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Abstract
In recent years, the protection of human biometrics has witnessed an exponential growth. Fingerprint recognition has been 
utilized for cell phone authentication, biometric passports, and airport security. To improve the fingerprint recognition pro-
cess, different approaches have been proposed. To keep biometrics away from hacking attempts, non-invertible transforma-
tions or encryption algorithms have been proposed to provide cancelable biometric templates for biometric protection. This 
paper presents a scheme that depends on chaos-based image encryption with different chaotic maps. The chaotic maps are 
used instead of the simple random number generator to overcome the loss of randomness in the case of a large number of 
images. To preserve the authentication performance, we should convolve the training images with random kernels to build the 
encrypted biometric templates. We can obtain different templates from the same biometrics by varying the chaotic map used 
to generate the convolution kernels. A comparative study is introduced between the used chaotic maps to determine the one, 
which gives the best performance. The simulation experiments reveal that the enhanced quadratic map 3 achieves the lowest 
error probability of 3.861% in the cancelable fingerprint recognition system. The cancelable fingerprint recognition system 
based on this chaotic map achieves the largest probability of detection of 96.139%, with an Equal Error Rate (EER) of 0.593.

Keywords  Cancelable biometric security · Authentication · Chaotic maps · Fingerprint recognition

1  Introduction

Due to the quick development of advanced information, 
cloud computing, and Internet of Things (IoT) applica-
tions, protection, and individual data security have got 
extraordinary mindfulness. The main difficulties within the 

validation frameworks include codes, individual recogniz-
able Proof Identification Numbers (PINs), and passwords. 
Refined frameworks of individual security can be used for 
better confirmation and identification. In this way, biometric 
traits are utilized in different validation, check, and recog-
nizable proof applications. The essential capacity of these 
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biometric frameworks incorporates selecting biometrics for 
certain people. After that, features are extracted and stored 
in datasets. Biometric schemes for the security of physi-
ological traits of people, like face, iris, and fingerprint traits, 
are turning into a broad reality. The issue is that the clients 
use biometrics forever and cannot change them. It is recom-
mended that irreversible transforms are applied to prevent 
biometrics from being stolen. To improve the security of 
fingerprint recognition, different features and algorithms 
have been proposed.

Generally, passwords and encryption keys are simply 
known to the client, yet can be utilized without the client's 
allowance. Accordingly, secrecy can not be achieved. In 
addition, biometrics like face, voice, and fingerprint can be 
recorded and abused without the client’s allowance. There-
fore, these biometrics can be stolen, forever. Moreover, the 
stolen biometrics can be used in a cross-coordinating sce-
nario [1].

To overcome the above-mentioned issues, the cancelable 
biometrics can be used. In a cancelable biometric frame-
work, basic hashing functions or encryption schemes can be 
used to strengthen the protection and security of the frame-
work. However, the hash functions are susceptible to minor 
changes in the information interaction. Practically, all biom-
etric changes as indicated by environmental conditions may 
affect the obtained hash functions. For example, face and iris 
biometrics are exceptionally affected by light contrast. So, in 
practice, these functions cannot be used, directly.

In simple biometric encryption schemes, biometric traits 
are encrypted at the transmitter and decrypted at the receiver 
to allow authentication or verification using decrypted biom-
etrics. Unfortunately, this strategy allows hacking scenarios 
as the decrypted biometrics may be stolen. On the other 
hand, the concept of cancelable biometrics depends on 
verification or authentication with encrypted or deformed 
biometrics. This trend of cancelable biometrics prevents 
cross-matching as a cancelable template can be generated for 
each application. In addition, it is infeasible for the attack-
ers to try to get the original biometrics from the cancelable 
templates [2].

