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Abstract
This paper investigates the estimate of motion parameters from 3D hand joint positions. We formulate the issue as an inverse
kinematics problemwith biomechanical constraints and propose a fast and robust iterative approach to address the constrained
optimization. It elaborately designs a coordinate descent algorithm to decompose the problem into a sequence of decisions on
the transformation around each kinematic node (i.e., joint), while the decision for each node is equivalent to a point matching
problem. Addressing the whole optimization then amounts to considering all nodes of the kinematic tree from its root to leaves
one by one. This not only accelerates the process but also improves the accuracy of the solution of the inverse kinematic
optimization. Experiments show that our approach is able to yield results comparable to and even better than those by the
state-of-the-art methods.

Keywords 3D hand motion reconstruction · Biomechanical constraints · Block coordinate descent · MANO parameterization

1 Introduction

Hands play an indispensable role in human daily life inter-
actions. Reconstruction of 3D hand geometries has key
significance in a variety of computer graphics applications
such as computer animation, 3D game, virtual reality (VR),
augmented reality (AR) and human–computer interaction
[2,10,49].

A great number of approaches have been explored for
estimating 3D hand joint positions in the literature. Early
work generally makes good use of optical markers [34,54]
or glove techniques [12,26,47] which are capable of recov-
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ering joint positions with high fidelity. Recent development
shows that deep neural networks (DNNs) are very promising
to reconstruct 3D hand poses from RGB/D images taken by
consumer-level cameras [40,42,45,52,56], although it is still
a challenging task for these approaches to predict 3D joint
positions with accuracy comparable to traditional methods
due to complexity and occlusion.

Joint positions should further be converted to motion
parameters for most computer graphics applications such as
animation and virtual/mixed reality. Traditional approaches
usually leverage the inverse kinematic technique to esti-
mate, while recent works resort to deep neural networks to
regress the parameters. However, the former are usually time-
consuming due to the nonlinear optimization, while the latter
are required to further improve in accuracy.

We propose a stable, accurate and fast enough method
to estimate motion parameters from given 3D hand joint
positions. The problem is formulated as an nonlinear opti-
mization with finger movement range constraints. To force
the estimate falling within the hand motion space, we exploit
handbiomechanical constraints to restrict the rotationof hand
joints within a specific range. We then attack the optimiza-
tion with a block coordinate descent method by extremely
decomposing it into a set of optimizations for a single joint
rotation. Specifically, we alternatively optimize each coordi-
nate on the kinematic chain from the root joint to leaf joints.
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When optimizing the motion parameters of a joint, we fix
those of all other joints. This not only helps deal with motion
constraints but also makes it possible to derive closed-form
solutions. To sum up, our approach has the following contri-
butions:

– The biomechanical constraints are introduced to reduce
the solution space of hand poses. It not only makes it
easier to obtain reasonable hand poses but also helps
accelerate the solution of the optimization.

– Ablock coordinate descent algorithm is designed to solve
the optimization, which cooperates with the hand motion
constraints to fit the MANO model to 2D or 3D joint
positions.

– Avariety of experiments show that ourmethod can obtain
more accurate motion parameters and reasonable hand
poses than the state-of-the-art approaches.

2 Related works

There are a variety of disciplines to acquire 3D hand shape
and posemeshes in the literature. According to input data, 3D
hand mesh models can be reconstructed from a single image,
multiview images, videos, 3D information (by scanners or
glove sensors). We mainly focus on image-based modeling
approaches from two aspects according to whether involving
parametric models or not. For a comprehensive review, one
can refer to the survey by Ahmad et al. [1].

2.1 Nonparametric 3D hand reconstruction

2.1.1 Direct hand pose and shape reconstruction

Early methods acquire dense point clouds of hands either by
scanning or via multiview image reconstruction. Less works
are particularly contributed to hand reconstruction in this
category [21,33] because of the difficulty of combining hand
priors.

The introduction of machine learning approaches has
changed this situation [6]. Given a hand image, Kulon et
al. [22] employ an encoder to extract its latent code and then
generate a 3D hand mesh. Ge et al. [11] build graph CNNs to
recover 3D hand models from images. Peng et al. [21,33]
leverage a three-stage and coarse-to-fine GCN to regress
the vertex coordinates of the hand mesh. Nevertheless, these
approaches are still in the stage of preliminary exploration
and usually difficult to achieve high accuracy.

