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Abstract

The inspection of electrical components has long been an important issue in the power distribution system. Unmanned drones
are impressive surveillance systems with a powerful spatial and remote sensing capability. This paper proposes a system to
monitor the health of the ceramic insulators that uses aerial images as a source of information and deep structured learning
model for the data interpretation. The key drawbacks of existing monitoring systems are poor detection accuracy and lack
of real-time execution, making it more complicated to obtain attributes from aerial photographs. The focus of this paper is
to increase accuracy of detection while operating in real-time using You Only Look Once version 3 (YOLOv3). The novelty
of the proposed system is that it combines deep learning and the Internet of Things using a single embedded device called
Raspberry Pi. For the scientific investigation, we equipped Raspberry Pi with a test image as an input to detect an insulator’s
health status using YOLOv3. Many aerial images are not clear due to motion blur. Excluding such low-resolution training
images will affect accuracy. So we used a super-resolution CNN to reconstruct a blurred image as high-resolution image.
The efficiency of the proposed system has been tested using a private data set consisting of a variety of scenes containing
high-voltage power line insulators. The results show that the suggested system is quick and accurate in the identification and
classification of insulators.

Keywords Health monitoring - YOLOv3 - SRCNN

1 Introduction

To limit power interruption, utilities conduct visual examina-
tions on their equipment to plan for the essential servicing or
replacement. They carried these examinations by practising
traditional patrolling methods which are often slow and need
more manpower [1]. As the insulators play a major part in the
safety of the power system [2], the power companies have
given high preference to faulty insulator detection systems
that are quick and less expensive for the inspection team. The
insulators used in transmission and distribution systems are
supposed to resist constant electrical, mechanical, and ther-
mal forces under various environmental circumstances [3].
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These forces may cause a depreciation of surface resistance,
flash-over voltage, and puncture strength. This may produce a
high leakage current, which degrades the insulation strength
[4]. If an insulator string of transmission lines is exposed to
contaminated atmospheres with high moisture, their insulat-
ing ability is decreased and dry areas on the insulator’s plane
may be conductive [5]. This leads to a partial flow of current
and then to a line-to-ground discharge referred to as a flash
over [6]. The partial discharge of the defective insulator may
also release electro-magnetic waves and sound waves. The
irregular dissipation of heat over the defective insulator plane
ends in the decrease of insulation resistance and the rise of
leakage current [7].

Over several years, researchers have been studying fast
and effective models for the inspection of power compo-
nents. In these, the Buzz method is the oldest method that
performs a physical examination within each insulator in a
string by trying to apply a large voltage across it to listen to a
buzz-like sound [8]. The safety issues of this method have led
to the investigation of the correlation between electromag-
netic signals produced by partial discharge (PD) activity and
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defects, such as pollution and insulation breakdown. Wong
etal. [9] uses VHF (30-300 MHz) signal processing methods
to detect cracks on the insulators. The frequency spectrum
generated by the fast Fourier transform was analysed by the
fractal algorithm to detect anomalies in the insulator. Algae
fungus [10] poses a potential hazard to the external insulation
of the electrical system due to the distinctive characteristics
of the organic foul. The impact of algae contamination was
high when algae coverage was greater than 20%. Zhong et al.
[11] demonstrated a method for detecting insulator anoma-
lies using ultrasonic technology. Many researchers have used
neural networks to simulate energy systems. The authors of
[12] consider the height, the diameter, the overall leakage fre-
quency, the surface conductivity, the number of sheds, and
the number of chains on it. The efficiency and accuracy of the
system deprives complex tasks like pre-processing of image
models, segmentation techniques and mining in traditional
machine-learning models [13]. To overcome the difficulties
of the machine learning techniques [14,15], deep Learning
methods were developed for extracting and classifying rele-
vant data from new images. In recent times, the convolution
neural network has made significant strides in biomedical
imaging, such as mapping mitosis cell identification [16,17].
Nasr et al. [18] used 170 colour images of the MEDNODE
dataset. They have augmented pictures by using different
augmentation methods, such as cropping and rotation. They
generated 35 augmented images from a single image. Lopez
et al. [19] used the 1300 image dataset (ISBI 2016) in which
they used 900 images for training and remaining for test-
ing. They have achieved 81.33% accuracy with the VGG16
architecture of deep CNN. The authors of [20] investigate a
new insulator detection technique for aerial photographs of
UAVs in power transmission line inspection based on the sin-
gle shot detector (SSD). On the aerial picture collection, the
SSD is used to carry out the automated function learning pro-
cess. Instead of inefficient and unguided hand-crafted feature
extractors, SSD’s model can extract high-level features and
speed up detection. Li et al. [21] suggest a novel approach
in which identification and segmentation networks are cas-
caded to classify the defect at the global and local levels. In
the whole shot, the improved Faster RCNN is used to capture
both defects and insulators. To completely extract features,
ResNeXt101 is used as the feature extraction network, and
the feature pyramid network is designed to improve the abil-
ity to detect small objects. The drone-based implementation
of the YOLOV2 neural network model for insulator detec-
tion was introduced by [22].The technology was tested using
real-time aerial photographs taken by drone. The current
approaches to detect insulator damages are summarised in
Table 1.