The main contributions of this paper can be summarized 
as follows:

1.	 Different types of chaotic maps are investigated and 
compared for biometric encryption.

2.	 A bio-convolving scheme is investigated, and new bio-
metric encryption schemes are proposed.

3.	 The suggested encryption schemes are implemented in 
a cancelable biometric framework.

The contents of this paper are organized as follows. Sec-
tion 2 gives the related work. Section 3 gives the chaotic map 
description. Section 4 introduces a scheme for biometric 

encryption based on convolution kernels. Section 5 intro-
duces the description of the chaos-based cancelable biomet-
ric recognition system, its architecture and the authentication 
metrics. Section 6 gives the simulation results and discus-
sion. Finally, Sect. 7 gives the concluding remarks.

2 � Related work

Several strategies for producing cancelable biometric 
templates were produced in [3] to overcome the problem 
of cross-matching between biometric databases. These 
strategies work on fingerprint images to generate multi-
ple cancelable templates. In essence, a user can use biom-
etric identifiers as needed by issuing a new transformation 
key. The identifiers can be cancelled and replaced, when 
attacked. These strategies were applied on face and finger-
print biometrics. The biometric templates can be changed 
in the signal or feature domain. In [4], an alignment-free 
scheme to produce cancelable fingerprint biometrics was 
presented. This scheme is based on a circular curtailed 
convolution algorithm, which is one-way in nature. It can 
protect the biometric templates without the possibility to 
retrieve them from the convolution outcomes. This scheme 
achieves improvement in the ability to generate cancelable 
templates and the diversity of these templates.

In [5], the authors tried to overcome the problems of secu-
rity, and trustiness of biometric templates generated from 
their scheme. This scheme is dependent on Double Random 
Phase Encoding (DRPE) and cepstral analysis. In the merged 
biometric template for each person, four biometrics are com-
bined through Discrete Cosine Transform (DCT) compres-
sion. To guarantee security, the authors encrypt the unified 
biometric templates with the DRPE algorithm. The ability to 
generate cancelable templates is warranted by changing the 
random phase sequences of the DRPE algorithm. The com-
pression is performed for all four biometrics by maintaining 
the most significant coefficients in the DCT domain. In the 
biometric recognition phase, the unified biometric templates 
are decrypted, and then a cepstral analysis scheme is applied 
for biometric verification.

In [6], the authors proposed a fingerprint- and finger-
vein-based cancelable multi-biometric scheme. This scheme 
provides template authentication and verification. It merges 
the minutia-based feature set of fingerprints and the image-
based feature set of finger-veins. In [7], the authors studied 
biometric recognition based on a pore feature-based scheme. 
This scheme discovers pores in the input fingerprint images 
with a Convolutional Neural Network (CNN) model. Then, a 
patch CNN-based descriptor is estimated for each uncovered 
pore. This high-resolution fingerprint recognition scheme 
achieves EERs of 2.91% and 0.57% on partial DBI and com-
plete DBII fingerprints for the standard Poly UHRF dataset. 



2173Cancelable biometric security system based on advanced chaotic maps﻿	

1 3

In [8], the authors presented a scheme for fingerprint recog-
nition via deep learning using CNNs. In this scheme, finger-
print recognition was conducted on few available samples.

In [9], the authors provided a comprehensive review and 
insightful analysis of different types of biometric recognition 
schemes using deep learning. A comprehensive review of 
all schemes was presented, including network architectures, 
training data, and strategies. Both face, fingerprint, iris, 
palm print, ear, voice, signature, and gait recognition were 
considered in this paper. In [10], a cancelable fingerprint 
recognition scheme that depends on multiple spiral curves 
and fuzzy principles was presented. The fuzzy commitment 
scheme was used to perform encryption of minutiae features. 
This scheme achieved an EER of 1.17%. The authors of [11] 
stated that one of the advantages of cancelable biometrics 
is to save privacy. In order to save privacy, cancelable bio-
metric transformations should be non-invertible. No infor-
mation about the original biometric templates should be 
revealed from the cancelable templates. Also, the authors 
of [11] presented new cancelable biometric schemes based 
on bio-hashing. Those schemes depend on non-invertible 
transforms to protect privacy of users.