2.1.2 Hand pose reconstruction based on database retrieval

By building a database of different 3D hand shapes and
poses as well as their different view images, one can retrieve

an approximatory mesh model in the database for a given
image [3,16,37]. Miyamoto et al. [28] propose a tree struc-
ture to speed up the database retrieval process. Besides, to
improve the matching accuracy, Imai et al. [17] introduce a
mismatched likelihood index.Wang et al. [47] build an image
dataset of hands wearing customized color gloves. It is dif-
ficult to include all possible poses in a database due to the
diversity of hand poses. This makes this kind of approaches
hard to achieve high accuracy.

2.2 3D hand reconstruction based on parametric
models

This category assumes a hand parametric model has been
built. It only needs to estimate shape and motion parame-
ters for reconstructing 3D hands. In the following, we first
briefly recall some hand parametric models and then review
the reconstruction methods.

2.2.1 Hand parametric models

Inspired by the idea of linear blend skinning (LBS) for human
body [25], a number of parametric models are proposed to
represent hand shape and pose [49]. For example, Bray et al.
[5] create an LBS for hand with a mesh template of 9051 ver-
tices and a skeleton of 30 degrees of freedom. Oikonomidis
et al. [30] substitute 37 cylinders and spheres for the mesh
template to approximate hand shape and pose for hand track-
ing. Melax et al. [27] further reduce the geometry to convex
polyhedra for fast skeletal hand tracking.

Wheatland et al. [48] perform PCA on the American sign
language database to extract pose PCA bases in order to
reduce the dimensionality of the hand motion space. A more
popular model is MANO by Romero et al. [38], which adds
a set of shape parameters to the LBS model in order to cap-
ture the hand shape of different individual subjects. The PCA
technique is combined to simplify the model. Qian et al. [36]
consummateMANO by augmenting it with a parametric tex-
ture model.

Different skeletal structures include different number of
joints. For example, NYU lab [45] builds a dataset based
on 14 joints, the ICVL dataset [44] adopts 16 joints, and
the MSRA dataset [35] involves 21 joints. Most parametric
models adopt 21 joints to describe hand motion [38].

2.2.2 Hand pose reconstruction

Most of earlier methods aim at optical-marker-based motion
capture, which are able to obtain joint positions of high accu-
racy. Fitting the LBS to these tracked joints is the so-called
inverse kinematics (IK) problem. Numerical methods such
as Jacobian inverse technique [20] are usually employed to
address the issue. The core idea is to model the forward
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Fig. 1 Illustration of MANO hand model [38]: the hand mesh as well
as its skeleton tree in which color segments and circles, respectively,
illustrate the bones and joints of the hand skeleton

kinematics equation using Taylor expansion to simplify the
solution.

To improve the accuracy of joint prediction, some works
[15,23,43,54] introduce additional image features such as
edges, silhouettes and textures to guide the pose fitting. IK
becomes an energy term of a more general minimization
problem. LaGorce et al. [23] employ a quasi-Newtonmethod
to tackle the optimization, while Zhao et al. [54] apply the
particle swarm algorithm to address the issue.

Both Xiang et al. [51] and Pavlakos et al. [31] take
advantage of the gradient descent algorithm to address the
optimizationmixing constraints of joint positions, image fea-
tures as well as priors to recover whole body shape/pose
from a single image. The algorithmmay trap in local minima
because of improper initialization and suffer low efficiency
due to the complexity of the search space.Making use of PCA
to reduce the space of motion parameters can accelerate the
process but is hard to support joint constraints due to lack
of semantic meanings [38,48]. Instead of resorting to image
features, we introduce hand biomechanical constraints on the
optimization and solve it with an iterative coordinate descent
algorithm. We clearly define the motion space of hand joints
by considering the degree of freedom (DOF) of every joint
according to the hand biomechanical constraints. This not
only makes our results approximate the valid pose as much
as possible but also increases the efficiency and stability of
the solution.

Deep neural networks are also employed to address
parametrization-driven hand pose reconstruction. Zhou et

Fig. 2 Hinge joint (left) and saddle joint (right)

al. [55] use existing motion capture data to train a six-
layer perceptron (MLP) to regress 2D joint positions and
3D joint angles. Zhang et al. [53] and Boukhayma et al. [4],
respectively, propose an end-to-end neural network to predict
motion parameters with 2D image as input. Qian et al. [36]
leverage the network in [4] to obtain the motion parameters
of MANO and further to refine the mesh model by pho-
tometric loss. Other deep learning-based approaches either
leverage depth information [29,32] or combine image and
depth information together. As pose data usually distributes
near the mean pose of the dataset, neural networks are prone
to smooth the pose and make the result near the mean [41].

