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Abstract
Despite their many advantages and positive features, the deep neural networks are extremely vulnerable against adversarial 
attacks. This drawback has substantially reduced the adversarial accuracy of the visual object detectors. To make these object 
detectors robust to adversarial attacks, a new Gabor filter-based method has been proposed in this paper. This method has then 
been applied on the YOLOv3 with different backbones, the SSD with different input sizes and on the FRCNN; and thus, six 
robust object detector models have been presented. In order to evaluate the efficacy of the models, they have been subjected 
to adversarial training via three types of targeted attacks (TOG-fabrication, TOG-vanishing, and TOG-mislabeling) and 
three types of untargeted random attacks (DAG, RAP, and UEA). The best average accuracy (49.6%) was achieved by the 
YOLOv3-d model, and for the PASCAL VOC dataset. This is far superior to the best performance and accuracy and obtained 
in previous works (25.4%). Empirical results show that, while the presented approach improves the adversarial accuracy of 
the object detector models, it does not affect the performance of these models on clean data.
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1 Introduction

The object detection technique, whose aim is to detect spe-
cific objects and their positions in an image, constitutes one 
of the most applicable fields in machine vision [1]. In recent 
years, very good object detection models, whose backbones 
are the deep neural networks (DNNs), have been introduced. 
Some of the more important of these models include the dif-
ferent versions of the YOLO [2] and SSD [3]. These models 
are called the single-shot object detection models, because 
they detect the target objects and determine their positions 
in a single step. Of course, for detecting the salient objects, 
these models need to be robustified. A sample activity in 
this field is the work of Liu et al. [4], who have presented a 
robust technique for the detection of salient objects.

Despite all the known advantages of the DNNs, it was 
discovered in 2013, that these networks are vulnerable to 
adversarial attacks, and that the images corrupted by such 
attacks can fool and mislead the DNNs [5]. Since then, the 

robustification of the deep neural networks has become 
one of the most important concerns of the researchers in 
this field [6]. The adversarial attacks can be combined with 
images in the form of small perturbations; and although 
these perturbations and contaminations cannot be detected 
by human eye [7], they can mislead the DNNs and severely 
reduce the accuracy of the models that are based on deep 
learning. Unfortunately, the DNNs report the images they 
have misrecognized as being highly reliable and least erro-
neous [8].

Since the introduction of this drawback, many efforts 
have been made to improve the adversarial accuracy of 
models and to enhance their robustness against adversarial 
attacks in machine vision tasks. In spite of all these efforts, 
still the adversarial accuracy of the models, especially 
those in the field of object detection, has not reached an 
acceptable level [9]. Considering these facts, the applica-
tion of the deep learning knowledge in various fields, espe-
cially in the real-world applications (e.g., the autonomous 
vehicles) would be a challenging task [10]. The adversarial 
accuracy is a parameter that shows the accuracy of a model 
when it is tested on the images perturbed by adversarial 
attacks [11]. Another problem reported by the research 
works conducted on this subject is the reduction of the 
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models’ clean accuracy. The defenses presented in the 
literature against adversarial attacks have led to a signifi-
cant decline in the clean accuracy of the object detection 
models, which means a reduction in the accuracy of object 
detectors when they deal with the input images that are not 
perturbed by adversarial attacks [12].

The adversarial attacks can be divided into targeted 
and untargeted classes. The targeted adversarial attacks 
are those that perturb the input images in such a way that 
for a defined class of objects, a specific label is presented 
as the output. Of course, in the targeted attacks, sometimes 
the images are perturbed in such a way that no labels are 
designated for them by the object detectors. The actions of 
the targeted adversarial attacks are controlled by the attack 
designer. Conversely, the untargeted adversarial attacks 
simply combine with the input images and they have no 
particular control over the outcome of the object detectors 
as they examine such contaminated images [13].

The adversarial attacks of different forms can be devised 
by different techniques and algorithms. However, to be 
able to compare the results of various relevant research 
works, a standardized benchmark of targeted and untar-
geted attacks was presented in [14] for the first time; and 
in this benchmark, standardized attacks were used for the 
object detection models. Although, there have been very 
few attacks and defenses in the field of object detection 
so far, it is necessary to have this benchmark, if we want 
to better compare the results of various research works.

