable shapes, in which
one tries to match multiple scans to a near-isometric gen-
eral model. Examples of applications include computational
archaeology (assembly of fractured objects). Additional uses
are assisting orthopedic surgeons in putting fragmented
bones back together using a healthy bone 3D model. We
have conducted extensive evaluations on various bench-
mark datasets. Experimental results show that the proposed
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algorithms significantly outperform existing state-of-the-art
partial matching techniques of shape collections.

The main contributions of our work can be summarized
as follows:

(1) We propose a new part regularization termwith a purely
spectral nature to promote the localizing accuracy in the
simultaneous partial functional maps framework, based
on the fully spectral partial matching (FSPM) [12] tech-
nology.

(2) We introduce a new refinement scheme formap recovery
that combines the regularized point-wise map recovery
(RPMR) [13] algorithm and the iterative upsampling
technique dubbed ZoomOut [14] while leading to a sig-
nificant improvement in accuracy in several challenging
cases.

2 Related work

In its full generality, shape matching is an extremely well-
studied area of computer graphics and computer vision [15].
Its complete overview is beyond the scope of our paper.
Therefore, belowwe review themethodsmost closely related
to ours, concentrating on techniques to produce correspon-
dences within non-rigid partial shapes and shape collections.
We refer the interested readers to recent surveys, including
[1, 16] for more in-depth discussions.

2.1 Functional correspondence

Our method fits within the functional map representation,
initially introduced in [17], modeling correspondences as
linear operators between spaces of functions on manifolds.
This framework’s key innovation can express maps as small
matrices encoded on a reduced basis, significantly simplify-
ing the associated optimization problems. However, because
the basis consists of the first few eigenfunctions of the
Laplace–Beltrami operator, functional maps can only trans-
fer sufficiently smooth functions, leaving out high-frequency
details. It severely limits the applicability of the functional
map.

Several authors have proposed extensions of the functional
map framework. Pokrass et al. [18] improved the frame-
work by employing sparsity-based priors and extended it
to solve the unknown permutation of the unordered inputs.
Gasparetto et al. [19] defined a novel approach to compute
a continuous bijective map between two surfaces moving
from the low rank spectral representation to a sparse spa-
tial representation. In [20], the authors presented a spectral
formulation for the generalized multi-dimensional scaling
method. Further, Yang et al. [21] calculated shape correspon-
dences using functional maps by calibrating the basis matrix

between 3Dgeometric shapes. Nevertheless, the abovemeth-
ods’ common deficiency is that they always fail to compute
correspondence under moderate non-isometries.

Recently, some approaches have extended this framework
to computing non-isometric matching. Eynard et al. [22]
exploited functional maps in different directions to make
their method more robust to non-isometric deformations.
This approach enforces orthonormality as a hard constraint,
which is unlikely to hold on a reduced basis and leads to
a non-convex problem. Ezuz et al. [23] formulate a non-
isometric correspondence optimization problem, aiming to
minimize the energy that tries to preserve a given landmark
correspondence or functional correspondence while penaliz-
ing the Dirichlet energies of the forward and backwardmaps.
In follow-up work [24], the authors used similar reversibility
energy to obtain more accurate non-isometric maps. This
energy is composed of nonlinear membrane energy that
favors isometry and bending energy that is rotation invari-
ant and promotes feature alignment. However, this method
needs to deal with the bijective matching problem to get
the membrane and elastic energies, leading to more massive
computation than [23].

As another possible remedy, several recent works consid-
ered alternatives to the Laplace–Beltrami basis. Melzi et al.
[25] introduced a new framework for local spectral shape
analysis. The key idea is to construct localized bases by spec-
tral decomposition of a modified Laplacian operator, crafted
primarily to provide eigenfunctions with local support. This
approach’s limitation is that the region information may not
be available in specific unsupervised applications to carry
out the localized spectral analysis. Closely related to [25] is
the recent approach of Wang et al. [26]. Using the Steklov
operator as an extrinsic alternative to the Laplace–Beltrami
operator, they introduced a practical and mathematically
justified spectral system to extrinsic geometry for shape anal-
ysis. Nevertheless, the most prominent drawback is that the
primary boundary element method may fail when triangle
meshes self-overlap.

Indeed, despite these methods’ success, recovering a
point-to-point map from its functional representation is still
considered a common requirement in many practical appli-
cations. In [27], the authors showed that by representing
descriptors as linear operators acting on functions through
point-wise multiplication, it is possible to improve the qual-
ity of the recovered functionalmap significantly. Unlike [27],
which has always restricted the functional subspaces to linear
combinations of basis functions, Nogneng et al. [28] showed
that they could construct a much richer space by exploit-
ing point-wise products of basis functions. However, this
method suffers from the restrictive assumptions about the
inputs and only uses low-order product pairs of basis func-
tions. Rodolà et al. [13] introduced a simple probabilistic
model for map recovery and refinement. Nevertheless, it can-
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not achieve high-quality transfer accuracywhile dealingwith
partial correspondence.

2.2 Partial correspondence

Iterative closest point (ICP)-like approaches [29, 30] have
tackled early rigid partial correspondence problems arising
from fusion or completion of multiple 3D scans. In recent
years, people attempt to extend these ideas to the non-rigid
case in single nonlinear optimization [11]. Unfortunately, it
requires an excellent initial input to guarantee that the final
map is smooth or bijective in most cases.

Most recent works addressing the partial dense correspon-
dence problem can cope with non-rigid shapes. Bronstein
et al. [31] used generalized multi-dimensional scaling to
embed one mesh in another for partial matching. In follow-
up work, Bronstein et al. [32] combined metric distortion
minimization proposed by [31] with optimization over reg-
ular matching parts, showing an algorithm that maximizes
the regularity of corresponding parts in the given shapes.
Being a superior mathematical formulation, the methods
mentioned above rely upon repeatedly computing geodesic
distances between arbitrary pairs of points on a mesh,
and so it is expensive to calculate. Windheuser et al. [33]
studied a framework for non-rigid three-dimensional shape
matching, which is geometrically consistent because it uses
discrete graph surfaces to induce continuous and orientation-
preserving matchings. It shows that although this method
allows dealingwith partiality, it depends on the assumption of
mesh water tightness, which is hugely complex to compute.
Sahillioğlu et al. [34] proposed a voting-based formulation to
match shape extremities, which are assumed to be preserved
by the partiality transformation.However, conventionalways
of computing geodesic distances, which the techniques rely
on, become invalid on noisy surfaces with holes and gaps.

Several works tried to employ machine learning meth-
ods to compute partial correspondence. Convolutional neural
networks (CNNs) on non-Euclidean domains were first con-
sidered by Masci et al. [35] who introduced the geodesic
CNNmodel, a deep learning framework for computing dense
correspondences between deformable and deformed shapes.
Nevertheless, a vital drawback of this method lies in its
emphasis on learning a descriptor. The learning process
remains agnostic to compute the final correspondence, and
costly post-processing steps are often necessary to obtain
accurate solutions from the learned descriptors. Wei et al.
[36] employed a deep CNN architecture that finds exact and
dense correspondences between clothed human body shapes
with partial input data. Although successful in the presence
of sufficient training data, this approach can lead to artifacts,
such as outliers, requiring post-processing to achieve high-
quality maps.