Only a few fully automatic inspection systems have been
discussed in the literature. Therefore, a prototype model has
been developed for testing the effectiveness of an embedded
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device for the deep learning object recognition algorithm.
For this purpose, Raspberry Pi has been used as an embed-
ded device that also operates both the Deep Learning and IoT
functions. The YOLOV3 algorithm was used to classify the
insulator, and a message is sent to the utility centre via the
Blynk server if the bad insulator has been found. The rest of
the article has been structured as follows: Sect. 2 discusses
the theoretical background. Next, Sect. 3 provides a descrip-
tion of the methods used to implement the system proposed.
Section 4 describes the results of the experiment. Section 5
gives the conclusions.

2 Theoretical background for deep learning
model: YOLOv3

YOLO recognises objects by splitting the image into grid
blocks rather than the regional proposal approach used in
two-stage detectors. The function map of the YOLO output
isintended to display bounding box coordinates, object score,
and class scores. YOLO [23] also allows several objects to
be recognised with one inference. Consequently, the speed
of detection is much higher than that of traditional methods.
Nevertheless, localisation errors are high due to grid unit
processing, and the recognition precision is poor, making it
unsuitable for object recognition applications.

YOLOV2 was suggested [24] to address the aforemen-
tioned issues. It improves detection efficiency by adopting
a batch normalisation process for the convolution layers. It
also incorporates an anchor box, multi-layered training, and
fine-grained characteristics [25]. However, the accuracy of
detection for small objects is indeed low. Therefore, YOLOv3
[26] was introduced to resolve the drawbacks of YOLOvV2.
As shown in Fig. 1, YOLOV3 consists of convolution layers
and consists of a deep layered network for better accuracy
[27]. YOLOV3 uses the residual skip relation to tackle the
fading gradient problem of deep networks and a method
of up-sampling and concatenation that provides fine-grained
features for the recognition of small objects [28]. The most
notable feature is the identification at three different levels
that used in a pyramid network feature [29]. It helps YOLOv3
to track objects of different sizes. When an image is given as
input with three channels (i.e. R, B, and G) into the YOLOv3
system, data regarding bounding box coordinates, scores of
objects and classes are obtained as shown in Fig. 1. The out-
comes from the three levels are mixed and analysed using
non-maximum suppression. After this, the results of the final
detection are determined. Hence, YOLOV3 is suitable for
object recognition applications in aspects of precision and
speed.
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Table 1 State-of-the-art

- Past research
monitoring methods to detect

Proposed method

insulator damages 8]

[9]

[10]
[11]
[13]
[15]
[19]
[20]
[21]
[22]