In [12], the authors presented a feature-based method for 
generating cancelable templates from 2D face images. The 
authors have used five public databases in their proposed 
scheme and used Speeded-Up Robust Features (SURF) and 
Scale-Invariant Feature Transform (SIFT) for feature extrac-
tion. The authors of [13] presented a merging scheme for 
aligning fingerprint images in the training set, followed by a 
learning descriptor for all pore patches using a patch match-
ing model based on a CNN. The scheme in [14] presented a 
new feature descriptor for fake iris detection. This descrip-
tor exploits the relationship between the center pixel and its 
hexa neighbor. A hexagonal shape using the six-neighbor 
approach is preferable to the rectangular structure due to 
its higher symmetry, consistent connectivity, and efficient 
use of space. The authors of [15] proposed some ideas to 
improve the bio-hashing scheme. This improved bio-hashing 
scheme was used to maintain a very low error rate, when 
nobody steals the hash key, and to reach a good performance 
when an attacker steals the hash key. The authors in [16] 
introduced a cancelable biometric recognition scheme based 
on producing secret keys for cryptographic methods. The 
authors of [17] proposed a scheme that encrypts the biom-
etric templates, or training images, by convolving them with 
random convolution kernels. The authors used the seed to 
generate the random convolution kernels, which are utilized 
as the Personal Identification Numbers (PINs). The random 
kernels are saved and used in the authentication process.

In [18], a new architecture for template generation in the 
context of situation awareness systems in real and virtual 
applications was presented. The authors of this paper pre-
sented a cancelable biometric template generation algorithm 

using random biometric fusion, and random projection. This 
random cross-folding scheme generates cancelable biometric 
templates from multiple biometric traits.

In this paper, we investigate the efficiency of chaotic maps 
for the generation of cancelable biometric templates. In addi-
tion, the effect of chaotic map parameters on the cancelable 
biometric system is investigated. First, we investigate dif-
ferent types of chaotic maps to be used for the encryption 
of the biometric templates. Then, we discuss the effect of 
the kernel size.

3 � Chaotic maps

Implementation of chaos-based cryptography depends on 
chaotic maps. A function whose domain (input) space and 
range (output) space are chaotic is called a chaotic map. 
Chaotic maps represent a class of dynamic systems in which 
time is discrete rather than being continuous. They exhibit 
a chaotic behavior for specific parameter values. In the next 
subsections, we present a brief description of some chaotic 
maps used in this paper.

3.1 � Logistic map

Logistic map is a nonlinear dynamic map. It is one of the 
simple and popular chaotic maps [19]. The logistic map 
equation is as follows:

where Xn is a value between 0 and 1, n is the iteration index, 
and r is a positive number between 0 and 4.

•	 Bifurcation

This property is referenced as qualitative bifurcation 
transition from regular behavior to chaotic behavior. It is 
achieved by changing the control parameter. The bifurca-
tion diagram of the logistic map is shown in Fig. 1. This 
diagram contains three regions. The convergence region is 
at r ∈ [0, 3] . The bifurcation region is at r ∈ [3, 3.57] , where 
the phenomenon of period-doubling bifurcation occurs. 
The chaos region is at r ∈ [3.57, 4], where there is a chaotic 
behavior.

•	 Lyapunov Exponent

Lyapunov exponent λ reveals the nature of a chaotic 
system. It is used as a quantitative metric for the sensitiv-
ity to initial conditions. For example, for a discrete system 

(1)Xn+1 = rXn(1 − Xn)
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represented as Xn+1 = f(Xn) with an orbit beginning with 
X0, the Lyapunov exponent can be characterized as follows 
[20–22]:

where f′ is the derivative of f. If λ is above 0, the system is 
chaotic as the evolution is sensitive to initial conditions. If λ 
is under 0, the system is not chaotic. If λ is 0, the system is 
stable, and this represents a steady-state mode. The largest 
λ defined by Eq. (2) is the Maximal Lyapunov Exponent 
(MLE). It defines the concept of predictability for a chaotic 
system.