Most of the partial correspondencemethods, asmentioned
above, are point-wise. Follow-up work [37] showed that
functional maps could also deal with specific settings with
missing parts. Rodolà et al. [38] extended the functional
correspondence framework to deal with partial correspon-
dence, dubbed partial functionalmaps (PFMs). Nevertheless,
the primary deficiency of PFM is its explicit model of the
part, requiring a somewhat cumbersome solver alternating
between optimization in the spatial domain and the spec-
tral domain. To address this challenge, Litany et al. [12]
proposed an efficient method called fully spectral partial
matching (FSPM), computing a dense intrinsic correspon-
dence between non-rigid partial and full shapes in the entire
spectral domain. This approach suffers from the require-
ment of a proper initialization in the spectral domain or
will lead to an inaccurate part-to-full correspondence. More
recently, Wu et al. [39] introduced a novel approach using
fully spectral eigenvalue alignment (FSEA) and upsampling
refinement (UR), dubbed FSEAUR, for partial comput-
ing correspondence, demonstrating noticeable improvement
upon the classical partial matching method FSPM.

2.3 Multiple shape correspondence

While most rigid shape correspondence techniques concen-
trate on the pairwise setting, several methods have been
proposed to find correspondences in the context of shape
collections. The authors of [8] presented an algorithm for
assembling fractured surfaces. They can generate a collec-
tion of cycle-consistent maps from maps associated with a
spanning tree in the model graph. However, this approach
only optimizes the spanning trees greedily and locally, often
resulting in sub-optimal solutions. Torsello et al. [40] cast the
multi-view registration problem into the diffusion of rigid
transformations over the graph of adjacent scans. It only
transfers the registration errors between coordinate frames
but does not update the correspondences through the regis-
tration process. Litany et al. [41] proposed an approach to
address simultaneous matching and segmentation of multi-
ple shapes. The authors gave a reference shape and used the
approach to match multiple parts to the reference. Litany
et al. [42] extended PFM [38] to the multiple partial shape
correspondence, which can be considered as a non-rigid gen-
eralization of the problem of the rigid puzzles solved in
[41] dubbed as non-rigid puzzles (NRP). While coming with
significant advantages, the restriction of this work is still
the complicated alternating optimization. At the same time,
Cosmo et al. [43] proposed a method for dense matching of
deformable objects in cluttered 3D scenes, which is the first
attempt at solving this problem in a fully deformable setting.
This method’s main limitation is that it relies on local fea-
tures to initialize the pipeline, and the presence of clutter and
missing parts result in distorted distance values.
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Sahillioğlu et al. [44] explicitly minimize the average iso-
metric distortion over all possible pairs of collection shapes
via dynamic programming efficiently without any initial set
of maps. Still, it is limited to provide only a sparse cor-
respondence. In [45], the authors constructed a consistent
functional map framework that discovers shared structures
within heterogeneous shape collections. Nevertheless, this
work cannot deal with partial correspondence. Yang et al.
[46] presented amethod to obtain correspondence in the non-
rigid model cluster based on the functional map framework
and cycle consistency constraints.While showing impressive
quality in challenging settings, the work needs to adjust the
parametersmanually during the calculation. Cohen et al. [47]
proposed a method to automatically match two shape collec-
tions with a similar shape space structure and compute the
collections’ inter-maps. However, this approach requires the
parallel variationswithin each cluster, and the non-symmetric
shape space embeddings, which is slow. Further, Huang
et al. [48] formulated a novel multi-scale synchronization
approach and extended the basic functional map synchro-
nization. This work suffers at the quality of the initial maps
and cannot provide theoretical guarantees on processing col-
lections of partial shapes.

3 Background

3.1 Manifolds

We model shapes as smooth two-dimensional Rie-
mannian manifolds S embedded into R

3. We further
equip the manifold with area elements ds induced
by the standard metric. Given the intrinsic gradient
∇S , we consider the positive semidefinite Laplace—
Beltrami operator �S as the divergence of the gradi-
ent

�S � divS(∇S), (1)

which provides us with all the tools of Fourier analysis on
the manifold.

We define two scalar functions h1, h2 : S → R, and
the standard inner product is 〈h1, h2〉 S�

∫
S h1h2ds. At each

point x, the Laplace–Beltrami operator admits an orthonor-
mal eigendecomposition on the compact manifold S

�Sφi (x) � λiφi (x) x ∈ int(S), (2)

φi (x) � 0 x ∈ ∂S, (3)

with homogeneous Dirichlet boundary conditions (3), where
int(S) and ∂S denote the interior and boundary of S, respec-
tively. Here, {0 � λ1 ≤ λ2 ≤ . . .} are eigenvalues and

φ1, φ2, . . . are the corresponding eigenfunctions, forming
the orthonormal basis of square-integrable functions space
L2(S) � {h : S → R|〈h, h〉 S < ∞} on S. We can repre-
sent any function h ∈ L2(S) via the Fourier series expansion

h(x) �
∑

i≥1

〈h, φi 〉Sφi (x). (4)

3.2 Functional map

We build our work upon the functional map representation
[17] and its estimation pipeline. Suppose a pair of shapes X
and Y consists of n1 and n2 points, respectively. Let T : X →
Y be a bijectivemapping.The functionalmap’s essential view
is to identify correspondences between shapes by a linear
operator TF : L2(X ) → L2(Y ), mapping functions on X
to functions on Y by the composition. TF is the functional
representation of the mapping T . The basic pipeline of the
functional map for computing correspondences between X
and Y consists of the following general steps:

(1) Construct a set of basis functions on both X and Y .
The most common basis choice is the Laplace–Beltrami
eigenfunctions, which satisfy the critical requirements
of choosing a basis for functional maps: compactness
and stability. Compute sets k1 � n1, k2 � n2 of basis
functions {φi }i≥1, {ψ j } j≥1 on each shape by taking the
first few eigenfunctions of the respective Laplace–Bel-
trami operators, and store them as columns of matrices
�� (φ1, . . . , φk1 ) and�� (ψ1, . . . , ψk2 ), of sizes n1 ×
k1 and n2 ×k2, respectively.