The Gabor filters are the most frequently used filters in 
the conventional machine vision tasks. These filters are 
based on a sinusoidal plane wave of a specific frequency 
and direction; which enables them to extract the spatial 
structures from images [15]. Combining these filters with 
the DNNs for different purposes has become a research 
interest. In [16], the Gabor filters have been combined with 
the deep learning models in classification tasks and have 
improved the robustness of these networks against adver-
sarial attacks. Also, the Gabor filters have been combined 
with the DNNs in [17] in order to reduce the complexity 
and increase the learning speed of these networks.

In this paper, we introduce five object detectors that 
are robust to adversarial attacks. These robust models 
have been obtained by combining the Gabor filters with 
the backbones of the different versions of famous models 
(YOLO.v3, SSD, and Faster R-CNN) [18]. Then, each of 
these robust object detectors has received adversarial train-
ing by means of the perturbed images from the MSCOCO 
(2017 version) and the PASCAL VOC (2012 version) 
datasets. Adversarial training means training a network 
with the images that have been perturbed by adversarial 
attacks [19].

In recent years, newer adversarial attacks based on more 
novel techniques have also been introduced, such as the 

Evaporate attacks [20]. This type of attacks, which are cat-
egorized as the black-box attacks, can successfully mislead 
the detection models without having to know the architecture 
of a destination system. For example, Wang et al. [20] intro-
duced an effective type of attack that could successfully mis-
lead the object detection models such as the YOLO and the 
FRCNN. They effectively combined the Evaporate, Bound-
ary and the Gaussian Noise Attacks and formed a black-box 
type of attack. In our paper, in addition to the 6 adversarial 
attacks considered, the presented method has been evalu-
ated again on all the object detection models by applying 
this combined attack. In our paper, we have abbreviated this 
attack as EBG and we have reexamined the models for the 
case in which the images are disturbed by the mentioned 
type of attack. Also, Lee and Kolter [21] have presented an 
adversarial patch for deceiving the object detectors. These 
authors claim that this type of attack is quite effective on 
the object detection models and totally disrupts their object 
detection ability. Some attacks are developed exclusively 
for a specific image [22], and some attacks are designed 
to mislead a system on a particular class of images. These 
attacks have recently attracted the attention of the attack 
developers. Wang et al. [23] have presented a patch which is 
aimed at deceiving the object detection systems on specific 
classes of images. In its maximum state of performance, this 
patch has been able to reduce the accuracy of the detection 
systems by 81%.

For perturbing the images in this paper, we have used 6 
of the more famous adversarial attacks in the field of object 
detection (TOG-vanishing, TOG-fabrication, TOG-misla-
beling [14], DAG [24], RAP [25] and UEA [26]). Finally, 
the results of implementing the considered models on differ-
ent datasets and adversarial attacks have been obtained and 
the performances of these models have been compared with 
each other. Some of the attacks used in this paper are new, 
and there are no reports in the literature about the perfor-
mances of other defensive techniques against these attacks. 
Therefore, for comparing the models presented in this paper 
with those in other papers, we have also evaluated and com-
pared the performances of other defensive techniques against 
the attacks used in this paper. The results of these compari-
sons have been presented at the end of this manuscript.

The next sections of this paper contain the following: 
Sect. 2 briefly introduces some of the works carried out 
on the robustification of DNNs against adversarial attacks. 
Section 3 describes the proposed technique and explains 
its application on some well-known object detectors. The 
results of our model are given in Sect. 4 and compared with 
those of the other models. And finally, the Conclusion and 
the Discussion are presented in Sect. 5. The main contribu-
tions of our paper are as follows:
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• In this paper, a novel method based on the Gabor filters 
has been presented for robustifying the object detectors 
against adversarial attacks. This approach improves the 
adversarial accuracy of the VOD models much more than 
the former methods considered.

• The proposed method has been implemented on the most 
famous object detection models (YOLOv3-m, YOLOv3-
d, SSD300, SSD512 and FRCNN) and the results have 
been evaluated and compared extensively on different 
models.

• To verify the proper performance of the defense tech-
nique presented in this paper, the newest and the most 
common adversarial attacks (both targeted and untar-
geted) have been used in this work, and the proposed 
model has been evaluated by considering 7 different 
types of attacks.

• Finally, the proposed method has been compared with 
the most recent techniques in this field, and it has been 
successfully demonstrated that the performance of this 
approach is better than that of the other state-of-the-art 
methods introduced in the literature.