The buzz method

VHF (30-300 MHz) signal processing methods
Algae foul method

Ultrasonic technology

Machine learning models

Deep learning models

VGG16 architecture of deep CNN

Single shot detector

Faster RCNN

YOLOV2

3 Proposed insulator health monitoring
system

The principal technique for insulator condition monitoring
is shown in Fig. 2. The pre-processing of the drone surveil-
lance inspection image can be carried out in the following
steps. First, the initial drone inspection image series must be
split into two categories. One is a high-quality image array
that can be transferred directly to the next stage; the other
is a low-resolution blurred image package. Also, the image
set is transformed into a high-resolution image set using the
super-resolution reconstruction process described briefly in
Sect. 3.2. The transformed images can be later combined with
the initial high-resolution images and then used as new image
sets for further processing. In addition, the original dimen-
sion of the source images has been resized to a new scale of
416 x 416 at the reference stage to accelerate the learning
process. To extract insulator features, the resized image is
tested as an input to the Darknet-53. The feature-pyramid-
network (FPN) method yields predictions over three distinct
stages through Darknet-53. Overall, the YOLOV3 predictions
include bounding box variables, item ranking, and class pre-
diction.

The suggested system has four components that may be
explained:

1. Image pre-processing was performed in the first phase
to distinguish low-level fuzzy photographs from good
pictures.

2. In the second stage, an image super-resolution process
was performed to transform low-level fuzzy photographs
into super-resolution pictures using the SRCNN method.

3. In the third phase, the transformed pictures were sent
through a deep learning object detector named YOLOV3.

4. Finally, if YOLOv3 discovered any bad insulators in the
photographs, the information about the faulty insulators
is forwarded to the utility team via the Blynk android
application utilising IoT architecture.

3.1 Image pre-processing unit

Here, the Laplace distribution approach was used to distin-
guish the blurred aerial image from the clear aerial image.
The Laplace operator has been chosen to calculate the
second-degree image differential that increases the contrast
between the neighbourhood image elements. In general, the
Laplacian operator is used first to transform the image and
then to determine the deviation. In sharp pictures, the bound-
ary tends to be fairer, so that the difference rises considerably.
Alternatively, the blurred edge detail of the images is com-
paratively less so that the difference becomes less.

Therefore, if the deviation is less than the threshold speci-
fied, the image will be considered as blurred. Conversely, the
image is labelled as clear if the disparity is greater than the
stated threshold value as shown in Fig. 3. As shown in Fig. 4,
the initial surveillance images are subdivided into a dubbed
image group and a normal image group after the above proce-
dure. The identified blurred images are then used as inputs to
the SRCNN model. Finally, the transformed SRCNN images
and the clear images in the initial dataset are merged to form
a new image dataset as shown in Fig. 4.

3.2 SRCNN reconstruction
3.2.1 SRCNN

Few aerial images show blurriness due to shuddering drone
body and imagery exposure problems; this will severely
impede the effective monitoring of insulator health from a
drone inspection. Image pre-processing would be a required
phase in the development of a system of deep learning
practices. The SRCNN model proposed by [30], a network
training algorithm for the pre-processing of image data. The
SRCNN algorithm addresses the above-mentioned issues
effectively by changing poor-resolution images to super-
resolution images, respectively. The implementation of the
SRCNN model typically consists of three stages: image patch
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Fig.1 Overview of YOLOvV3
network architecture
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extraction, nonlinear projection, and super-resolution recon-
struction.

Image patches extraction This procedure selects (overlap-
ping) maps from the Y-frame and shows each map as a large
spatial vector. These variables comprise of a set of func-
tion maps, the number of which is proportional to the vector
dimension. The standard procedure is to get the patches from
the initial monitoring photographs and use a sequence of con-
volution filters. Each convolution filter can be considered as
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a basis, and simple development can be included in the net-
work for optimisation. The process of the first layer can be
defined as follows:

F1(Y) = maximum(0, Wy x Y 4+ Bj) €))

where Wy represents n filters of the size (¢ x fi X f1),
‘c’ is the number of raster bands of the input, f; is the map
coverage of the filter, B; is an nj-spatial segment, and ‘%’
represents convolution. The result of the convolution cycle
includes ‘n;’ attribute features and the final performance of
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Fig.2 Proposed insulator
monitoring model using
YOLOV3

Output
predicted

the primary convolution stage is achieved by the rectified
linear unit ReLU (max(0,x)) activation system [31].

