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Abstract
Face super-resolution aims to recover high-resolution face imageswith accurate geometric structures.Most of the conventional
super-resolution methods are trained on paired data that is difficult to obtain in the real-world setting. Besides, these methods
do not fully utilize facial prior knowledge for face super-resolution. To tackle these problems, we propose an end-to-end
unsupervised face super-resolution network to super-resolve low-resolution face images. We propose a gradient enhancement
branch and a semantic guidance mechanism. Specifically, the gradient enhancement branch reconstructs high-resolution
gradient maps, under the restriction of two proposed gradient losses. Then the super-resolution network integrates features in
both image and gradient space to super-resolve face images with geometric structure preservation. Moreover, the proposed
semantic guidance mechanism, including a semantic-adaptive sharpen module and a semantic-guided discriminator, can
reconstruct sharp edges and improve local details in different facial regions adaptively, under the guidance of semantic parsing
maps. Qualitative and quantitative experiments demonstrate that our proposed method can reconstruct high-resolution face
images with sharp edges and photo-realistic details, outperforming the state-of-the-art methods.

Keywords Unsupervised face super-resolution · Facial semantic priors · Gradient enhancement

1 Introduction

Image super-resolution (SR) aims to reconstruct high-
resolution (HR) images from the observed low-resolution
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(LR) inputs. Face super-resolution, also known as face hal-
lucination, is a special case of image super-resolution. It has
attracted increasing attention for its widespread application
in surveillance [1,2], photo restoration [3], face recognition
[4,5], etc. Most notably, it is difficult to capture LR-HR
image pairs of human faces in the real-world setting, which
poses challenges to the face super-resolution task. Hence, in
this work, we aim at recovering the corresponding HR face
images from LR inputs via unsupervised learning.

A great number of deep-learning methods have been pro-
posed to reconstruct HR images from LR inputs. Recent
works [6–8] mostly apply generative adversarial networks
(GAN) [9] to recover photo-realistic HR images. ESRGAN
[7] introduces a perceptual loss [10] that is calculated in
high-level feature space to improve the perceptual quality.
SPSR [8] utilizes gradient maps of LR and HR images to
provide structural priors for the super-resolution process.
These methods have shown good performance in conven-
tional SR tasks. However, they are not competitive when
super-resolving face images and they cannot tackle the SR
tasks without paired data.

The difficulties of unsupervised face super-resolution lie
in the following aspect. First, the LR face images of tiny
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scale provide less information compared to the ordinary LR
images. Second, the lack of paired data makes the training
process unstable and hard to train. Third, the facial geometric
structures and identity information should be reconstructed
correctly in the HR outputs.

To tackle these difficulties, several methods extract facial
prior knowledge, such as landmarks [11,12], parsing maps
[12,13], and facial attributes [14], to recover HR face images
while preserving facial structures. Also, to overcome the
lack of paired data, an intermediate LR domain [15,16] is
introduced for the transformation from LR domain to HR
domain. However, these methods still cannot reconstruct
photo-realistic high-resolution face images, particularly in
an unsupervised manner.

To this end, we propose an unsupervised face super-
resolution network (GESGNet) with gradient enhancement
and semantic guidance. We propose a gradient branch that
reconstructs HR gradient maps of face images. Further-
more, we propose a statistical gradient loss and a pixel-wise
gradient loss to encourage the reconstruction. Then the super-
resolution network concatenates features in image space and
that in gradient space to super-resolve face images while
maintaining geometric structures.

Moreover, we propose a semantic guidance mechanism.
Specifically, to further retain facial geometric structures,
we propose a semantic loss by calculating semantic maps
through a pre-trained face parsing network. We also pro-
pose a semantic-adaptive sharpen module to sharpen and
enhance details adaptively, under the guidance of semantic
maps. Besides, a semantic-guided discriminator that discrim-
inates on different facial components is proposed to generate
diverse details.

The main contributions of this paper are as follows:

– We propose an unsupervised face super-resolution net-
work (GESGNet) to reconstruct high-resolution face
images. To the best of our knowledge, this is the first
attempt to employ facial semantic priors and gradient
information for unsupervised face SR task.

– We propose a gradient enhancement branch and two gra-
dient losses to recover HR gradient maps. The extracted
gradient features can encourage to super-resolve images
with accurate geometric structures and sharp edges.

– We propose a semantic guidance mechanism including a
semantic-guided discriminator and a semantic-adaptive
sharpen module, which can further preserve geometric
structures and generate diverse details for different facial
components.

– We implement detailed experiments on our constructed
dataset. The qualitative and quantitative results show that
our method can recover photo-realistic HR face images
and outperforms state-of-the-art methods.