2  Related works

Numerous research works have been conducted on the 
robustification of DNNs against adversarial attacks in dif-
ferent tasks, with most of them related to the classification 
field. To make the DNNs robust in the classification tasks, 
Gabor filters have been combined with several well-known 
architectures including the ALEX NET and the VGG16. The 
adversarial training method has been employed in [26–30] 
to make the DNNs robust in the classification tasks. This 
technique is not sufficiently effective against strong attacks 
[9]. The denoising auto encoders have been used in [29] to 
deal with the adversarial attacks. The authors of that paper 
claim that using a denoising auto encoder can boost the net-
work robustness against such attacks. Nevertheless, com-
bining a denoising auto encoder with a main network can 
create more problems for that network [9]. A combination 
of gradient regularization and DNNs has been used in [30] 
to robustify the deep learning models against adversarial 
attacks. Although the adversarial accuracy increases in this 
approach, the clean accuracy of the model diminishes, which 
is not desirable.

Some researchers have tried to devise new attacks in other 
tasks as well and to robustify the DNNs against them. For 
example, the “spare aware online incremental attack” tech-
nique has been employed in [31] to create online attacks; 
which can pose a serious challenge to object tracking efforts. 
Various defense strategies in the field of semantic segmen-
tation have been explored in [32]. This paper has revealed 
that the methods used in the classification tasks cannot be 

applied effectively to network robustification in the semantic 
segmentation tasks.

Most of the efforts undertaken to robustify the object 
detection models are based on adversarial training; and less 
attention has been paid to making changes to these models 
and their backbones [34]. Considering the similarity in the 
backbones of object detection models and famous classifica-
tion architectures, it seems that by relying on the research 
efforts related to classification and by making changes to 
network architectures and improving their robustness, some 
techniques for robustifying the object detectors could be 
devised.

A multitask method for model training as well as vari-
ous techniques for the adversarial training of models have 
been used in [33]. The model achieved in this work has been 
tested on the images perturbed by the DAG and RAP attacks.

3  The proposed method

The method proposed in this paper exploits the Gabor filter 
banks in the first layer of famous object detectors. As we 
know, the backbones of the well-known detectors (e.g., the 
YOLO and the SSD) are based on famous architectures; and 
we can generate the convolutional Gabor layers by com-
bining the starting filters of such detectors with the Gabor 
filter banks [16]. The Gabor filters used to be very common 
in traditional machine vision applications, and they were 
placed at the start of machine vision systems in order to 
detect the edges and curves [35]. These filters were used for 
the first time in classification tasks in [16] and yielded very 
promising results. In our proposed approach, we attempt to 
match the Gabor filter banks with the backbone structure of 
the object detector models and then to replace the ordinary 
convolutional layers in these backbones with the convolu-
tional Gabor layers.

It is a known fact that the Gabor filters are able to extract 
the spatial features of images quite successfully [17]. Hence, 
it is assumed that the extraction of these spatial features 
could make the object detection systems more robust. We 
will prove this hypothesis in the next section by means of 
several experimental results. Subsequently, we will explore 
the Gabor filter equations and the matching of these filters 
with the backbone structure of object detectors. Our method 
of generating the filters and using them in the first layer of 
the DNNs has been illustrated graphically in Fig. 1.

The Gabor filter is a complex sinusoidal function in the form 
of Eq. 1.

In the above formula, x′ and y′ are defined as

(1)G�(x
�, y�;�, �, �, �) = e−�

2(x�2+�y�2) cos(�x� + �)
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In order to make a discrete Gabor filter (Fig. 1), we uni-
formly resolve the x and y parameters in our DNN model. 
The filter size is determined according to the number of 
network samples. To construct the filter in the {(xi,yi)}k

2

i=1
 

network with dimensions k × k , these parameters are 
inserted into the network as a set of trainable parameters 
and are trained via a conventional learning method. Here, 
the { �, �, �, � } is considered as the set of trainable param-
eters. According to [17], the learnable parameters of the 
Gabor layer are trained exactly like the vector coefficients 
and weights of a network. Like any other learnable param-
eter, these parameters are trained, within a specific range, 
during the learning process. The effect of these parameters 
on the final accuracy is exactly like the influence of network 
weights; i.e., these parameter values are updated in each 
succeeding epoch so as to raise the final adversarial accu-
racy. These parameters are trained at different rotation angles 
( � ), and according to Fig. 1, they form a set of Gabor filters 
which are eventually applied to the input images. Equation 4 
shows the procedure for constructing the Fp . The value of θ 
indicates the filter rotation angle. And since a Gabor filter 
detects features such as image edges in the direction of its 
theta angle, a Gabor filter bank must include different values 
of theta (from 0 to 2π) in order to cover various rotation 
angles. Therefore, the filter bank used in our paper contains 
a large number of Gabor filters with different θ values so 
that the edges and the low-level features of images can be 
detected at different rotation angles.