When r is between 0 and 4, we can plot the Lyapunov 
exponent of the logistic map with Eq. (2), as shown in Fig. 2. 
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From Fig. 2, we observe that all Lyapunov exponents are 
equal to 0 or less. The orbit is attracted to a fixed or stable 
point. When r ∈ [3.57, 4] , the Lyapunov exponents are larger 
than zero, leading to a chaotic behavior. The MLE of the 
logistic map is 0.6785 at r = 4.

3.2 � Modified logistic map

The modified logistic chaotic map is a development of the 
classical logistic map given by Eq. (1), where two polyno-
mial terms (1 − Xn−1) , and (1.2 − 2 × Xn−1)

2 are added to the 
logistic map equation to enlarge the range of the parameter r. 
The modified logistic map is defined as follows [23]:

where Xn is a value between zero and one, n is the iteration 
index, and r is a number between 0 and 13.8.

•	 Bifurcation

Figure 3 illustrates the bifurcation diagram of the modi-
fied logistic map. This chart contains three regions. When 
r ∈ [0, 3.4] , this refers to the convergence region. When 
r ∈ [3.4, 5.2] , this refers to the bifurcation region. Finally, 
for the chaos region, r ∈ [5.2, 13.8].

•	 Lyapunov exponent

We can plot the Lyapunov exponent of the modi-
fied logistic map as shown in Fig. 4. It is clear that when 
r ∈ [0, 5.2] , Lyapunov exponent is less than or equal to 0. 

(3)
Xn = r × Xn−1 × (1 − Xn−1) × (1 − Xn−1)

× (1.2 − 2 × Xn−1) × (1.2 − 2 × Xn−1)
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Fig. 1   Logistic map bifurcation diagram for r ∈ [0, 4] , X0 = 0.02

Fig. 2   Logistic map Lyapunov exponent
Fig. 3   Modified logistic map bifurcation diagram at r ∈ [0,13.8], and 
X0 = 0.02
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When r ∈ [5.2, 13.8] , the Lyapunov exponents are positive, 
and the dynamic behavior is chaotic. The MLE of the modi-
fied logistic map is 1.0317 at r = 13.8. It is higher than the 
MLE of the classical logistic map.

3.3 � Classical quadratic map

An essential example of a chaotic system is the quadratic 
map. The classical quadratic map equation is given by [23]:

where r is a parameter of the chaotic map, a is constant and 
n is the iteration index.

•	 Bifurcation

Figure 5 shows the bifurcation diagram of the quad-
ratic map. This diagram has three regions. The conver-
gence region is at r ∈ [0, 0.74] . The bifurcation region is at 
r ∈ [0.74, 1.5] . The chaos region is at r ∈ [1.5, 2].

•	 Lyapunov exponent

Figure 6 shows the Lyapunov exponent of the quadratic 
map. It is clear that when r ∈ [0, 1.5] , all Lyapunov expo-
nents are equal to or less than 0. When r ∈ [1.5, 2] , the 
Lyapunov exponents are above 0, and hence the behavior is 
chaotic. The MLE of the quadratic map is 0.6720.

(4)Xn+1 = r − aX2

n

3.4 � Proposed quadratic maps

The proposed quadratic maps general equation is:

We supplant −(Xn)2 in Eq. (4) with the term (1 − aXn)2 
and take the modulo 1 division. For three unique values of 
a = 2, 4, and 8, we analyze the proposed quadratic maps to 
illustrate the cycle state, bifurcation region, and Lyapunov 
exponent. Table 1 summarizes the characteristics of all cha-
otic maps. It reveals the values of both chaotic parameter r 
and MLE.