Nonlinear projection The n;-dimensional attribute param-
eter is derived from every input image of the primary
convolution layer. The resulting nj-dimensional attribute
vector in the second convolution layer is not projected lin-
early to the ny-dimensional feature segment. The second
layer processing can be defined as:

F>(Y) = maximum (0, W» % Fi(Y) + B») 2)

where W, denotes n» filters of size n; x f» x f> and Bj rep-
resents a np-spatial vector. The convolution product contains
n, feature maps.

Reconstruction of super resolution image The last convo-
lution sectional layer combines whole the super-resolution
frames generated with the aid of upper layer to generate a
super-resolution model, that is, the SRCNN network’s final
image production. Therefore, the third layer cycle may be
seen as:

F3(Y) =W % F(Y) + B3 3

where W3 denotes c filters of scale np x f3 x f3 and B3
represents a c-sized vector.

3.2.2 SRCNN structure

The SRCNN uses the two cubic interpolation models to
expand the collected smeared monitoring image as neces-
sary and to record the interconnected image as Y.

Prediction

New
Image Set

Image
Processing

Feature
Extraction

Resize image

el 416 x 416

scales

Fig.3 Calculation of blurriness in the input images

Super-resolution restoration targets at restoring Y to a
rasterised image H suitably high-resolution equivalent to
the real X. The appropriate end mapping function F(Y)
may be obtained by training. The basic arrangement for
the SRCNN model is shown in Fig. 5. It can be observed
that there is a three-stage CNN in the total structure. The
primary convolution stage extracts image frames from Y,
then identifies certain characteristics with low resolution.
The next convolutional layer uses nonlinear mapping to pro-
duce high-resolution features. Finally, the reconstruction of
super-resolution images is accomplished through the third
convolution layer, which is analogous to creating images
close to the actual image resolution. To achieve the map-
ping feature F between super-resolution images, the 6=
(W1, W, Wa, By, Ba, B3) system variable must be trained
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where the n denotes number of training examples, X; is the
actual image, Y; represents the poor-resolution reference, and
F (Y;; 0) is the clear one produced by SRCNN model.

3.3 Monitoring insulator health using YOLOv3

YOLOV3 makes use of the FPN concept to predict boxes at
various scales. To complete the detection process, it uses a
variety of convolution layers and extra layers (residual lay-
ers) and manages the attributes of the full image to predict
any minimum bounding rectangle. Meanwhile, it forecasts
top-to-bottom training across all bounding rectangles in all
classes, which hold significant average accuracy and high
efficiency in real time. YOLOV3 begins the process by split-
ting the input monitoring image as N x N blocks and adds
a bounding rectangular anchor for every ground truth on the
map. For each bounding box, the network finds 4 parameters
(tx, ty, tw, tp), as shown in Fig. 6 then use a method to pre-
dict 4 related coordinates: mid co-ordinates: (by, by) of the
bounding rectangle, the height b;, and the width b,,. The min-
imum prediction of bounded rectangles and the equations of
Intersection over Union (IOU) are given as follows:

by = o(ty) + ¢y (5)
by = o (ty) + ¢y ©)
by = pwe™ @)
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where the amount of variance between the detected bound-
ing rectangle and the ground truth box is the IOU shown in
expression 9. B By, is the rectangle of ground truth relying on
learning label, B By, is the recognising bounding rectangle,
and (.) shows the area of region.
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3.3.1 YOLOv3 network structure

As stated in Sect. 2, Fig. 1 shows the YOLOv3 main device
configuration, which acquires Darknet-53 framework. This
network is a YOLOv2 fusion [32], Darknet-19 [33], and
ResNet [34]. So, YOLOvV3 mainly uses 1 x 1 and 3 x 3
convolution kernels, and some relevant shortcut structures.
First, the input surveillance image is processed, then its size
is changed to 416 x 416, and then YOLOvV3 is used to process
1t.