3 Preliminaries

For convenience of description, we first introduce the for-
mulation of MANO and then present the notion of hand
anatomical kinematics as preliminaries.

3.1 MANO

MANO (hand Model with Articulated and Non-rigid defor-
mations) [38] is a hand parametric model built after SMPL
[24], a human body parametric model. Like SMPL, MANO
employs a group of PCA bases to capture the shape variation
of specific hands and the skeleton skinning technique [25] to
generate motion gestures of the specific hand. The skeleton
used in MANO has 21 joints [35,44,45], as shown in Fig. 1
in which color line segments represent bones (edges of the
tree) and color circles indicate joints. Vertices of the hand
mesh in Fig. 1 are evaluated using MANO [38].
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Denote the average hand mesh in rest (zero) pose by
T =< V , E, F >, where V = {vi , i = 1, . . . , N } is the set
of vertices, and E ⊂ [1 · · · N ]2, F ⊂ [1 · · · N ]3 are, respec-
tively, the set of edges and the set of triangles. The shape
variation of a specific hand with respect to T is captured by
the set of PCA bases S = { Si ∈ R3N : i = 1, . . . , |S|},
where |S| indicates the element number in S. Without caus-
ing confusion, we also use V to denote the 3N -dimensional
vector concatenated by the coordinates of its vertices.

The variation of an arbitrary hand shape with respect to T
can then be computed by blending the bases with coefficients
β = { βi ∈ R : i = 1, . . . , |S|}:

BS(β,S) =
|S|∑

k=1

βi Si

To improve the skinning accuracy, MANO makes a com-
pensation to the rest pose in terms of motion parameters

BP (θ,P) =
9K∑

k=1

(Ri (θ) − Ri (θ)∗)Pi

where K is the number of bones, P = { Pi , i = 1, . . . , 9K }
is a set of pose bases for blending vertex offsets, θ =
(ω1,ω2, . . . ,ω20) is the motion parameters of an arbitrary
pose and Ri (θ) indicates the i th entry of the rotational matri-
ces (total K rotationalmatrices and eachmatrix has 3×3 = 9
elements). The full form of MANO can then be written as

M(β, θ) = W(TP (β, θ), J(β), θ,W)

where W is the skinning function (linear blending skinning)
J(β) = (j0, j1, . . . , j20) ∈ R21×3 is the set of joint position
in the rest pose, W is the weight matrix, and

TP (β, θ) = V + BS(β,S) + BP (θ,P).

T , S, P and W are known for our reconstruction task.

3.2 Hand anatomical kinematics

We follow the anatomical kinematics structure in a hand ani-
mation approach [9] which is also adopted by robotics arms
[46]. Such structure employs the same skeleton as shown
in Fig. 1 in which hand joints are classified into hinge joints
including joints 2, 3, 6,7, 10, 11, 14, 15, 18 and 19, and saddle
joints containing joints 1, 5, 9, 13 and 17.

Specifically, a hinge joint has 1 degree of freedom, namely
bones shooting from this kind of joints can only conduct
bending motion as shown in Fig. 2 (left). A saddle joint has
two degrees of freedoms as depicted in Fig. 2 (right), which
are respectively described by two different rotational angles

Fig. 3 Rotation range of saddle joint

(flexion/extension, abduction/adduction) as shown in Fig. 3.
Biomechanical constraints [50] are exploited to constrain the
motion range of these angles.

4 The proposedmethod

Now,we describe our frameworkwhich involves biomechan-
ical constraints of hand motions, the mathematical model for
reconstructing hand poses from joint positions, and the solu-
tion of the model.

4.1 Handmotion constraints

According to [9,50] (see Sect. 3.2), there are two kinds of
joints in a hand, i.e., hinge joints and saddle joints. For the
sake of formal description, we create a local coordinate sys-
tem for each joint (say k for example) in order to describe
the orientation of the bone starting from k. As shown in Fig.
3, its origin is placed at k, its x axis points from the parent
joint of k to k itself, and the rotational axis of the bending
motion around k is viewed as z axis such that the bending
motion observes the right-hand rule as shown in Fig. 3.