(2) Assume given a set of q corresponding descriptor (also
called scalar) functions { f1, . . . , fq} ⊆ L2(X ) and
{g1, . . . , gq} ⊆ L2(Y ) on the shapes. The descrip-
tor functions (e.g., heat kernel signature (HKS) [49],
wave kernel signature (WKS) [50], and average mix-
ing kernel signature (AMKS) [51]) identify each point
uniquely and are approximately preserved by the map-
ping. Express them in the given (Laplace–Beltrami)
basis and store their coefficients as columns of matri-
ces A � (〈 f , φi 〉X ) and B � (

〈
g, ψ j

〉
Y ), of sizes k1 ×q

and k2 ×q, respectively.
(3) The correspondence between X and Y can be written

simply as CA � B, where C is the functional represen-
tation of the map. Compute the optimal functional map
k1×k1 matrix C by solving the following optimization
problem:

C � argmin
CXY

Edesc(CXY ) + Ereg(CXY ),

� argmin
CXY

‖CXYA − B‖ 2 + ς‖�Y CXY − CXY�X‖2, (5)
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where �X and �Y are diagonal matrices of Laplace—
Beltrami eigenvalues on the two shapes and ς is a small
scalar weighting parameter. Unless stated otherwise, it
is common to use the Frobenius norm ‖·‖ to compute
these matrices’ distance. The first term Edesc(CXY ) �
‖CXYA − B‖ 2 is the general form of functional corre-
spondence problem. The second term Ereg(CXY ) � ς

‖�Y CXY − CXY�X‖2 regularizes the map by pro-
moting its overall correctness, which is associated with
the standard assumption that the sought map should be
approximately intrinsically isometric [52–54].

(4) Recovering point-wise map from the functional mapC.
This post-processing step (i.e., the refinement process)
can be performed via map reconstruction approaches,
such as ICP or the deblurring and denoising approach
[55].

3.3 Fully spectral partial matching

The functional map framework can handle uncertainty and
incomplete information more gracefully but is not designed
to address partial correspondences in principle and require
more information (e.g., point landmarks) to obtain accurate
results. FSPM is an efficient spectral domain method for cal-
culating partial dense correspondence proposed by Litany
et al. [12], build on PFM [38] and joint approximate diago-
nalization (JAD) of Laplacians [56].

Assume given a partial shape X and a full shape Y , nearly
isometric to sub-part X ′ ⊆ Y . The manifolds X and Y are
discretized as triangular meshes with n1 and n2 vertices,
respectively. We aim at calculating partial functional map
TF : L2(X ) → L2(Y ) mapping functions supported on X
to functions in the region X ′. Truncating the Fourier series
at the first k coefficients, we give the first k Laplace–Bel-
trami eigenvalues of the partial shape X and the full shape Y ,
respectively. In other words, the first k terms are a low-pass
approximation of the full map. Since X and X are disjoint
parts, the n2 ×n2 Laplacian matrix �Y is composed of n1
×n1 �X and (n2-n1)× (n2-n1) �X . The eigenvalues of �Y

form a mixed sequence composed of the eigenvalues from
�X and �X , so only the first r < k eigenvalues of �X will
exist in the first k eigenvalues of �Y (see Fig. 1).

Note that different from the full-to-full setting, the eigen-
functions {φi }i≥1 of partial shape X correspond to the “full”
eigenfunctions {ψ j } j≥1 of Y with j ≥ i . Under this result,
it can derive that the matrix C � (

〈
TF (φi ), ψ j

〉
) of the par-

tial functional map has a slanted–diagonal structure, whose
diagonal slope is obtained using the following approximate
form:

θ� r

k
(6)

LetA � (〈 f , φi 〉X ) andB � (
〈
g, ψ j

〉
Y ) be the k ×qmatrices

of the respective Fourier coefficients. The partial functional
correspondence has the form

CA � B(v), (7)

where the soft indicator function v is defined as

v(x) �
{
1 x ∈ X

′

0 x /∈ X
′ . (8)

B(v) � (
〈
v · g, ψ j

〉
Y ) is the r ×q matrix of Fourier coeffi-

cients weighted by v, which acts as a mask restricted to the
area X ′. From Eq. (7), we obtain that it gives rise to a k ×k
matrix C encoding the partial functional correspondence.

In light of the previous analysis, it can conclude that the
computation of C by the functional map framework relies
on a pair of coefficient matrices on shapes. On the contrary,
FSPM tacitly assumes that C is an identity matrix and then
calculates the transformation coefficients matrix, as we elu-
cidate in the following.

Equation (7) can be formulated as

CTCA � CTB(v). (9)

Since the matrix C would manifest a slanted diagonal struc-
ture with most off-diagonal elements close to zero, W �
CTC�

[
Ir 0
0 0

]

k×k
, where Ir is an identity matrix of size r ×

r. To makeWA containing the first r rows of A,W is cut to a
r ×k matrixWr×k� [ Ir 0 ]r×k . The key novelty of FSPM is
to search for a new basis locating at the potential part of the
full shape instead of computing the partial functional map
between shapes. To this end, they replace the matrix C by Q
and rewrite Eq. (9) as

Wr×kA � QTB(v), (10)

where the r ×k matrix Q is not considered as the functional
representation of the map, but a transformation coefficients

Y

X

...

r

1

1 2

k

...
2 3

k-r

X
έ X

έ X

Fig. 1 The eigenvalues and eigenfunctions of�Y consist of those of the
blocks �X and �X
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matrix for the basis [12]. Further, the new basis is constructed
as ψ̂i � ∑k

j�1 q jiψ j , where qji is the elements of the matrix

QT. In a nutshell,U(v) � QTB(v) is the transformation coef-
ficients of {gi }qi�1 restricted to the area indicated by v in the
new bases {ψ̂ j } j≥1 and leads to the following equation:

U(v) � (〈
v · g, ψ̂ j

〉
Y

)
. (11)

Without loss of generality, the new basis functions {ψ̂ j } j≥1

must be localized; thus, ψ̂ j � v · ψ̂ j for all j. Thus, we get
to

U(v) � U, (12)

and absorb the indicator function v into the new bases. The
equality in (10) becomes

Wr×kA�U � QTB. (13)

For the modified basis { ψ̂ j} j≥1 to behave more like eigen-
functions for �Y , it has to satisfy a constraint that the
Dirichlet energy

k∑

i

〈
�Y ψ̂i , ψ̂i

〉
Y �trace(QT�YQ) (14)

should converge to a minimum, where trace() is the trace of
a square matrix denoting the sum of the matrix’s eigenvalues
and�Y = diag(ξ1, . . . , ξi ) is a diagonalmatrix containing the
first k eigenvalues of �Y . Ideally, this behavior is explained
by the fact that

〈
�Y ψ̂i , ψ̂ j

〉
Y�ξiδi j , where ξi are the eigen-

values of the full shape Y .
Replacing the trace term by an off-diagonal penalty

off(E) � ∑
i �� j

∣
∣ei j

∣
∣2, where eij denotes the elements of

matrix E, we consider to solve the following optimization
problem:

argmin
Q∈S(r ,k)

α

∥
∥
∥Wr×kA − QTB

∥
∥
∥
2,1

+ off
(
QT�YQ

)
, (15)

where optimization is done over the Stiefel manifolds
S(r , k) � {P ∈ R

r×k : PTP � Ik} and α denotes a weight.
TheL2,1 norm ‖E‖2,1 � ∑

i ‖ei‖2, where ei is the ith column
of E, affects the optimal value insensitive to outlier functional
correspondences and promotes column-wise sparsity.