(5)Xn+1 =

(
r +

(
1 − aXn

)2)
mod 1

Fig. 4   Lyapunov exponent of the modified logistic map Fig. 5   Classical quadratic map bifurcation diagram

Fig. 6   Classical quadratic map Lyapunov exponent
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Table 1   Comparison between classical and proposed quadratic maps

Chaotic map Equation Chaotic parameter range MLE

Classical quadratic map Xn+1 = r − X2

n
r ∈ [1.5, 2] 0.6720

Proposed quadratic map 1 Xn+1 =

(
r +

(
1 − 2Xn

)2)
mod1 r ∈ [0, 0.14] , r ∈ [1.56, 2.14] , r ∈ [2.56, 3.14] periodically to ∞ 0.6732

Proposed quadratic map 2 Xn+1 =

(
r +

(
1 − 4Xn

)2)
mod1 r ∈ [0, 0.137] , r ∈ [0.14, 2.14] , r ∈ [1.14, 3.14] periodically to ∞ 2.0257

Proposed quadratic map 3 Xn+1 =

(
r +

(
1 − 8Xn

)2)
mod1 All values except r = 0.11, 1.11 periodically to ∞ 3.4709

Fig. 7   Bifurcation diagram of the quadratic map 1

Fig. 8   Bifurcation diagram of the quadratic map 2

Fig. 9   Bifurcation diagram of the quadratic map 3

Fig. 10   Lyapunov exponent of the quadratic map 1
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Figures 7, 8, and 9 show the bifurcation diagrams of the 
proposed quadratic maps 1, 2, and 3. It is shown that the 
proposed chaotic quadratic map 3 has a wider range of r that 
can be used for encryption. Figures 10, 11, and 12 reveal 
the Lyapunov exponent for quadratic maps 1, 2, and 3. The 
Lyapunov exponent for quadratic map 3 has positive values 
for all values of r except for r = {0.11, 1.11,….}. Hence, the 
MLE of the proposed quadratic map 3 is 3.4709, which is 
larger than those of the chaotic maps 1 and 2.

4 � Encryption based on convolution kernels

The proposed encryption scheme is implemented through 
convolution with a random kernel generated using a key 
related to the plain image [24]. First, the convolution kernel 
is generated with one of the chaotic maps discussed above. 
The encryption process is performed through convolution 
operation between the random kernel and the fingerprint 
image.

5 � Chaos‑based cancelable biometric system

To maintain the users’ biometrics from hackers and to guar-
antee the ability to generate cancelable templates, the biome-
trics need to be encrypted. So, in the case of theft or loss, we 
can obtain a different encrypted biometric template from the 
same original biometric pattern. Chaos-based image encryp-
tion is very proper for biometric template encryption, as the 
chaotic maps are very sensitive to initial conditions. By mak-
ing a small change in the initial conditions of the chaotic 
map, this radically changes the obtained encrypted biometric 
that can be reused in the same application. If the cancelable 
biometrics are stolen, they can be re-issued. In the follow-
ing subsection, we explain, in detail, the architecture of the 
cancelable biometric system.

5.1 � Architecture

The cancelable biometric system is divided into two phases: 
the enrollment phase and the authentication phase, as shown 
in Figs. 13 and 14. In the enrollment phase shown in Fig. 13, 
a fingerprint capturing device is used to generate the finger-
print images [25]. These images are then convolved with 
a random convolution kernel. In our scheme, the kernel is 
generated by a PIN generated by the user. To generate the 
random convolution kernel, the PIN is used as the initial 
condition. This random convolution kernel is convolved 
with the training images to generate the encrypted training 
templates.