In the local coordinate system of hinge joint k, the motion
of the bone starting from k is actually a rotation around axis
z. Let φz,k be the rotational angle. We can then express the
rotation matrix as [50]

eωk = enzφz,k (1)

with nz = (0, 0, 1) and φz,k ∈ [φmin
z,k , φmax

z,k ], where e∗ is
called Rodrigues function.

For saddle joint k, the motion of the bone shooting from
it is a composition of the two rotations, respectively, around
axis z and axis y. Similarly, denoting the two angles by φz,k
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Fig. 4 Right-hand mesh template (left) and z axes of its joints (blue
arrows in the right)

and φy,k separately, we then have [50]

eωk = e(nzφz,k )e(nyφy,k ), (2)

where ny = (0, 1, 0). The above rotational angles satisfy the
following ellipse constraint

(
φy,k

φ̄∗
y,k

)2

+
(

φz,k

φ̄∗
z,k

)2

≤ 1, (3)

where ∗ =′ min′ or ′max′ as shown in Table 1 [2,17] depend-
ing on which quadrant the child joint of joint k locates in.

The above rotation transformationswill be formulated into
MANO [38]. Figure 4 depicts z axis of the local system of
all joints. We determine the z axes using skin surface details
and registration data. Notice that leaf joints (finger tips) have
no additional information since there is no bone shooting
from them. On the other hand, as the root of the kinematic
tree, the wrist joint is free of constraints. In practical terms,
the translation of the root joint can be viewed as the inverse
translation of the camera. So, we can fix the root node and
only estimate the global transformation.

4.2 Hand pose reconstruction from 3D joint
positions

In our setting, we neglect the hand shape and only reconstruct
the pose usingMANO.Denote the position vector of all joints
by J3D = (j3D0 , j3D1 , . . . , je20) ∈ R21×3. Particularly, denote
their rest pose counterparts by J∗ = (j∗0, j∗1, . . . , j∗20) ∈
R21×3 (see Fig. 4).

Pose change is captured by rotating around joints. In our
setting, only 15 joints are rotatable. The wrist joint is fixed
and its orientation is described using the camera parameters
instead. In addition, tips of five fingers have not parameters.
Namely, ω0 remains unchanged, while ω4,ω8,ω12,ω16 and
ω20) are known and have no impact on the pose. According
to the forward kinematics, this yields the following global

Fig. 5 Visual results of the proposed algorithm. Left is the input joint
positions; right shows the corresponding results
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Table 1 Rotation range of hand joints (unit: )

Joint DOF φmin
z,k φmax

z,k φmin
y,k φmax

y,k

6, 10, 14, 18 1 0 100 N/A N/A

3, 7, 11, 15, 19 1 0 90 N/A N/A

2 1 0 80 N/A N/A

1 2 −20 20 −30 30

5, 9, 13, 17 2 −10 85 −10 10

transformation matrix for joint k:

Gk(θ , j∗) = ∏
i∈A(k)

[
e(ωi ) j∗i − j∗p(i)
0 1

]
, (4)

where e(ωi ) is the rotation matrix of joint i , A(k) represents
the node path from the second level ancestor, which is adja-
cent to node 0, to the parent node of joint k; p(i) denotes the
parent node of i ; Gk(θ , J) describes the transformation of
joint k related to the world system. Equation (4) can further
be simplified as

Gk(θ , J∗) =
[
Rk tk
0 1

]
(5)

where Rk is a 3 × 3 rotation matrix and tk is the translation
of joint k. Let [Rg|tg] be the global rigid transformation. If a
set of joint positions in J e are given, motion estimation can
then be formulated as minimizing the mean square distance
between the prediction joint positions and the given ones
under hand biomechanical constraints:

argmin
θ ,Rg,t g

∑

k

(Rgtk + tg − jek)
2 (6)

s.t.

(i) if DOF(k)=1,ωk = nzφz,k, φz,k ∈ [φmin
z,k , φmax

z,k ];
(ii) if DOF(k)=2,e(ωk ) = e(nzφz,k )e(nyφy,k );

and

(
φy,k

φ̄∗
y,k

)2

+
(

φz,k

φ̄∗
z,k

)2

≤ 1.