1. The primary section contains two convolution layers. The
image input size is 416 x 416 x 3 and the size of kernel
is 3 x 3 x 64 and 3 x 3 x 32, respectively. After the
convolution cycle, the size of the output match function
is reduced to 208 x 208 x 64.

2. The second section consists of three convolution stages,
accompanied by a residual layer. The size of kernel is
3x3x 128, 3 x3x64,and 1 x 1 x 32 and after
the convolution process, the output map is reduced to
104 x 104 x 128.

3. The third section consists of 5 convolution layers with
two layers of residual form layers. The convolution kernel
sizeis 3 x 3 x 256,3 x 3 x 128, and 1 x 1 x 64 and
after the convolution process, the output function map is
reduced to 52 x 52 x 256.

4. The fourth section comprises 17 layers of convolution
accompanied by 8 layers of residual. The size of the
convolution kernel is 1 x 1 x 128, 3 x 3 x 256, and
3 x 3 %512, and the map of the output function is reduced
to 26 x 26 x 512 after the convolution process has been
completed.

5. The fifth section comprises 17 layers of convolution and
also 8 layers of residual. The dimensions of the convolu-
tionkernelare 1 x 1 x256,3x3x1024,and3x3x512and
after the convolution cycle the map of the output function
is reduced to 13 x 13 x 1024.

6. The sixth section comprises eight layers of convolution
form and four layers of residual form. The dimension of
the convolution kernel is 1 x 1 x 512 and 3 x 3 x 1024,
and after the convolution process, the map of the output
function will remain the same.

7. The last segment consists of three networks for predic-
tions. YOLOV3 predicts rectangular boxes on three stages
and then selects certain scales attributes. The prediction
of network is a tensor of 10 x 10 x (3 x (44 1+4)) for
4 minimum rectangular box corrections, 1 projection of
objects, and 4 classifiers.

3.3.2 Training

The training of YOLOV3 network is split up into following
3 activities:

Step 1 As the size of the aerial image captured by surveil-
lance drone is 5280 x 2970, that would be too high to be the
input of the network. The real scale of the picture is changed
to 416 x 416 to accelerate the process of training.

Step 2 The VOC2007 [35] dataset pattern is used to label
the exterior form of the leading edge (LE) erosion, the vortex
generator (VG) panel, the VG with vanished teeth, and the
lightning receptor shows up in particular image.

Step 3 Initiate system variables of the YOLOV3 algorithm
and train the network to get variables for the identification of
specified objects.

3.3.3 Essential parameters

This paper presents an additional study of the choice of three
essential variables

Batch size Theoretically, the greater the volume, the easier
the preparation will be. Nonetheless, owing to the constraint
of hardware constraints, we cannot increase the value forever,
so authors attempted four different batch sizes of 8, 16, 64,
and 128, respectively. There would be no loss of power when
the batch size were chosen as 64, 16, 8 during preparation, so
we chose 64 as the batch size based on the above-mentioned
argument.

Weight decay To prevent over-fitting, first fix the correct
rate of learning and then modify the decay measure from the
constant value (0.01) to the final measure (0.0005).

Ignore thresh Ignore thresh is the IOU threshold value,
which measures the amount of IOUs used in the loss calcu-
lation. If the pre-defined threshold is less, which will take to
under-fitting. On the other side, if the threshold limit is high it
is obvious to cause over-fitting. Thus, the ignore thresh value
is set as 0.65 on the basis of above argument and the case at
hand.