The resulting encrypted training templates can be put 
away on a card and used afterwards to verify the users’ IDs. 
If the card is lost or stolen, it is possible to create an alter-
nate wrapping kernel to generate different encoded biometric 
templates. If the attacker attempts to use the stolen card to 
reconstruct the users’ biometrics, he or she needs to know 
the circumvention kernel used in the recording stage. In 
order for the hackers to retrieve the original model, image 
decoding must be performed, which is incredibly hard to 
perform without knowing the client’s PIN and the encryption 

Fig. 11   Lyapunov exponent of the quadratic map 2

Fig. 12   Lyapunov exponent of the quadratic map 3
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scheme [17]. Consequently, this is viewed as a significant 
degree of safety for biometric templates.

In the authentication phase shown in Fig. 14, the user 
presents an encrypted fingerprint in the same way as in the 
enrollment phase. The test images are correlated with stored 
templates. Distributions are generated for the correlation 
scores in genuine and imposter tests. Hence, a threshold is 
determined for the approval process for users.

5.2 � Authentication metrics

To ensure the similarity between a test encrypted fingerprint 
and an encrypted biometric template in the dataset, the cor-
relation score is used. The higher the correlation value is, 
the higher the similarity between patterns. If the individual 
correlation score is higher than a specific threshold, admit-
tance to the system is confirmed. The scores of unapproved 
users ought to be consistently lower than those of approved 
users [26].

Because of various reasons in biometric frameworks, 
some arrangement mistakes may happen. For example, 

unapproved templates may create scores higher than those 
of some approved ones.

The threshold can be chosen to ensure that all unap-
proved scores do not exceed a predetermined threshold. 
Hence, the system does not acknowledge any templates, 
wrongly. In addition, approved templates with scores lower 
than the predetermined threshold are mistakenly rejected. 
Hence, we can choose the threshold, so that no authorized 
pattern is rejected, wrongly. In this case, some unapproved 
subjects are wrongly recognized. Generally, in a biomet-
ric verification system, test information contains approved 
and unapproved patterns. Scores for each of the approved 
and unapproved examples will be circulated somehow or 
another around a mean of the distribution. The mean score 
of approved templates is higher than that of unapproved 
templates.

Hence, the tools that can be utilized to check the 
obtained scores are the Probability of True Distribution 
(PTD) and the Probability of False Distribution (PFD) of 
correlation scores obtained in the validation stage. The 
PTD is the probability of correlation between authorized 
fingerprints and the encoded biometric templates in the 

Fig. 13   Enrollment stage for 
cancelable biometric templates

Fingerprints
Convolu�on

Chao�c map

PIN

Encrypted fingerprints

to databaseRandom kernel
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PIN

Thresh-
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Chao�c Map

Correla�on

 Es�ma�on

Fingerprints from

database

Encrypted test

fingerprint

Decision

Fig. 14   Authentication stage for cancelable biometric templates
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database, while the PFD (unapproved designs) is the prob-
ability of correlation between an unauthorized fingerprint 
and those stored in the database. We allow admittance 
to the system if the new fingerprint score is higher than 
the predetermined threshold with a certain probability of 
error. The probability of correct detection can be easily 
obtained from the probability of error, and we can obtain 
a better system performance at lower error probabilities.

6 � Simulation results

Our simulations experiments have been implemented on 
20 different fingerprints for 20 persons as shown in Fig. 15 
[27]. Each fingerprint is of size 300 × 300 pixels. We use the 
quadratic and logistic chaotic maps with keys related to the 
plain images. These keys are used to generate the random 
convolution kernels (see Fig. 16). The initial conditions of 

these chaotic maps are changed according to the PIN each 
user presents. Finally, we compare all chaotic maps.

In the enrollment phase, the user inserts his or her own 
PIN, and this produces equivalent kernels that are convolved 
with the training images. The resulting 20 encrypted biomet-
ric templates are stored in the database, see Fig. 17.

•	 Probability of True Distribution (PTD) and Probabil-
ity of False Distribution (PFD)

In the authentication phase, we use two fingerprints for 
testing. One of them belongs to authorized users, and the 
other belongs to unauthorized users. In both cases, the test 
user gives a PIN and produces a random wrap kernel. Hence, 
we obtain two encoded fingerprints for the test. We assume 
that the unauthorized person knows the correct PIN for an 
authorized user to test the system security.