The arguments to be optimized are pose parameters θ ,
global transformation Rg and tg . It is difficult to consider all
the constraints simultaneously. Hence, inspired by the idea
of ICP and based on the hierarchical structure of the hand
kinematic tree, we devise a block coordinate descent scheme
to address Eq. 6.

4.3 Numerical solution

We divide the variables into different blocks according to
their joint number in order to solve Eq. 6. For each block, we

minimize a subproblem by fixing all other blocks. The order
of optimizing different blocks follows the join number order
in a hierarchical manner: firstRg and tg, then fromω1 toω19.
In this subsection,wewill separately discuss the subproblems
according to their types including camera parameters, saddle
joints and hinge joints.

4.3.1 Initialization

In the beginning, we first need to initialize the current poses.
Specifically, we evaluate themean pose of theMANOdataset
as the initial pose and use it to estimate the camera external
parameters. Gk in Eq. 5 can then be obtained from current
pose parameters θ .

4.3.2 Update of global rigid transformation

Global transformation is in place of the root pose. Hence, all
hand joint positions are transformed correspondingly. While
only considering Rg and tg , the optimization has the form:

argmin
Rg,tg

∑

k

(Rgtk + tg − jek)
2,

s.t. (Rg)TRg = I (7)

A method to address this problem uses the difference
between barycenters of source points and target points in
order to find the translation tg , while Rg can be solved with
Kabsch algorithm [19].

4.3.3 Update of saddle joint parameters

Saddle joints locate in the second level in the kinematic chain,
which are directly adjacent to the root. Updating the trans-
formation of this kind of joints only influences the position
of their descendent joints. Therefore, the optimization for
saddle joint k reduces to

argmin
ωk

∑

i∈D(k)

(Rg(Rke
ωk (j∗i − j∗k) + tk) + tg − jei )

2,

s.t.

eωk = en
∗
kφz,k expω∗

y,kφy,k ; (8)
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Table 2 MPJPE and MPVPE on the MANO dataset

Method MPJPE (mm) Std of MPJPE (mm) MPVPE (mm) Std of MPVPE (mm) Time (ms)

GDC [38] 7.10 3.01 7.32 3.05 1477

MLP [55] 9.19 3.89 12.0 5.75 15

Ours 5.35 1.91 5.84 1.96 34

Table 3 PA MPJPE and PA MPVPE on the MANO dataset

Method PA MPJPE (mm) Std of PA MPJPE (mm) PA MPVPE (mm) Std of PA MPVPE (mm)

GDC [38] 6.18 2.33 6.53 2.50

MLP [55] 7.55 3.13 8.02 3.11

Ours 4.77 1.80 5.24 1.83

Table 4 Hand reconstruction from a single image: comparison

Metrics AUC of mesh PCK Err of mesh (mm) AUC of joint PCK Err of joints (cm) Time (s)

MANO CNN [57] 0.783 1.09 0.784 1.09 1.57

MANO fit [57] 0.729 1.37 0.730 1.35 5.83

Obman [14] 0.738 1.32 0.739 1.32 1.61

Hand only [4] 0.736 1.33 0.737 1.33 2.59

Minimal hand [55] 0.742 1.31 0.746 1.30 0.012

Ours 0.792 1.04 0.799 1.01 0.046

and

(
φy,k

φ̄∗
y,k

)2

+
(

φz,k

φ̄∗
z,k

)2

≤ 1.

where D(k) is the descendant set of joint k. Equation 8 solves
the rotation of joint k by minimizing the error of the predic-
tion to the ground truth of the descendents of joint k. Noting
(Rg)−1 = (Rg)T and R−1

k = RT
k , we have the following

equivalent form of Eq. 8

argmin
ωk

∑

i∈D(k)

(eωk (j∗i − j∗k) + RT
k (tk+

(Rg)T (tg − jei )))
2

(9)

Equation 9 is actually the orthogonal Procrustes problem
[13] if neglecting the constraints of Eq. 8. Henceforth, we
tackle it via two steps. First, Kabsch algorithm is employed
to address the unconstrained problem to yieldRtemp. Second,
Euler angles around z and y axes are extracted from Rtemp

[8]. Viewing the pair of Euler angles as a point, we then find
its nearest point within the ellipse by usingNewton–Raphson
algorithm. LetRk be the rotationmatrix constructed from the
new Euler angles, φy,k and φz,k , which are around axes y and
z, respectively.