(2)x� = x cos � − y sin �

(3)y� = x sin � + y cos �
Using this equation, different filters can be made with 

various � angles in the range of [0, 2�] . The K set is eventu-
ally constructed by producing several F sets for different 
p values.

In the classical machine vision, the frequency and 
the rotation angle of the Gabor filters are, respectively, 
obtained from Eqs. 5 and 6.

These equations can also be used here to obtain the F 
set.

After completing the steps shown in Fig. 1 and produc-
ing the set of filters, the convolutional Gabor layer is finally 
obtained. Now, we can add this layer to the first layer of the 
backbone of object detectors. In this method, the activation 
function of ReLU has been used in the convolutional Gabor 
layer so that the output of this layer can be connected to the 
next layer.

As is shown in Fig. 2, in this approach, an image is first 
divided into its constituent RGB channels. These channels 
are then fed to a Gabor filter bank as a tensor. As the input 
layer of the detection system, the Gabor filter bank extracts 
the image’s low-level features. Based on the explained tech-
nique and according to Fig. 1, each filter in the filter bank 
is constructed with a specific theta angle ( 0 ≤ � ≤ 2� ) and 
it can extract the edges and the other low-level features of 
images corresponding to this theta angle.

(4)Fp = {G�1
,G�2

,G�3, .....,G�n
}

(5)�n =
�

2

√

2
−(n−1)

(6)�m =
�

8
(m − 1)

Fig. 1  The algorithm proposed in this paper
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In order to cover different theta angles, our filter bank 
includes various filters with different rotation angles. Every 
channel of an input image is convoluted with every exist-
ing filter in the filter bank. After applying this filter bank, 
it would be necessary to prepare the output tensor to be fed 
into the main section of the detector. The object detector 
will be selected after matching the input channels with the 
output of the Gabor layer. In this work we have used the 
YOLOv3-m object detector with the MobileNet backbone, 
the YOLOv3-d with the Darknet backbone, and the FRCNN. 
The reason for choosing these models is to evaluate the pre-
sented method on the models with different architectures 
and backbones. After exiting from the convolutional Gabor 
filters, the tensor is fed to an activation function in order to 
prepare the output tensor for input into the 1 × 1 convolution 
block. After applying the convolution procedure, the tensor 
obtains the number channels that have to be fed to the main 
part of the detector model.

4  Experimental results

In this research, all the networks have been trained, under 
similar conditions, in 70 epochs. After evaluating the num-
ber of epochs in the training process, we found out that the 
adversarial accuracy does not increase significantly and has 
little fluctuation after epoch 70. So it was decided that in 
this work and for the model considered, it is sufficient to use 
70 epochs for training purposes. As an example, the aver-
age adversarial accuracy of the YOLOv3-d model for the 
TOG-mislabeling type of attack and on the PASCAL VOC 
dataset has been reported in Fig. 3. By examining this figure, 

we can see that no significant improvement has occurred in 
the accuracies following epoch 70; therefore, the accuracy 
obtained at this epoch number can be trusted.

Also, the batch size has been considered as 64. Different 
batch sizes were also evaluated in this paper and based on 
the algorithm used and the existing hardware, the best accu-
racy and the most suitable computation speed were achieved 
at the batch size of 64. For example, using a batch size of 
128, the average adversarial accuracies are reduced by about 
2% at the same number of epochs.

The networks and the learnable parameters of the Gabor 
layer have been trained by the stochastic gradient descent 
approach. To evaluate the performance of the method 

Fig. 2  The block diagram of the proposed method

Fig. 3  The average adversarial accuracy of the YOLOv3-d model for 
the TOG-mislabeling type of attack and for the PASCAL VOC data-
set
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presented in the preceding section, it has been applied on 
5 well-known object detectors: YOLOv3-m, YOLOv3-d, 
SSD300, SSD512, and the Faster R-CNN (henceforth called 
FRCNN in this paper). The specifications of these detectors 
have been listed in Table 1.