Fig. 15   Training fingerprints 
[27]
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We obtain correlation values between the two encrypted 
fingerprints and the 20 stored encrypted biometric templates. 
The PTD and PFD are ploted for the cancelable biometric 
systems for all chaotic maps to determine the error thresh-
old and probability (see Figs. 18, 19, 20, 21, 22, 23). The 
intersection of the two curves determines the threshold value 
according to which we can define whether the user is author-
ized or not.

We examine the proposed quadratic chaotic map 3, 
because it has a wide range of the parameter r, extended 
to infinity. Hence, there is no restriction on the PIN chosen 
by the user. Finally, we compare all chaotic maps. The dif-
ferent sizes of the kernels are illustrated in Table 2.

In the enrollment phase, the user inserts his or her own 
PIN, and this creates the corresponding kernel, which 
is convolved with the fingerprint. In the authentication 
phase, we use two fingerprints for evaluation. One is for 
an approved person, and the other is for an unapproved 

person. In the two cases, the test person embeds the PIN 
and produces the random convolution kernel. Hence, two 
encoded test fingerprints can be obtained. The unapproved 
user is assumed to know the correct PIN for one of the 
approved users to test the level of security of our system. 
We get the correlation between the two encrypted finger-
prints and the 20 stored encrypted biometric templates for 
each kernel size.

•	 True Acceptance Distribution (TAD) and False 
Acceptance Distribution (FAD)

We plot the TAD and the FAD as shown in Figs. 24, 25, 
26, 27, 28, and 29. The intersection between the two curves 
determines the threshold value to approve user access.

Fig. 16   Corresponding kernel 
for each fingerprint
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Fig. 17   Encrypted training 
fingerprints with corresponding 
convolution kernels
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Fig. 18   PTD and PFD using logistic map for convolution kernel gen-
eration
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Fig. 19   PTD and PFD using modified logistic map for convolution 
kernel generation
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•	 Kernel size effect

We study the effect of the kernel size in the enrollment 
phase, the authentication time, and the threshold value, as 
shown in Table 3.

As we see from Table 3, for a large kernel size, the 
threshold value becomes large or close to 1. This case is 
not preferred since the difference between the correlation 
distributions of the authorized, and unauthorized scores is 
very small. As the kernel size is decreased, the threshold 
value is also decreased until reaching 0.59 for the smallest 
kernel size of 8 × 8. This means that the distance between 
the distributions of the correlation for authorized and 
unauthorized fingerprints is large enough for the system 

to decide and reject the unauthorized users. The enroll-
ment time, which is used to store the cancelable biometric 
fingerprints, is decreased as the kernel size is decreased, 
because the convolution is performed by sliding the kernel 
over the fingerprint image. As the kernel size is increased, 
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Fig. 20   PTD and PFD using classical quadratic map for convolution 
kernel generation
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Fig. 21   PTD and PFD using quadratic map 1 for convolution kernel 
generation
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Fig. 22   PTD and PFD using quadratic map 2 for convolution kernel 
generation
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Fig. 23   PTD and PFD using quadratic map 3 for convolution kernel 
generation

Table 2   Kernel size Symbol Kernel size

Z1 256 × 256
Z2 128 × 128
Z3 64 × 64
Z4 32 × 32
Z5 16 × 16
Z6 8 × 8
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the number of multiplication and addition operations is 
increased, and then the enrollment time is increased.