It is important to remark that, while the transformation
coefficientsmatrixQ is the solution toEq. (15)’s optimization
problem, this is not the only aim as it directly deduces matrix
B to obtain functional mapC. This way, it would be natural to
calculate the partial correspondence entirely in the spectral
domain.

3.4 Fully spectral eigenvalue alignment

Themain drawback of FSPM is the lack of localized behavior
in the spatial domain, leading to an inaccurate part-to-full cor-
respondence. One of the main contributions of our work is a
significant improvement allowing us to introduce an effective
and straightforward part regularization term into the opti-
mization problem, endowing our solutions with guarantees
of high localizing accuracy. Our technique bears a resem-
blance toHamiltonian spectrum alignment [57], dubbed fully
spectral eigenvalue alignment (FSEA) [39]. Still, it has a
significant difference that Rampini et al. [57] designed the
spectral alignment algorithm to detect similar regions among
deformable shapes, not to solve for partial correspondence.
We aim to use a new part regularization to be fully spectral,
viewed as an extension of the Hamiltonian spectrum align-
ment, which will promote localizing accuracy in the partial
correspondence method.

3.4.1 Hamiltonian operator

The basis defined by the classical Hamiltonian operator from
quantum mechanics is a new choice for shape analysis in
many senses [58]. Furthermore, we can use the basis defined
by the Hamiltonian to solve partial correspondences between
non-rigid shapes. The scenario we consider concerns match-
ing an approximately isometric deformation of part X to the
full shape Y . One can obtain a Hamiltonian operator HY on
the manifold Y by adding a potential function to the Lapla-
cian. Then, the Hamiltonian operator HY has the elliptic
operators form

HY � �Y + β, (16)

with the Laplace–Beltrami operator�Y and the scalar poten-
tial function β : Y → R. That is, β is also a Heaviside step
function that places zero energy density on a subset X ′ of Y
and τ > 0 on the complement X ′. Formally,

β(x) �
{
0 x ∈ X

′

τ x ∈ X ′ . (17)

Since �Y and β are self-adjoint, the resulting Hamiltonian
HY as a sum of them is also self-adjoint. We can almost
directly derive its spectral theory from the regular Laplacian.
Thus, the Hamiltonian HY admits a spectral decomposition:

HY εi (x) � μiεi (x), (18)

where the eigenvalues μi form a discrete spectrum
{μ1, μ2, . . .} and the eigenfunctions ε1, ε2, . . . form an
orthonormal basis.

From Eqs. (17) and (18), we note that the Hamiltonian
eigenfunctions εi denote the particle’s energy, and the finite
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pi

pj

θij

ηij

si

Fig. 2 Discretization of the Hamiltonian operator on a triangular mesh

step potential function β divides the region Y into two con-
stant potential spaces. In the null potential energy region
where β(x) � 0, the particle is free to pass, and the approx-
imate equality HY ≈ �Y holds for all x ∈ X ′. On the other
hand, for the high potential region where β(x) � τ ∀x ∈ X ′,
the particle cannot penetrate and its eigenenergy εi decays
exponentially andvanisheswhen the corresponding eigenval-
ues μi < τ . As analyzed above, the scalar potential function
β(x) ensures that the eigenfunctions corresponding to eigen-
values μi < τ are restricted to the null potential energy
region, akin to the soft indicator functionvmentioned above.

3.4.2 Generalized eigenproblem

To compute the Hamiltonian eigenvalues and eigenvectors,
we should solve a generalized eigenvalue problem. At the
moment, one can do this job by analyzing the discrete oper-
ator for reconstructing triangle meshes [59, 60].

In the discrete setting, we approximate the shape Y by
manifold triangle mesh sampled at vertices {pi }n2i�1. The dis-
crete Hamiltonian operator of the shape Y assumes the form
of a matrix

HY � S−1
Y MY + diag(V) (19)

with an n2-dimensional vector V containing the values of
the potential β at each vertex, where SY is a diagonal matrix
of local area elements si and MY is a stiffness matrix of
cotangent weights, defined in terms of the discrete metric as

mi j �

⎧
⎪⎨

⎪⎩

−( cot θi j + cot ηi j )
/
2 if i and j are adjacent∑

h ��i
(cot θih + cot ηih)

/
2 if i � j

0 otherwise
(20)

Figure 2 depicts our notation. si is the area of the shaded
region in the same figure.

In the case of the Laplacian, the generalized eigenproblem
thus takes the form:

S−1
Y MY� � �diag(λ), (21)

where � � (φ1, . . . , φk) is a matrix containing the first k
Laplacian eigenfunctions as columns andλ = { λ1, . . . , λk}
is a k-dimensional vector of the corresponding Laplacian
eigenvalues.

In the case of the Hamiltonian, the generalized eigenprob-
lem

(S−1
Y MY + diag(V))E � Ediag(μ) (22)

is solved for computing the Hamiltonian eigenfunctions and
eigenvalues. E � (ε1, . . . , εk) and μ = { μ1, . . . , μk} are
the first k eigenpairs. We readily obtain the Hamiltonian
eigenvalues of Eq. (22) as μ(S−1

Y MY + diag(V)).

3.4.3 Eigenvalue alignment

Let {(μi , εi )}ki�1 and {(λi , φi )}ki�1 be the first k Hamiltonian
eigenpairs of the full shape Y and the first k Laplacian eigen-
pairs of the partial shape X with the homogeneous Dirichlet
boundary conditions, respectively. We consider that the par-
tial shape X corresponds to the region X ′ ⊆ Y on the full
shape Y up to isometry.

From (16) and (18), we can expand the eigendecomposi-
tion of HY as

HY εi (x) � �Y εi (x) + β(x)εi (x)

� μiεi (x). (23)

In light of our previous analysis, if x ∈ X ′, the approximate
equality HY ≈ �X ′ holds point-wise. We can write Eq. (23)
as

�X ′εi (x) � μiεi (x). (24)

If we make the partial shape X an excellent localization to
the corresponding latent region X ′ ⊆ Y , φi of �X has the
same values as εi of �X ′ at corresponding points with the
Dirichlet boundary (i.e., φi (x) � 0 for x ∈ ∂M). Thus,

�X ′εi (x) � �Xφi (x). (25)

According to Eq. (24) and �Xφi (x)�λiφi (x), equality in
(25) becomes

μiεi (x) � λiφi (x). (26)

Therefore, we draw the following conclusion:

μi � λi . (27)

We conclude from the above analysis that under the assump-
tion of providing an indicator for the correspondence region
on a full shape, one can align the Hamiltonian eigenvalues on
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Fig. 3 Results of eigenvalue
alignment technology on four
different classes from the
SHREC’16 Partial
Correspondence benchmark. We
show the partial shape and its
sought localization on the full
shape (in maroon). Below each
result, we report the intersection
over union (IoU) scores w.r.t.
the ground-truth regions

IoU=0.97 IoU=0.95

IoU=0.94 IoU=0.93

X1

X1'

X0'

X2

X2'

Y

T1

T2

Fig. 4 Multi-part matching with missing parts. The parts {Xi} are
matched to the reference shape Y

the full shape Y with the eigenvalues of the Dirichlet Lapla-
cian on the partial shape X [57].