Selection of parameters The accuracy of the detection is
influenced by the choice of the three variables mentioned
above. To avoid under-fitting and over-fitting during plan-
ning, it is therefore necessary to change these parameters.
To boost the precision of the typical detection, YOLOvV3
adopts a multi-label categorisation that is distinct against the
old interpretations that use a contradictory label. The logis-
tic classifier is used to determine the objectness value for
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Fig.7 Block diagram of
proposed system
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each bounding rectangle. For classification loss while testing,
YOLOV3 uses a discrete cross-entropy loss for each number,
which eliminates the MSE commonly exploited in past ver-
sions. The loss factor used in the YOLOv3 feature training
is shown as follows:

L(s,) = —log(sn), ifg, =1 (10)

—log(1 —sy,), ifg, =0

where n represents the sample count, s, € [0, 1] reflects the
objectness value anticipated by the system, which calculates
the expected likelihood that the nth sample is insulator dam-
age and g, shows the ground truth. It needs to be observed
that g, € (0, 1) implies when the nth observation relates to
the object class. Network variables are trained by reducing
the loss to all samples, i.e. Y, L(sn).

In this article, the adaptive moment estimation, shortly
referred to as the Adam optimisation procedure [36], is
used to change network parameters. Adam would be the
first-order optimisation mechanism that can substitute the
standard stochastic gradient descent method and adjust net-
work weights recursively depends on a training data. The
model calculates the appropriate adaptive training score for
various values by determining the gradient estimate of pri-
mary and secondary moments. It integrates two optimisation
models, along with the benefits of root-mean-square propa-
gation and adaptive gradient algorithm [37], that are useful
for improving the effectiveness of scattered gradients and
efficiency of training.

3.4 Inspection team and utility team

The maintenance department carried out a physical inspec-
tion of the power line units. They collect different power
component images. As shown in Fig. 7, every image in the
set would be used as a test input to the Raspberry unit. The
Raspberry is running a python application to track the struc-
tural health of the insulator via the deep learning system.
The YOLOvV3 model, as discussed in the Sect. 3.3.1, is the
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Fig.8 The IoT architecture

best deep learning model for the recognition of objects with
greater precision.

The innovation of the proposed architecture is the inte-
gration by an embedded device of a deep learning interface
into the Internet of Things (IoT). As seen in Fig. 7, the Rasp-
berry board was used as an IoT device to monitor the state
of the insulator remotely using an Android mobile phone or
a machine. The IoT architecture of the new system is seen in
Fig. 8. As seen in the diagram, the application layer main-
tains and monitors the user interface, and the cloud layer is
linked to the web-server. The WiFi network is used by the
network layer. Raspberry is used as a gateway device that is
part of the data link layer of the architecture. In the end, the
camera comes under the physical layer. After running a deep
learning program, Raspberry can run another python module
to transfer test data information to the Utility Centre via the
Blynk Server wirelessly.The utility centre is fitted with an end
module, i.e. amobile device or a Blynk-enabled device. With
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Fig.9 Flow chart of proposed system

any bad insulator image as a test input, the power distribution
end will be notified as a push notification to a smartphone.
Figure 9 shows the clear design flow of the suggested system.

4 Results and discussion
4.1 Hardware configuration

The Raspberry pi 4 Model B, Quad-Core 64-bit Broad-com
2711, Cortex A72 Processor, Operating Power 5V @3A via
USB Type-C Port is used in the system to check the effec-
tiveness of the proposed high voltage insulator inspection
system. The Raspbian OS was used as an operating soft-
ware in the device. The Android mobile installed with Blynk
application was used at the utility end.

Table 2 Insulator class distribution

Class Good (%) Bad (%) Total (%)
Train 400 (50%) 400 (50%) 800 (80%)
Test 100 (50%) 100 (50%) 200 (20%)

Fig. 10 Sample output of YOLOv3 model

4.2 Dataset

There are no public databases available for insulator groups.
As a result, the authors experimented with a private dataset.
The 1000 image dataset was used as an image source for the
proposed model. For which 500 pictures have a good class
of insulators. The remaining 500 pictures show a bad type
of insulators. From the image dataset, 80% of the images
have been utilised for training purposes and the remaining
20% have been employed for testing purposes. The class
distribution of images is shown in Table 2.