The reason for choosing these object detector models 
is to evaluate the efficacy of the presented method in vari-
ous models with different inputs and backbones. The data-
sets of MSCOCO (v. 2017) and PASCAL VOC (v. 2012) 
have been used to test the robust object detectors obtained. 
The MSCOCO dataset is one of the most famous datasets 
in the field of object detection. This dataset includes 4000 
images for model training, 5000 images for validation, and 
5000 images for testing. All the images of this dataset have 
been used in this paper. The images in this dataset cover 80 
classes of objects.

The PASCAL VOC dataset includes 20 object classes. 
This dataset consists of 1464 images for training as well 
as 1464 images for validation and testing. In evaluating 
our proposed method, we have used all the images of this 
dataset.

For perturbing the database image, different techniques 
have been proposed in recent years. In this research, we 
have employed six of the most famous attacks that exist in 
the field of object detection. The adversarial attacks must 

perturb the images in such a way that these perturbations are 
not recognizable by human eye. The targeted attacks used in 
this paper comprise the TOG-fabrication, TOG-vanishing, 
and the TOG-mislabeling attacks and the untargeted attacks 
are the DAG, RAP, and UEA. A sample image perturbed 
by the targeted TOG-mislabeling attack has been illustrated 
in Fig. 4.

As is observed in Fig. 4, the perturbed image is not rec-
ognizable by human eye, but it has been able to mislead the 
object detector and cause it to miss the considered object in 
the output image. In Fig. 5, the same image has been per-
turbed via the untargeted random UEA attack in magnified 
form so that it is visible to human eye. This elevated degree 
of image perturbation is so that it can be recognized by 
human eye; otherwise, a much lower perturbation level can 
completely fool the detection system. Each of the targeted 
attacks has been designed to mislead the detection network 
in a particular way. Figures 6 and 7 respectively show the 
performances of these targeted and untargeted attacks and 
their effects on the recognition ability of object detectors.

The efficacy of various attacks can also be evaluated by 
means of two parameters: the false negative increase (FNI) 
and the mean square error (MSE). The FNI parameter indi-
cates the ratio of the false negative detections of objects 
( ΔN ) by the system to the total number of positive detections 
( N ). This parameter is defined as follows [21]:

These parameters are not usually reported by the attack 
developers for their devised attacks. However, to shed more 
light on the performance and effectiveness of these attacks, 
the FNI and MSE parameters have been calculated for the 
attacks analyzed in this research and the results have been 
tabulated in Table 2.

(7)FNI =
ΔN

N + 1

Table 1  The models used in this paper and their specifications

Object detector Backbone Input image size

YOLOv3-m MobileNetV1 448 × 448
YOLOv3-d Darknet53 448 × 448
SSD300 VGG16 300 × 300
SSD512 VGG16 512 × 512
FRCNN VGG16 1000 × 600

Fig. 4  A sample image per-
turbed by the TOG-mislabeling 
attack

Fig. 5  A sample image per-
turbed by the UEA attack in 
magnified form
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As is observed, the TOG series of attacks mislead the 
object detectors more effectively, and it is harder to formu-
late a defense strategy against them. To actually test the pre-
sented algorithm, the existing models are robustified first, 
according to the procedures given in Sect. 2. Next, by imple-
menting the introduced attacks, the input images are per-
turbed independently. Then, by employing two GPUs with 
specifications (NVIDIA GEFORCE 1080 TI and NIVIDIA 

GEFORCE 2060 SUPER) and using the perturbed images 
obtained, each of the networks is subjected to adversarial 
training. Adversarial training means training a model with 
perturbed images. It should be pointed out that every net-
work in this paper has been trained and tested by each of 
the attacks considered. In this research, the training data of 
each dataset have been used to train the networks, the vali-
dation data have been used to evaluate the networks during 

Fig. 6  The effects of targeted attacks on the recognition performance of the object detector

Fig. 7  The effects of untargeted attacks on the recognition performance of the object detector (The UEA attack has been magnified to make it 
visible.)
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the training process, and the test data have been used for the 
final evaluation of the detection models.

Now, to examine the performance of the introduced 
method more closely, the accuracy obtained for each class 
has been computed. The graphs in Figs. 8, 9, 10, 11, and 12 
illustrate some examples of this evaluation. These diagrams 
show the clean accuracy of the models in the absence of any 
defense, the adversarial accuracy of the models subjected to 
an arbitrary random attack in the absence of a defense, and 
the accuracies of the models following their robustification 
via clean data and the data perturbed by adversarial attacks. 
The results of various classes are illustrated in these graphs 
for the TOG-vanishing and the DAG attacks, as examples of 

targeted and untargeted attacks, respectively. The accuracies 
obtained for each class can provide valuable information, 
which can be used to evaluate the effectiveness of the pre-
sented method for each class of the dataset. Figures 8, 9, 10, 
11, and 12show the results of this analysis on the MSCOCO 
dataset. Due to the large number of classes in this dataset, 
sample results have been presented in this paper for just 5 
of these classes.