3.4.4 Part regularization

We rely upon the eigenvalue alignment to implement the
partial shape localization via optimization over the potential
function region on the full shape. Along this line of thought,
we utilize the eigenvalues of Eq. (22) and boil down the
eigenvalue alignment to the following problem:

min
V>0

∥
∥
∥μ(S−1

Y MY + diag(V)) − λ

∥
∥
∥
2

ω
(28)

wherewe seek theminimumbetween theHamiltonian eigen-
values on the full shape and the Laplacian eigenvalues on the

partial shape to localize the partial shape to the correct region.
We use the ω-norm ‖μ − λ‖2ω� ∑k

i�1
1
λ2i
(μi − λi )2 (equal

to the weighted L2 norm) to make a balanced penalty for all
frequencies, promoting the robustness property. Using the
ω-norm in Eq. (28) could lead to an accurate shape local-
ization: An optimum can be reached by correctly aligning
eigenvalues.

Equation (28) gives us a straightforward way to model
part X ′ ⊆ Y using the potential vector V, which confines the
sought region X ′ on Y corresponding to the approximately
isometric partial shape X. That is, the eigenfunctions with
associated eigenvalue μi < τ are isolated in the area where
V � 0. Our goal is to introduce the eigenvalue alignment
as a partial shape localization technology to regularize the
partial matching in the optimization problem (15). To make
Eq. (28) act as a part regularization term Rpart, we express
this equation as

Rpart(σ (z)) � min
z

∥
∥
∥μ(S−1

Y MY + diag(σ (z))) − λ

∥
∥
∥
2

ω
, (29)

where σ (z)� τ
2 (tanh(z) + 1) is a saturation function used to

restrict the value ofV � σ (z) to the range (0, τ ), s.t. μi < τ .
In Fig. 3, we illustrate the localization behavior of the

new part regularization term under different inputs. Here, we
use the intersection over union (IoU) between the located
region and the ground truth under each full shape to reflect
the localization accuracy. As we show in this experiment, it
is sufficient to use fully spectral eigenvalue alignment tech-
nology to get a sound localization to the corresponding latent
region.
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4 Multi-part shapematching

4.1 Optimization problem

As stated before, throughout the paper, we consider the set-
ting where we are given a full model shape Y and a collection
of non-overlapping partial shapes {Xi }mi�1 that correspond to
the non-rigid deformed parts {X ′

i ⊆ Y }mi�1. Our goal is to
match the parts to the full shape utilizing non-rigid map-
pings {Ti : Xi → X ′

i }mi�1 such that the matching regions
{X ′

i ⊆ Y }mi�1 are non-overlapping and might not cover Y
entirely. As we demonstrate in Fig. 4, X ′

0 can be seen as a
“null segment,” i.e., a missing part.

We propose a practical method of the so-called simultane-
ous partial functional correspondence (SPFC) based on the
previous analysis. Combining the data term (15) and the part
regularization term (29), we formulate the above problem of
simultaneous multi-part matching as

argmin
Qi ,zi

m∑

i�1

α

∥
∥
∥Wr×kAi − QT

i Bi (η(zi ))
∥
∥
∥
2,1

+
m∑

i�1

off(QT
i �YQi )

+γ1

m∑

i�1

Rpart(σ (zi ))+γ2

m∑

i�0

RMumford - Shah(η(zi ))

s.t.

⎧
⎨

⎩

m∑

i�0
η(zi ) � 1

area(Xi ) � sTY η(zi )
,

(30)

where η(z) � 1
2 (tanh(z) + 1) saturates the part indicator

function with values in the range (0, 1) and σ (z)�τη(z),

γ1 and γ2 are weights, and sY denotes the vectors of discrete
area elements on Y . RMumford - Shah(η(z))�

∫
Y δ(η(z) − 0.5)

‖∇Y η(z)‖dx is an intrinsic version of the Mumford–Shah
functional [61], measuring the length of the boundary of a
part by a saturation function. We find the located region on
the model closest to the partial shape and with the shortest
boundary. Since the null segment X ′

0 does not correspond to
any of the Xi’s, it has no data term and does have a Mum-
ford–Shah functional term.

Note that the first aggregate∑m
i�1 α

∥
∥Wr×kAi − QT

i Bi (η(zi ))
∥
∥
2,1 constitutes the

data term measuring the proximity of the parts
Wr×kAi to the corresponding transformed segments
QT

i Bi (η(zi )) on the reference shape, while the second
aggregate

∑m
i�1 off(Q

T
i �NQi ) and the third aggregate∑m

i�0 Rpart(σ (zi )) are the regularization terms measuring
the sought localization of each part. We use this efficient
optimization scheme (30) to perform the matching of
multiple shapes simultaneously.

4.1.1 Alternating scheme

The problem (30) is solved by employing the manifold alter-
nating directionmethod ofmultipliers (MADMM) algorithm
[62] in Algorithm 1. Since the MADMM algorithm does not
support constraints inherently, the constraints in the problem
(30) were replaced by large quadratic penalties.

Input: partial shapes 1{ }mi iX , full shape Y

Output: indicators {zi}, matrices {Qi}

Initialize ( )=iz 1 (a vector of n2 ones), i r rQ I

Repeat
Q-step: Fix *{ }iz and compute the {Qi} solving the problem

T*T

2,1
11

argmin ( ( )) off( )
i

mm

iNiiiiikr
ii

z
Q

W A Q B Q Q .

z-step: Fix *{ }iQ and compute the {zi} solving the problem

*T

1 part 2 Mumford-Shah2,1
011

argmin ( ( )) ( ( ))+ ( ( ))
i

mmm

iiiiiikr
z iii

z R z R zW A Q B

T

0

s.t. ( ) 1,  area( ) ( )
m

i i Y i
i

z X zs .

Until convergence.

Algorithm 1. Our pipeline for solving the problem of simultaneous multi-part matching
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As noted above, we use the transformation coefficients
matrix Q to calculate the new basis ψ̂i , from which it is thus
natural to obtain functional map C by deducing B.

4.2 Post-processing

The functional map pipeline outlined above demonstrates
that reconstructing point-wise correspondences is key to
the functional correspondence framework. To convert the
functional mapC to a higher-quality point-wise dense corre-
spondence, we formulate a novel map refinement approach,
which can be seen as a combination of ZoomOut [14] and
RPMR [13] algorithm, called Regularized ZoomOut.

For simplicity, we assume that the bases {φi }ki�1 and
{ψ̂i }ki�1 are the first k eigenfunctions of theLaplace–Beltrami
operators of the partial shape X and the full shape Y under
homogeneous Neumann boundary conditions. � and �̂ are
matrices containing {φi }ki�1 and {ψ̂i }ki�1 as their columns, of
sizes n1 ×k and n2 ×k, respectively.