4.3 Evaluation of proposed system

The proposed system was evaluated by standard parameters
such as accuracy, sensitivity, and specificity. Detection and
classification process based on YOLOV3 results has been
deployed accordingly. This shows the effectiveness of the
YOLOV3 model; it was compared with Fast R-CNN model.
During the training process, the accuracy of the two deep
learning algorithms Fast R-CNN and YOLOv3 in recognis-
ing the training objects is measured while the number of
iterations is 500, 1000, 2000, 3000, and 4000, respectively.

Accuracy
True Positive + True Negative

~ True Positive + False Positive 4+ True Negative 4 FalseNegative

Y

The test input and output images of the insulators are pre-
sented in Fig. 10 to demonstrate the efficacy of the proposed
design. As shown in Figure, the test output images show
that the proposed system is capable of identifying the insu-
lator with the bounding box and the class also marked at the
top of the rectangular box. The current work has classified

@ Springer



4466

D. Sarkar, S. K. Gunturi

«0+0.2KB/s @ il B.all = G

E O

2:16 PM

(9 Insulator helath dis

ALERT!
Bad Insulator

HLERT!

Fig. 11 Blynk application alert to utility team

MAPZ] 10100% | 100% 100% 100% 100% 100% 100%
100:0%  : i \/ |
€:0.0%
Loss 24 t
18.0 1‘
|
160+ 81%
140
s
12.0— 0%,
100+ —
i
i
8.0
6o |
i
i
i
40— {
2.0
0.0 I ettt
0 1040 2080 3120 4160 5200 6240 7280 8320 9360 10|
current avg loss = 0.0951  iteration = 9066  approx. time left = 0.17 hours
Press ‘s’ to save : chart.png Iteration number in cfg max_batches=10400

Fig. 12 Loss versus iterations

the insulator class with 95.6% accuracy. While testing bad
insulator, the IoT part has alerted the Utility centre through
Android application successfully as shown in Fig. 1 1. Further
our model calculates sensitivity and specificity. Sensitivity
shows the number of true classes, whereas specificity shows
false classes. The metrics are determined as shown in the
following equations.

e True Positive
Sensitivity = — . (12)
True Positive + False Negative

Table 3 Comparison of state-of-the-art-models

True Negative

Specificity = 13

pectiieity True Negative + False Positive (13)
X

map = N E Average Precision; (14)

i=1

The sensitivity and specificity of the proposed frameworks
are shown in Table 3. In order to estimate the detection
results, the authors measured the mean average precision
(mAP) which is one of the common metrics used to cal-
culate the accuracy of target detectors such as Fast R-CNN
and YOLOv3. The mAP of two suggested models is also
plotted in Table 3. The loss function has also been used to
explain the discrepancy between the expected value and the
real value of the network used to test the effectiveness of the
forecasting model. Figure 12 demonstrates the loss function
versus iterations for the suggested model indication map of
100%.

5 Conclusion

In this article, a deep structured learning model for data
interpretation has been employed to monitor the health of
the ceramic insulators. A vision-based arrangement was car-
ried out to screen the health of the ceramic insulators that
used camera pictures as a source of data. We have trained a
YOLOv3 model to recognise and classify every image patch
in the obtained images. During the training process, 1000
insulator images of size 256 x 256 were used. We obtained
the results with 95.6% accuracy. The results show that the
approach of deep learning model in the detection and classi-
fication of high voltage insulators was good. If any test image
is applied at inspection unit, a warning message is sent to the
utility centre through the Blynk server for every bad class of
insulator. Further, the suggested model can be implemented
with unmanned aerial vehicles (UAV) instead of cameras as
an image source. The authors want to use generative adver-
sarial networks to produce synthetic pictures in the future
study. As a result, accuracy can be enhanced further.

Model Sensitivity Specificity Prediction time in ms Accuracy mAP
Faster-RCNN [21] 90.3 92.7 554.25 90.5 81.2
SSD [20] 92.4 94.5 320.25 94.1 93.4
YOLOV2 [22] 95.6 97.1 280.50 96.4 96.6
YOLOV3 (Proposed system) 99.4 99.8 2542 98.9 100

Bold values represent the suggested method’s dominance over other state-of-the-art models
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