The results obtained by applying the algorithms in this 
paper on the datasets of PASCAL VOC and MSCOCO have 
been analyzed and compared with the results of other works 
in Tables 3 and 4, respectively. An important point to con-
sider when trying to robustify the DNNs against.

Table 2  The FNI and MSE 
values for the attacks used in 
this paper

Attack YOLOv3-m YOLOv3-d SSD300 SSD512 FRCNN

MSE TOG-V 5.21E-03 3.25E-03 3.16E-03 3.74–03 8.31E-03

FNI 94.12% 94.17% 97.12% 95.09% 92.19%
MSE TOG-F 3.17E-03 3.14E-03 3.52E03 6.14E-03 5.12E-03
FNI 97.69% 94.19% 98.17% 95.52% 98.82%
MSE TOG-M 3.32E-03 3.97E-03 4.76E-03 4.12E-03 6.19E-03
FNI 98.61% 99.88% 97.34% 97.94% 96.18%
MSE DAG 5.92E-03 5.88E-03 6.84E-03 7.97E-03 8.20E-03
FNI 84.12% 87.90% 86.13% 85.12% 83.18%
MSE RAP 6.99E-03 7.25E-03 9.19E-03 7.29E-03 9.95E-03
FNI 91.56% 92.19% 89.19% 90.32% 87.62%
MSE UEA 5.92E-03 6.17E-03 8.12E-03 8.82E-03 5.96E-03
FNI 81.26% 84.61% 83.25% 85.52% 79.63%
MSE EBG [21] 3.61E-03 4.12E-03 3.96E-03 3.78E-03 8.65E-03
FNI 99.15% 93.78% 97.36% 97.89% 97.83%
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Fig. 8  Comparison of clean and adversarial accuracy for 5 classes of 
MSCOCO datasets in the presence of a targeted attack and an untar-
geted attack for the YOLOv3-m model
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Fig. 9  Comparison of clean and adversarial accuracy for 5 classes of 
MSCOCO datasets in the presence of a targeted attack and an untar-
geted attack for the YOLOv3-d model
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adversarial attacks is to make sure that the clean accu-
racy of these networks does not drop significantly relative 
to the accuracy of their undefended state. By examining 
Tables 3 and 4, it is observed that in all the states and mod-
els, the clean accuracy drop, in our method, relative to the 
undefended state is negligible and much lower than that in 

former works. The accuracy results for the defended states 
of networks and for different attacks on each of the men-
tioned datasets have been plotted in Figs. 13, 14, and 15. 
By inspecting these figures, we can see that the adversarial 
accuracies of the models presented in this paper are better 
than those of the previous works and substantially improved 
against all the considered attacks.

Also, by comparing the graphs in Fig. 15, it is confirmed 
that the combined model of “YOLOv3-d + Gabor” has the 
best performance in both the PASCAL VOC and MSCOCO 
datasets. A closer examination of Tables 3 and 4 shows that 
the considered models perform much better in the PASCAL 
VOC dataset than in the MSCOCO. This superiority is due 
to the higher clean accuracy achieved by the models of this 
paper in their undefended state in the PASCAL VOC dataset 
than in the MSCOCO dataset, which can be attributed to the 
simpler data contained in the PASCAL VOC dataset and the 
smaller number of classes that exist in this dataset. Also, 
the accuracies of all the models in their undefended state 
is very low and less than 2% on the average, which shows 
the serious vulnerability of all the existing models against 
adversarial attacks. Of course, by analyzing the results, one 
can see that the model accuracies.

are reduced much more by the newer targeted attacks. 
This is due to the more complex and precise design of these 
attacks compared to the older untargeted attacks.