In this section, we take account of the point-wise map
T : X → Y by means of a permutation matrix

�(i, j) �
{
1 T (i) � j
0 T (i) �� j

, (31)

where i and j are vertex indices on shape X and Y , respec-
tively. Note that the n1 ×n1 matrix � encodes the map
T . By analogy to the simple representation of matrix
C � (

〈
TF (φi ), ψ̂ j

〉
) on orthonormal bases, the expression

for C built upon T can be compactly written as

C � (�̂)T��. (32)

Along the same line of thought, we get the map T from the
following problem:

T (i) � argmin
i

∥
∥
∥C(�(i))T − (�̂( j))T

∥
∥
∥
2
, (33)

with �(i) and �̂( j) being the ith row of the matrix � and jth
row of the matrix �̂, respectively.

Traditionally, we solve the problem (33) by the approx-
imate nearest neighbor (ANN) algorithm or the k-nearest
neighbor (k-NN) algorithm. Rodolà et al. [13, 63] consid-
ered the point-wise map recovery problem as a point cloud
alignment problemand introduced a regularized probabilistic
model to solve the problem (33). Combining the RPMR [13]
algorithm with the objective function, we formulate Eq. (33)
as

argmin
�∈{0,1}n1×n1

DKL(C�T, �̂T�)

+ ρ

∥
∥
∥�(C�T − �̂T�)

∥
∥
∥
2

s.t. �T1 � 1. (a vector of n1 ones), (34)

where DKL denotes the Kullback–Leibler divergence
between a continuous GMM distribution (represented by
C�T) and a mixture of Dirac distributions (represented by
�̂

T
) and ρ > 0 controls the regularity of the assignment.

Here, ‖�‖2 is the Tikhonov regularizer, where � denotes a
low-pass operator promoting smooth velocity vectors. Such
regularizer is supported by the motion coherence theory
(MCT) [64], which states that points close to one another
tend to move coherently, and the displacement (i.e., veloc-
ity) function between the point sets should be smooth [65].
We employ the expectation maximization (EM) algorithm to
solve the problem (34). This publicly available code comes
from the coherent point drift (CPD) [65] method.

The key novelty of the ZoomOut method comes from its
capability to iterate the refinement procedure to obtain pro-
gressively larger functional maps {Ci }i≥0 until i reaches the
threshold r. This way, as the functional map grows, the point-
wise map T becomes both more smooth and accurate.

Our approach is based on the ZoomOut, in which we uti-
lize the RPMR algorithm to recover and refine the point-wise
map. To summarize, it includes the following steps:

(1) Initialize i � k0, j � 0 and C0 � (diag(1,…,1))k0×k0.
(2) Compute � j by alternately using the RPMR algorithm

[i.e., utilizing the EM algorithm to solve the problem
(34)] or k-NN algorithm. We observed that it typically
works better if we used the two algorithms interchange-
ably in the code loop.

(3) Compute C j � (�̂
i
)T� j�

i , where �i and �̂
i
denote

the submatrix of � and �̂ consisting of the first i
columns, respectively. Set i � i + 1, j � j + 1.

(4) Repeat the loop body, until i > r.

Figure 5 shows the accuracy compared to the ICP refine-
ment method from the SHREC’16 Partial Correspondence
benchmark.We applied our technique and ICP to refinemaps
between the partial and full shapes and encoded correspond-
ing points in a similar color. Our approach builds upon the
feature “upsampling” in the Regularized ZoomOut frame-
work that introduces additional frequencies or equivalently
directly adds samples in the spectral domain at every itera-
tion. Initializing the functional map to size 10×10 (second
row),we show the point-wisemaps visualized via color trans-
fer throughout the upsampling iterations of our approach in
the figure. Note that as the correspondence matrix grows, the
resultingmatrix ismore diagonal, and themap becomesmore
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Full shape

Size: 10×10 16×16 22×22 31×31

Ours

ICP

Size: 31×31

Fig. 5 Comparison of map quality of our method with ICP in 20 outer iterations. Our approach leads to better results, as can be seen, e.g., on the
belly and leg

smooth and more semantically accurate. We also show the
result of ICP in 20 outer iterations for a map of size 31×31
(bottom row),whichnevertheless leads to a low-quality dense
point-wise correspondence result. Therefore, we encourage
the reader to compare the work of ICP to ours, which pro-
vides visual proof that our approach upsampling the map to
the same size leads to a significant improvement.

5 Implementation

5.1 Preprocessing

The robustness of the chosen descriptor fields in the shapes
directly affects correspondence quality. Compared to other
classical local descriptors, such as HKS andWKS, the SHOT
[66] descriptor capturing the local normal vector orientations
is highly descriptive, computationally efficient, and robust to
noise. In all experiments below, we used 352-dimensional
SHOT descriptors with ten bins and a SHOT radius roughly
chosen to 9% of the maximal pairwise geodesic distance,
which means 352 descriptor functions on each shape.

5.2 Eigenvalue number

Roughly speaking, we can estimate the slope of the partial
functional mapC as r/k, where r and k denote the eigenvalue
numbers of the partial shape X and the full shape Y , respec-

tively. In our experiments, we initialize k � 90 and estimate
the value of r, directly related to the rank of C, from

r � max

{

i |λi <
k

max
j�1

μ j

}

, (35)

where we write λi and μ j to denote the eigenvalues of the
partial shape and the full shape, respectively.

5.3 Step potential

In Sect. 3.4, the potential β confines all eigenfunctions with
associated eigenvalues μi < τ within the region where
σ (z)�0. If μi > τ , it means there is a probability for the
particle to penetrate the potential region where σ (z) � τ .
In our experiments, we set the step of magnitude τ� 8μk ,
which can get excellent quality of localization.

5.4 Error measure

We use the quantitative criterion introduced in [67] to evalu-
ate point-wise maps’ quality. Given the ground-truth match
(x, y∗) ∈ X × Y , the error of the calculated match (x, y) ∈
X × Y is computed by the geodesic distance between y and
y* and normalized by the area of Y :

e(x) � dY (y, y∗)√
area(Y )

, (36)

where dY is the geodesic distance on Y and area(Y ) is the
area of the shape Y .
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OursNRP

Ours

0.71 0.68 0.64NRP

OursNRP

Ours

NRP

0.77 0.40

0.95 0.94 0.94 0.99 0.98

0.69 0.45 0.64 0.70 0.61

0.98 0.97 0.93 0.97 0.99

0.48

0.94

FSPM

FSPM 0.75 0.71 0.62 0.76 0.79

FSPM
0.60 0.70 0.61 0.63 0.790.64FSPM

Fig. 6 Comparison between NRP, FSPM, and our method on the
SHREC’16 Partial Correspondence benchmark in the multiple part set-
ting. For each example, we show the partial shapes, the NRP solution,
the FSPM solution, and our solution. Corresponding regions between

partial and full shapes are indicated with the same color. The numerical
score below each partial shape denotes the IoU w.r.t. the ground-truth
regions from different methods

6 Experimental results

We performed a wide range of real and synthetic data exper-
iments to demonstrate our method’s efficacy and carried out
qualitative and quantitative comparisons to the state-of-the-
art algorithms on several recent benchmarks.