•	 Chaotic map effect

Now, we study the effect of all chaotic maps we devel-
oped in this paper on the threshold value. The EER is used 
to predetermine the threshold value for the acceptance or 
rejection of users. The lower the EER value is, the higher the 
accuracy of the biometric system. As shown in Table 4, the 
threshold value with all chaotic maps decreased as the kernel 
size is decreased. However, the difference in the threshold 
values between all chaotic maps is very small. The reason 

is that convolving the training fingerprints with any random 
convolution kernel generated from any chaotic map does not 
modify the correlation output, significantly. As a result, the 
authentication reliability is preserved. In addition, different 
cancelable biometric templates can be created from the same 
biometric by altering the convolution kernels simply.

•	 Performance comparison of different chaotic maps

We study the effect of the different chaotic maps accord-
ing to the mean value of the authorized patterns, the mean 
value of the unauthorized patterns, the value of the thresh-
old, the probability of error, and the authentication time 
as shown in Table 5. The probability of error is changed 
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Fig. 24   TAD and FAD using Z1 kernel
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Fig. 25   TAD FAD using Z2 kernel
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Fig. 26   TAD and FAD using Z3 kernel
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Fig. 27   TAD and FAD using Z4 kernel
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according to the chaotic map. The proposed quadratic map 
3 achieves the smallest value of error probability among 
all chaotic maps, with 3.861%. The mean values of the 
authorized/unauthorized patterns and the authentication 
times per user are nearly the same for all chaotic maps. 
The difference in the threshold values between all chaotic 
maps is very small, since convolving the training images 
with arbitrary convolution kernels produced from different 
maps does not modify the subsequent correlation output, sig-
nificantly. Accordingly, the authentication accuracy is kept 
high. In addition, by altering the PIN for every user, differ-
ent cancelable biometric templates can be produced from 
similar biometrics. This is guaranteed through altering the 
underlying state of the chaotic map and henceforth altering 
the convolution kernel.

•	 Comparison with Recent Related Studies

Table 6 provides a comparison between the proposed sys-
tem that depends on enhanced quadratic map 3 and some 
other cancelable biometric systems (Sandhya et al. [15], 
Dahia and Segundo [17], Xu et al. [19], Anand et al. [7]). 
The results in Table 6 show superior performance with the 
enhanced quadratic map 3 with good EER values and a small 
processing burden.

7 � Conclusion

Encryption and hashing schemes are regularly used to secure 
biometric templates. There are two issues with these strat-
egies. First, the encoded biometrics need to be decoded 
for recognition. If the biometrics are decoded, this gives a 
chance for hacking attempts. Another problem is that minor 
changes in biometrics affect hash functions, severely. Hence, 
these functions, in practice, could not be used, directly. The 
concept of cancelable biometrics is introduced in this paper 
as a solution for these two problems. We presented a method 
to produce encrypted biometric templates that can be altered 
using different convolution kernels generated by different 
chaotic maps. The utilization of scrambled data in biom-
etric systems allows the implementation of the verification 
process straightforwardly through a correlation test. Even 
if the attacker succeeds in stealing the encrypted biometric 
templates, he needs a deconvolution process with a random 
kernel generated through a certain key. The effect of the cha-
otic map on the threshold value, error probability, authenti-
cation time, and other parameters has been studied. Finally, 
a comparison between all the chaotic maps used in this paper 
show that the utilization of the proposed quadratic map 3 in 
the cancelable biometric system leads to the smallest error 
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Fig. 28   TAD and FAD using Z5 kernel
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Fig. 29   TAD and FAD using Z6 kernel

Table 3   Kernel size effect

Symbol Kernel size Threshold Enrollment 
time per user 
(s)

Authentication 
time per user (s)

Z1 256 × 256 0.996 15.92 8.41
Z2 128 × 128 0.984 3.20 2.36
Z3 64 × 64 0.95 0.776 1.27
Z4 32 × 32 0.875 0.173 0.434
Z5 16 × 16 0.74 0.071 0.338
Z6 8 × 8 0.59 0.04 0.313
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probability among all systems with different chaotic maps. 
Hence, the cancelable biometric system using the proposed 
quadratic map 3 has the best performance.
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