Moreover, the information obtained from Tables 3 and 
4 clearly shows that the former defense strategies perform 
much better against the untargeted attacks than the targeted 
ones.
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Fig. 10  Comparison of clean and adversarial accuracy for 5 classes of 
MSCOCO datasets in the presence of a targeted attack and an untar-
geted attack for the SSD300 model
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Fig. 11  Comparison of clean and adversarial accuracy for 5 classes of 
MSCOCO datasets in the presence of a targeted attack and an untar-
geted attack for the SSD512 model
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Fig. 12  Comparison of clean and adversarial accuracy for 5 classes of 
MSCOCO datasets in the presence of a targeted attack and an untar-
geted attack for the FRCNN model
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Table 3  The clean and the adversarial accuracies obtained by different models (with/without a defense) by considering all the attacks in the 
PASCAL VOC dataset

State Attack YOLOv3-m (%) YOLOv3-d (%) SSD300 (%) SSD512 (%) FRCNN (%) SSD + VGG16 
[36] (%)

SSD + RESNET 
[36] (%)

Clean accuracy 
without defense

- 71.84 83.43 76.11 79.83 67.37 71.4 69.5

Clean accuracy with 
defense

- 71.47 83.39 76 79.23 67.2 64.5 61.8

Adversarial accuracy 
without defense

TOG-V 0.85 0.56 0.43 0.39 0.21 0.11 0.19

TOG-F 5.52 2.12 2.18 2 1.76 1.1 1.23
TOG-M 1.5 1.9 1.4 1.2 1.9 0.9 0.85
DAG 2.2 1.8 2 2.3 2 0.3 0.4
RAP 2.9 1.9 1.5 1.3 1.1 5.4 5.5
UEA 1.58 1 0.56 1.2 1.73 2.3 3
Average 2.45 1.54 1.34 1.39 1.45 1.68 1.69

Adversarial accuracy 
with defense

TOG-V 43.2 45.9 38.7 41.1 33.2 17.3 21

TOG-F 33.5 47.1 39.9 42.4 35.1 16.5 20.5
TOG-M 21 41.5 45 47.7 30.2 15.5 18.3
DAG 51.1 57 48.8 49.9 38.9 28.5 22.9
RAP 48.8 54.3 43.3 52 41.1 44.9 39.1
UEA 52.9 52.2 47.9 51.6 39.7 29.8 27.6
Average 41.75 49.6 43.9 47.45 36.36 25.4 24.9

Table 4  The clean and the adversarial accuracies obtained by different models (with/without a defense) by considering all the attacks in the 
MSCOCO dataset

State Attack YOLOv3-m (%) YOLOv3-d (%) SSD300 (%) SSD512 (%) FRCNN (%) SSD + VGG16 
[36] (%)

SSD + RESNET 
[36] (%)

Clean accuracy 
without defense

- 58.2 65.5 53.2 59.1 49 55.6 59.8

Clean accuracy with 
defense

- 57.9 65 53.06 58.5 48.8 50.1 49.9

Adversarial accuracy 
without defense

TOG-V 0.33 1.2 0.77 1.5 0.11 0.14 0.19

TOG-F 1.8 1.3 5.2 0.43 1.1 0.21 1.1
TOG-M 2.2 2.8 0.55 0.21 1.1 0.25 0.15
DAG 1.3 3 0.83 0.19 0.58 1 1.8
RAP 1.1 3.26 1.9 0.3 1 1.2 1
UEA 0.59 1.95 0.95 0.11 0.11 1.5 0.52
Average 1.22 2.25 1.7 0.45 0.66 0.71 0.79

Adversarial accuracy 
with defense

TOG-V 30 34.4 27 31 23 11.6 8.5

TOG-F 31.2 36.1 28.1 34.2 21.5 8.95 7.45
TOG-M 25 30.5 23.3 39.5 26.6 10.2 10.66
DAG 40.5 45.2 37 37.8 34.6 18 16.6
RAP 48.8 51.2 33.1 34.6 32.2 20.5 18.6
UEA 43.3 47.5 34.2 44.1 30 29.8 27.6
Average 36.46 40.81 30.45 36.86 27.98 16.5 14.9
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Fig. 13  Comparing the performances of different models against the A) TOG-vanishing, B) TOG-fabrication, C) TOG-mislabeling, D) DAG, E) 
RAP and F) UEA in the PASCAL VOC dataset
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Fig. 14  Comparing the performances of different models against the A) TOG-vanishing, B) TOG-fabrication, C) TOG-mislabeling, D) DAG, E) 
RAP and F) UEA in the MSCOCO dataset
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The closest work to our research in terms of the applied 
conditions and the datasets used is the work of Zheng et al. 
[36]. We had already compared these two works in the con-
text of graphs and tables. However, for comparing the pro-
posed algorithm with similar works, we tried to simulate, 
once again, some of the existing algorithms for the condi-
tions close to the test conditions of that paper. A method 
based on pre-training has been introduced in [37] for face 
recognition applications. In this approach, the image fea-
tures are extracted first and the dimensions are reduced. We 
applied the method presented in [37] to the models used in 
this paper, called the technique “SDF” for short, and com-
pared it with the results of our work in Table 5. Another 

robustification technique based on the detection and mitiga-
tion of adversarial attacks has been proposed by Goswami 
et al. [38] for boosting the system robustness in face recog-
nition tasks. We also evaluated this method by using our 
datasets and tabulated the results.

of these comparisons in Table 5. This table clearly shows 
that our proposed method has been able to improve the 
adversarial accuracy better than the other approaches.