6.1 Datasets

We selected four datasets that have a large variety of objects
with ground-truth correspondences.

The SHREC’16 Partial Correspondence benchmark [68]
uses shapes from the TOSCA [69] dataset, consisting of
nearly isometrically deformed shapes from eight classes,
with different removed parts. The benchmark’s two types
of partiality are cuts (consists of shapes undergoing a single
cut) and holes (contains irregular holes and multiple cuts).
In each class, the point-wise ground-truth correspondence
between the partial and full shape is given.

The SHREC’16 Topology benchmark [70] includes mod-
ified shapes from the KIDS set [71], containing 25 shapes
of the same class undergoing near-isometric deformations in
addition to massive topological shortcuts.

The SCAPE dataset [72] contains 72 clean shapes of
scanned humans in different poses.

The FAUST dataset [4] contains 100 human scans belong-
ing to 10 different individuals, partitioned into two classes:
60 requiring intra-subject matching and 40 requiring inter-
subject matching.

6.2 Qualitative results

InFig. 6,we showexamples of the correct localizationof each
part with respect to the full shape. The input data are several
non-overlapping pieces taken from the full shape’s non-
rigid deformations in the SHREC’16 Partial Correspondence
benchmark, forming a covering set. We compare the state-
of-the-art multi-part shapematching algorithmNRP [42] and
partial shape matching algorithm FSPM [12]. Since FSPM
is not a partial matching method of shape collections, for fair
comparisons, we perform it to each part separately, result-
ing in corresponding independent partialmatching problems.
Note that for better comparison results, we report the area
ratio IoU between the detected region and the ground truth
below each partial shape and plot the identified areas cor-
responding to parts with different colors in the full shapes.
Results show that our method has a more superior partial
localization performance and is more precise than the one
obtained with other approaches. Although there is an explicit
model of parts in the architecture, the NRP does not per-
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NRP

Ours

FSPM

FSPM

FSEAUR

NRP

Ours

FSEAUR

Fig. 7 An example of multi-part dense correspondence was obtained using different methods from the SHREC’16 Partial Correspondence bench-
mark. Correspondence is visualized via color transfer from the rightmost full shape

form well in the partial localization. Unlike the NRP, FSPM
circumvents the need to compute the unknown parts explic-
itly but lacks partially localized behavior; thus, localization
accuracy is low. As noted in our discussion, our localiza-
tion feature is based on the simultaneous partial functional
map framework and the eigenvalue equivalence technique,
penalizing the sought localization that lies outside of the cor-
rect corresponding region, which intuitively means that no
spurious localization should be created.

In Fig. 7, we display examples of the dense correspon-
dence that NRP, FSPM, FSEAUR[39], and our algorithm
generate, where dense maps between shapes are color-coded
such that matching points have the same color. Note that, for
FSPM, since each part is matched independently, different
parts’ correspondence results may cover the wrong areas on
the boundary leading to overlapping (e.g., the woman’s belly
and the horse’s four legs). FSEAUR has the same problem
(e.g., the woman’s right arm and the horse’s right two legs).
Our method leverages the simultaneous functional map algo-
rithm to resolve this problem so that all parts are matched
jointly to a whole shape. We exploit it as a regularizing
effect on the correspondence to remove this ambiguity. In

the NRP solution, the horse’s hind legs are swapped, and
the woman and the horse’s belly are mapped to the back.
Due to symmetry ambiguity, the algorithm fails to produce
a good map with consistent orientation. To disambiguate
possible symmetric correspondences, we introduce the new
part regularization via the eigenvalue equivalence technique
for estimating functional maps by promoting the localizing
accuracy in a novel way. Moreover, our framework takes
Regularized ZoomOut as map refinement, making process-
ing smaller initial functional maps easier to compute and
avoiding getting trapped in symmetry ambiguity. We pro-
vide comparisons with FSEAUR, which is also based on the
ZoomOut. We show that our method’s post-processing step
Regularized ZoomOut leads to a significant boost in perfor-
mance. Therefore, our method provides the smoothest maps
and exhibits the smallest color distortion, close to the ground
truth.

InFig. 8,weuse various datasets for the evaluation, includ-
ing the SHREC’16Topology benchmark, the FAUST, and the
SCAPE datasets. Qualitatively evaluating multi-part dense
correspondence on these datasets is challenging since their
settings include non-rigid surface deformation, symmetric
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Fig. 8 Examples of multi-part dense correspondence obtained with
NRP, FSPM, and our method from various datasets. Notice that com-
pared to other competing approaches, our method correctly identifies

non-overlapping subregions on the reference matching all the parts,
providing the most accurate and smooth map

ambiguity, and the presence of topological noise. In this
experiment, we fragment their model into three parts, give a
reference shape, and perform these parts partially matching
the reference. We visualize the solution by color coding on
the reference and transfer it to the parts using the point-wise
maps.

In the SHREC’16 Topology benchmark, the shapes
undergo topological changes due to the coalescence of spa-
tially close surface regions, e.g., the hands on the child’s face
in the figure. As shown in Fig. 8, NRP demonstrates poor per-
formance in this challenging setting. The child’s right hand
is the same color as his face, and his left hand is mapped to
the right hand. Moreover, FSPM is less accurate and more
unstable than our method. In contrast with FSEAUR, we can
obtain high-quality functional maps across each shape col-
lection.

The shapes of FAUSTandSCAPEcontain artifacts such as
scanning noise and symmetric ambiguity.When compared to
these state-of-the-art methods, an essential advantage of our

method is the map refinement process. It makes the resulting
maps of our approach typically less noisy and more globally
consistent, even though it is not designed to optimize this
problem, which also helps obtain a more accurate partial
functional map.

In Fig. 9, we visualize the match results by transferring
a texture from reference to multiple parts via the recov-
ered dense map, which provides good visualization for the
resulting maps’ local distortion. NRP has a massive distor-
tion on all parts of the woman and the horse and gives a
flipped left to right map in the woman’s head. The map pro-
duced by FSPM has a heavily overall error when compared
to the ground truth. Note that the continuity and quality of
the maps obtained using our method are significantly better
than other techniques. These qualitative results illustrate that
our method produces smooth, guaranteed bijective solutions.
We also observe that our method is the only algorithm that
can reliably recover multiple high-quality non-rigid maps in
the collection. The results of FSEAUR recover fewer high-
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FSPM
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Fig. 9 Comparisons of multi-part matching results are shown by texture transfer

quality maps. For example, the correspondences obtained by
FSEAUR in the woman’s buttocks and the horse’s legs show
noticeable artifacts.

6.3 Quantitative results

We perform an extensive quantitative evaluation of the
proposed method on the SHREC’16 Partial Correspon-
dence benchmark, the SHREC’16 Topology benchmark, the
FAUST, and the SCAPE datasets. We compare with the
state-of-the-art multi-part matching method NRP and par-
tial correspondence approaches, including PFM, FSPM, and
FSEAUR.