It should be noted that an additional internal rotation
for thumb joints should be considered. We formulate it as
Rin = e(jc(k)−jk )αφy,k , where α is a predefined heuristic
parameter. The final transformation for joint k of the thumb
is then computed as Rin Rk . The internal rotation of other
fingers can be ignored because the rotation around the z axis
of other fingers is generally perpendicular to the hand palm.

4.3.4 Update of hinge joint parameters

Update of hinge joints is similar to update of saddle joints
but their constraints are simpler. Namely, only one rotational
angle is constrained for each joint. Hence, the approach for
saddle joints is also applicable here. Specifically, we first
solve the unconstrained problem to obtain a rotation trans-
formation, then extract Euler angle of the fixed axis, and
finally apply the constraints to the angle for computing the
final rotation.

4.3.5 Stop criteria and collision avoidance

In an iteration of updating all the parameters, our algorithm
successively optimizes the parameters of each single joint as
shown in Algorithm 1. It stops when there is no improvement
or the iteration number exceeds the threshold. To avoid the
possible finger intersection, we introduce an additional step
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Fig. 6 PAMPJPE and PAMPVPE curves of the three algorithms (ours,
GDC [38] and MLP [55]) for inputs with different levels of Gaussian
noise. The errors are evaluated using the reconstructed mesh and the
ground truth

Fig. 7 PA MPJPE curves of the three algorithms (ours, GDC [38] and
MLP [55]) for inputs with different levels of Gaussian noise. The errors
are evaluated using the reconstructed joint positions and the groud truth

to detect collision. It treats each bone as a capsule. Therefore,
once the distance between two line segments (of the bones)
is less than a specified threshold determined by the thickness
of the two bones, they are considered intersection. In this
case, we move one of the bones along the opposite direction
to ensure the distance threshold.

Algorithm 1 Evaluate joint motion and external parameters
of the camera
Require:

The target positions of all joints, Je;
joint rotation constraints, stop criteria

Ensure:
The pose parameters θ = (ω0,ω1, · · · ,ω20);
and global transformation pose Rg and tg

1: Initialize θ to a pre-compute mean pose;
2: Repeat
3: update Rg and tg ;
4: update all ωi in θ one by one
5: according to

its joint type;
6: Until The convergent criteria are satisfied.
7: END

4.4 Reconstruction from images

Our approach can be applied to reconstruct 3D poses from a
single image. The process consists of two steps. Firstly, we
employ existing methods to detect 2D joints on the image
and estimate the 3D joint positions from 2D ones. In our
experiments, we use PoseNet [7] to do this. After that, we
can use Algorithm 1 to estimate motion data which is finally
used to skin the MANO model to generate hand meshes.

5 Experiments

The proposed algorithm is implemented with Python on a
PC with Intel(R) Core (TM) i7-4470 CPU @ 3.4GHz. This
section presents a variety of experiments to show the perfor-
mance of the proposed algorithm.

5.1 Visual results

Wefirst take use of some examples with typical hand poses to
show the effectiveness of ourmethodwhich solves themotion
of each finger independently and combine them together to
express complicated poses. In each example, the 3D joint
positions are given. Figure 5 illustrates that our approach is
able to rotate and redirect the fingers to exactly register the
joint positions.

5.2 Accuracy on theMANO registration dataset

To quantitatively evaluate our approach, we conduct an
experiment on theMANOdataset [38]which is built by using
the MANO hand parametric model to register the MoCap
scans. The dataset includes 1554 poses of real human hands
from 31 subjects. Each sample consists of a set of 3D hand
joint positions as well as the corresponding pose parameters.
We recover the pose parameters from 3D joint positions and
then compared them with the ground truth.
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Fig. 8 Single image reconstruction: each row shows two examples and total 8 examples are depicted. Each example includes three images which
are, respectively, the input image, the reconstructed hand model by our method, and the result by FrankMoCap [39]

Two error metrics are used: mean per-joint position error
(MPJPE) and mean per-vertex position error (MPVPE). In
addition, we also compute PA MPJPE and PA MPVPE,
the rigid alignment values of MPJPE and MPVPE respec-
tively. The gradient descent (GDC)method [38] and theMLP
method [55] are selected to comparewith our approach. Table
2 summarizes the mean errors of all samples in the dataset,
their standard deviation (std) and timings. Results for PA
MPJPE and PA MPVPE are listed in Table 3. Both tables
illustrate that our method outperforms the other two in both
accuracy and stability (with smaller std). In addition, GDC is
the slowest one, while our method is comparable to the MLP
method (Table 3).