For a better assessment of the method proposed, the intro-
duced models are evaluated once again by using a new attack 
strategy that combines the Evaporate, Boundary, and the 
Gaussian Noise Attacks (the new hybrid attack was abbre-
viated as the EBG attack and was fully described in the 
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Fig. 15  Comparing the average performances of different models against adversarial attacks in the A) PASCAL VOC dataset and B) MSCOCO 
dataset

Table 5  Comparing the 
presented methods with the 
similar adapted approaches

Defense Best adversarial 
accuracy with 
TOG-v

Best adversarial 
accuracy with 
TOG-f

Best adversarial 
accuracy with 
TOG-m

YOLO v3-m + Gabor (ours) PASCAL 43.2% 33.5% 21%
COCO 30% 31.2% 25%

YOLO v3-d + Gabor (ours) PASCAL 45.9% 47.1% 41.5%
COCO 34.4% 36.1% 30.5%

FRCNN + Gabor (ours) PASCAL 33.2% 35.1% 30.2%
COCO 23% 21.5% 26.6%

SDF [37] PASCAL 11.2% 12.8% 8.8%
COCO 8.2% 7.14% 6.2%

Goswami et al. [38] PASCAL 14.3% 16.7% 11.3%
COCO 11.8% 5.5% 5.9%

SSD + RESNET + defense [36] PASCAL 21% 20.5% 18.3%
COCO 8.5% 7.45% 10.6%
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Introduction). The exact results of this evaluation for the 
datasets of PASCAL VOC and MSCOCO have been listed in 
Tables 6 and 7, respectively. This attack has a high FNI value 
and it can also efficiently measure our defense performance 
against the hybrid black-box types of attack. By examining 
Tables 6 and 7, it is realized that not only the presented 
defense strategy can adequately deal with older attacks as 
well as the targeted TOG attacks, but it also can perform 
effectively against the new types of hybrid black-box attacks. 
This shows the credibility of the mentioned defense strategy 
in dealing with various types of adversarial attacks under 
different conditions.

5  Conclusion

Using the Gabor filter banks in different model backbones, 
a new method was introduced in this paper for robustifying 
the visual object detectors. This approach was applied on 
five models and the obtained results were tested by means 
of the PASCAL VOC and the MSCOCO datasets. In this 

study, the input images were perturbed by three types of 
targeted and three types of untargeted attacks and the results 
were reported for all the considered states. Here, six models 
that are robust to adversarial attacks and suitable for object 
detection applications have been proposed and their results 
for different states have been compared. Based on the find-
ings of this research, the introduced models perform well 
against the adversarial attacks, and the best performance 
among these models belongs to the robust YOLOv3 model 
with the DARKNET backbone and convolutional layers.

Declarations 
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Table 6  The performances of the presented models against the EBG attack on the PASCAL VOC dataset

FRCNN (%) SSD512 (%) SSD300 (%) YOLOv3-d (%) YOLOv3-m (%) State

67.37 79.83 76.11 83.43 71.48 Clean accuracy without defense
67.20 79.23 76 83.39 71.47 Clean accuracy with defense
7.11 9.85 9.35 10.25 8.61 Adversarial accuracy without EBG defense

31.33 39.87 35.81 46.17 44.21 Adversarial accuracy with EBG defense

Table 7  The performances of the presented models against the EBG attack on the MSCOCO dataset

State YOLOv3-m (%) YOLOv3-d (%) SSD300 (%) SSD512 (%) FRCNN (%)

Clean accuracy without defense 71.48 83.43 76.11 79.83 67.37
Clean accuracy with defense 71.47 83.39 76 79.23 67.20
Adversarial accuracy without EBG defense 8.61 10.25 9.35 9.85 7.11
Adversarial accuracy with EBG defense 44.21 46.17 35.81 39.87 31.33
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