Cumulative curves are plotted in Fig. 10, reading the frac-
tion (y-axis) of computed correspondences that fall within
certain (normalized) geodesic distance to the ground-truth
ones (x-axis). Note that when compared to the baseline
method NRP, our approach achieves 18.9% improvement on
the SHREC’16 Partial Correspondence benchmark, 8.8% on
the SHREC’16 Topology benchmark, 4.1% on the FAUST,

and 35.7%on the SCAPEon average.On the SHREC’16Par-
tial Correspondence and SHREC’16 Topology benchmark,
our method (black curve) detects over 90% correct corre-
spondences for a small threshold of 0.05. It converges to
finding almost all correct correspondences within geodesic
error 0.075. Moreover, even for the FAUST and SCAPE, our
solution obtains a higher percentage of correct correspon-
dences within a small geodesic diameter and saturates earlier
than other methods.

Although shapes in the SHREC’16 Topology benchmark
are still synthetic, self-occlusion poses are merged in the
geometry, making it more challenging. We can see that even
though the accuracy curve on this dataset does not sig-
nificantly improve our method over FSPM and FSEAUR,
our results are more accurate, smoother, and consistent.
By nature of the acquisition process, the shapes on the
FAUST and SCAPE are affected by several artifacts, result-
ing in a challenging testbed for shape matching. The low
accuracy of FSEAUR in SCAPE is motivated by its refine-
ment approach.Our approach significantly outperformsother
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Fig. 10 Correspondence quality of different methods on the SHREC’16 Partial Correspondence benchmark, the SHREC’16 Topology benchmark,
the FAUST dataset, and the SCAPE dataset

Full shape Ground-truth ours without FSEA

and Regularized

ZoomOut

oursours without

Regularized

ZoomOut

ours without

FSEA

Fig. 11 Ablation study example. Note that we consider four different settings: ours without FSEA and Regularized ZoomOut, ours without Regu-
larized ZoomOut, ours without FSEA, and ours. We then visualize the maps via color (first row) and texture transfer (second row)
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methods consistently across these two datasets, whose Regu-
larized ZoomOut refines the FSEAUR solutions even further.

6.4 Ablation study

In this section, we present the extensive ablation study of all
the vital components of our algorithm, including FSEA and
Regularized ZoomOut. We run our algorithm in four differ-
ent settings on 30 random pairs from the SHREC’16 Partial
Correspondence benchmark, where one part of the method
changes each timewhile the rest remains identical. These set-
tings contain our method, ours without FSEA, ours without
Regularized ZoomOut (use the ICP algorithm to refine map),
and ours without any two components (use the ICP algorithm
to refine map). We evaluate the results via visualization of
color and texture transfer in Fig. 11. To get a better view,
we enlarge the texture details of the corresponding regions
in the shapes. The central insight is that our method’s differ-
ent components have an intricate interplay, and the accuracy
drops significantly if any part is removed. Our FSEA algo-
rithm can find the correct region corresponding to the partial
shape in most cases, even in the presence of large amounts of
partiality of the inputs. The figure’s fourth and sixth columns
show that Regularized ZoomOut makes the map smoother
and more accurate semantically.

We assess the effect of the different components of our
method shown in Fig. 12. We turn off certain parts of the
method and report the correspondence quality in terms of
the average geodesic error in % of the diameter obtained
by different settings at increasing partiality levels. It demon-
strates the importance of all individual blocks and ascertains
that all these components are needed to achieve optimal per-
formance with our solution. In particular, the FSEA strategy
is vital. Without it, our average geodesic error is over 0.07 at
different partiality levels. Remarkably, even when the Regu-
larized ZoomOut strategy is replaced with ICP, the average
geodesic error is higher than ours.

6.5 Runtime

We tested our algorithm, NRP, FSPM, and PFM on a work-
station with Intel Core i9 3.6 GHz processor and 64 GB
memory. We conducted the experiments on 30 random pairs
from the SHREC’16 Partial Correspondence benchmark and
showed in Fig. 13 a runtime comparison on meshes of sizes
1−10 k vertices. Similar to NRP and PFM, our method used
theMumford–Shah functional term in the optimization prob-
lem. The most computationally expensive part of them is
the cumbersome optimization over the spectral and spatial
domains. Note that our method is significantly faster than
PFMand the currently bestmulti-partmatchingmethodNRP.
The main reason is that our method’s FSEA can quickly find
the correct localization of the partial shape and allows the
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Fig. 12 Comparative results for the different ablations of our method
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Fig. 13 Runtimeofmatching shapeswith the varyingnumber of vertices
using our algorithm, compared to NRP, FSPM, and PFM

optimization to converge fast. At the same time, FSPM per-
forms all the calculations in the spectral domain. Therefore,
FSPM is the significant fastest over all methods.

Our technique adopts the Regularized ZoomOut strategy
in the post-processing step, and the computational cost is
higher than FSPM’s refinement method ICP. In the typical
case where the number of vertices n � 10 k, the CPU imple-
mentation of our strategy takes on average 30 s to converge,
while ICP only 5 s. Our method’s runtime complexity grows
linearly with shape size.

7 Discussion and conclusions

This paper formulated a novel approach for computing par-
tial correspondences between non-rigid multiple parts and
full shape. In this setting, the parts are jointly matched to
the full shape. We firstly introduced a new part regulariza-
tion term based on Hamiltonian spectrum alignment for the
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simultaneous partial functional map framework, promoting
the accuracy of region localization directly in the spectral
domains. Unlike existing work that utilizes complex regular-
izers, our technique adopts a simple localization technique
calculating entirely in the spectral domain while yielding
qualitatively better results at a fraction of the time cost. We
then extended the ZoomOut pipeline using the RPMR algo-
rithm, which can be seen as a non-rigid alignment between
the two shapes’ spectral embeddings, leading to a significant
improvement in recovering the point-wise correspondence.
We demonstrated our method’s advantages by comparing it
to several current state-of-the-art methods on well-known
test datasets. Contrarily to these approaches, our method can
tackle topological noise, strong partiality,missing pieces, and
symmetric ambiguity, making it amenable for application in
the scenario that frequently occurs when dealing with real
data.

Our method still comes with multiple limitations. First,
our FSEA strategy needs a larger k of the first few eigen-
values to discriminate parts that only differ at medium and
high frequencies. To solve this problem, we have to increase
the value of k and bear a higher calculation cost. Second, the
post-processing step depends on some parameters that have
to be tuned for some shapes. Specifically, we require to iden-
tify C0 in the initialization and the step size of upsampling.
Finally, due to the RPMR as a search algorithm, the Regular-
ized ZoomOut obtains an accurate correspondence at a high
computational cost.

In the future, we would like to investigate a partial cor-
respondence approach that is suitable for non-isometric
pairwise shapes, even multiple shapes. Even though this
problem has received surprisingly little interest, we believe
that it is a promising direction that makes it possible to
accommodate the practical application. Moreover, it would
be rewarding to research how deep learning approaches can
solve designing a partial functional map.
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