5.2.1 Accuracy on the dataset with simulated noise

Considering that real data acquired from motion capture
devices are usually contaminated, we evaluate our method
using inputs with different levels of simulated noise. As the
average length of hand bones is 33.4mm in the template pose,
we, respectively, add Gaussian noise with standard deviation
of 2, 5, 10 and 20 (mm) to every joint position of the MANO
registration dataset.

Figure 6 shows the curves of PA MPJPE and PA MPVPE
between the reconstructed hand mesh and the ground truth,
while Fig. 7 depicts the PA MPJPE curves of joint posi-

tions. Both demonstrates that our approach outperforms the
other two state-of-the-art approaches [38,55] in reconstruc-
tion accuracy owing to introducing mechanical constraints.
Nevertheless, our method is more sensitive to the noise level
change. This is because some noisy inputs may happen to be
a valid pose, while our algorithm still fits the pose parameters
to such a deformed pose. An elaborate comparison with the
state-of-the-art methods [4,14,55,57] is conducted as illus-
trated in Table 4.Our approach achieves the highest accuracy.

5.3 Pose reconstruction from a single image

To reconstruct hand pose from a single RGB image, we first
apply PoseNet [7] to estimate 3D joint positions from the
image and then compute motion parameters with our algo-
rithm.The experiment is conducted on theFreiHANDdataset
[57] which consists of 130K training images and 4K test
images with MANO pose parameters. Figure 8 depicts some
visual results (MANO models). We also illustrate the results
by FrankMoCap [39] as comparison. Visually, the hand ges-
tures by our method are better than those by FrankMoCap
[39]. In the first example, the gesture by FrankMoCap [39]
is even wrong (see column 3 of row 1 in the figure).

We also compare our algorithm with the state-of-the-art
approaches described in [4,14,55,57]. PoseNet [7] is trained
using the training images to estimate 3D joint positions as
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Fig. 9 3D Hand mesh reconstruction PCK curves for our method and
approaches in [4,14,55,57]

input of our method. All involved reconstruction algorithms
are directly used without additional training. Figure 9 depicts
the PCK curves by these approaches and ours. It can be
observed that our approach performs best.

Table 4 summarizes the reconstruction errors by the
involved approaches measured by a variety of error metrics,
which also shows that our method outperforms the state-
of-the-art methods in almost all indices. Though minimal
hand [55] is faster than our approach, all accuracy indices
are worst.

To show the stability of our approach, we apply it to
reconstruct a sequence frame by frame. The data come from
sequence 171204_pose6 of the database in [18]. Totally, 100
frames are reconstructed (see the attached video), and the
indices of these 100 frames are from 20,701 to 20,800. Here,
we depict 5 of the 100 frames with indices of 20,720, 20,740,
20,760, 20,780 and 20,800 in Fig. 10. PA MPJPE by our
method is 5.3302 with std = 0.4320, while PA-MPJPE by
FrankMoCap is 5.3442 with std = 0.5151. Our approach is
more stable than FrankMoCap [39].

5.4 Limitations

We accomplish the task of reconstructing hand poses from
hand joint coordinates by proposing an iterative algorithm
based on mechanical constraints. A variety of experiments
demonstrate that it exhibits excellent performance compared
to the state-of-the-art approaches.However, it does not distin-
guish the shape of different hands. In addition, it depends on
PoseNet when recovering motion parameters from images.
Therefore, once PoseNet fails to predict 3D hand joint posi-
tions correctly, our algorithm cannot rectify the case.

Fig. 10 Sequence reconstruction: the top row shows the corresponding
images, the middle row shows results reconstructed by our approach,
and the bottom row shows results by FrankMoCap [39]

6 Conclusions

We propose a coordinate descent algorithm for reconstruct-
ing hand motion parameters from joint positions, in which
the joint rotation of each finger bone is solved successively
by fixing other pose motion parameters. The natural struc-
ture of hands is used to constrain joint motions in order to
reduce the search space. These two contributions make our
algorithm exhibits advantages in accuracy, robustness and
running time. As future work, it is interesting to extend the
proposed framework to estimate hand motion sequences by
utilizing the inter-frame coherence to sustain the stability of
the sequence.
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