2 Related work

2.1 Unsupervised image super-resolution

Image super-resolution aims at recovering HR images from
the LR counterparts, which has become a significant task in
the field of computer vision for its widespread application in
surveillance [1,2], image enhancement [17], medical imag-
ing [18], face recognition [4,5], etc. Earlier works utilized
prediction-basedmethods [19], edge-basedmethods [20,21],
statistical methods [22,23], and patch-basedmethods [24,25]
to reconstruct HR images. Recently, with the rapid devel-
opment of deep learning techniques, a large number of
deep-learning based super-resolution methods [6,7,26,27]
have been proposed and shown impressive performance.
Dong et al. [26] proposed SRCNN, firstly employed CNN-
based methods for image super-resolution task. Ledig et al.
[6] proposed a generative adversarial network with a per-
ceptual loss to reconstruct photo-realistic HR images. The
adversarial learningwas also adopted in Enhancenet [27] and
ESRGAN [7], demonstrating the powerful ability of GAN
models for image super-resolution task. Though these GAN-
based super-resolution methods can recover high-fidelity
HR images, they tend to generate geometric distortions and
unsharp edges. To address this issue, Ma et al. [8] proposed a
gradient-guided SRmethod. They reconstructedHRgradient
maps from gradient maps of LR images to provide structural
priors for the image super-resolution process. Encouraged by
their success,we introduce a gradient branch andpropose two
gradient losses to preserve geometric structures and generate
sharp edges.

However, note thatmost SRmethods super-resolve images
with paired data, which is difficult to obtain in real-world
setting. To address this issue, several researchers proposed
unsupervised image super-resolutionmethods. Among them,
Yuan et al. [28] proposed a cycle-in-cycle network structure.
They mapped the input domain into a noise-free LR domain
through the first CycleGAN-based network and then trans-
formed the intermediate domain to the HR domain through
the secondnetwork.Basedon [28], Zhang et al. [29] proposed
progressivemultiple cycle-in-cycle networks,which cangen-
erate clear structures and reasonable textures. Fritsche et al.
[15] treated the lowand thehigh image frequencies separately
by applying the pixel-wise loss only on low frequencieswhile
adversarial loss only on high frequencies. They introduced an
intermediate LRdomain to divide the SRprocess into the first
unsupervised stage and the second supervised stage. Zhou et
al. [16] employed an intermediate LR domain as the previ-
ous works and proposed a color-guided domain mapping to
alleviate the color shift in domain transformation. Although
these intermediate LR domains play an important role in the
learning process of unsupervised image super-resolution, the
transformation from input LR domain to intermediate LR
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domain is extremely difficult for face super-resolution due
to the tiny scale of inputs. Thus, instead of the intermediate
LR domain, we first convert the input LR domain into an
intermediate HR domain and then convert it into the real HR
domain.

2.2 Face super-resolution

Face super-resolution is a special case of image super-
resolution, which requires facial prior knowledge to recon-
struct accurate geometric structures and diverse facial details.
Several attempts have been made to utilize facial prior
knowledge for face super-resolution, such as facial com-
ponent heatmaps, facial landmarks, identity attributes, and
semantic parsing maps. Choudhury et al. [30] detected facial
landmarks first and then searched for the matching facial
components from a dictionary of training face images. Yu
et al. [31] estimated facial component heatmaps and then
concatenated the heatmaps with image features in the super-
resolution network. Chen et al. [12] utilized two branches
to extract image features, and estimate facial landmarks and
parsingmaps, respectively. Then the extracted image features
and facial prior knowledge were combined and sent to the
decoder to reconstructHR images.Bulat et al. [32] proposed a
face-alignment branch that localized facial landmarks on the
reconstructed images to enforce facial structural consistency
between theLR images and the reconstructedHR images.Yin
et al. [11] proposed a joint network for face super-resolution
and alignment, where these two tasks shared deep features
and benefited each other. Yu et al. [14] encoded LR images
with facial attributes when super-resolving images, and
then embedded attributes into the discriminator to examine
whether the reconstructed images contain desired attributes
or not. Xin et al. [33] extracted facial attributes as semantic-
level representation and then combined themwith pixel-level
texture information to recover HR images. Wang et al. [34]
proposed a network that took both facial parsing maps and
LR images as inputs to reconstruct HR images. Zhao et al.
[13] jointly trained a face super-resolution network and a
face parsing network. They extracted facial priors through a
semantic attention adaptation module that bridged the two
networks.

These methods can reconstruct high-quality HR face
images, outperforming generic SR methods, which indicates
the significance of facial prior knowledge for face super-
resolution. However, most of these methods employ facial
priors by designing an auxiliary network or training multiple
tasks jointly, which requires more computational resources.
Besides, the extracted facial priors are mainly used for struc-
ture preservation, not used for generating diverse details
among various facial components. Instead, we propose a
semantic guidance mechanism, where the semantic pars-
ing maps are calculated through a pre-trained facial parsing

network. Specifically, our proposed semantic-guided dis-
criminator, semantic-adaptive sharpenmodule, and semantic
loss can reconstruct accurate geometric structures and gen-
erate diverse details for different facial components.

3 Proposedmethod

3.1 Overview

The aim of our method is to reconstruct corresponding
high-resolution face images from low-resolution inputs on
unpaired data. The overall framework of our proposed
method is shown in Fig. 2. The unpaired dataset consists
of LR images Ix ∈ X and HR images Iy ∈ Y . To reconstruct
HR images in an unsupervised manner, we designed a cycle
network structure that consists of two generators, GZY and
GY Z , a gradient branch Ggra , three discriminators, DY , DZ

and Dsm , as well as a pre-trained upsample generator GXZ .
For a given LR image Ix ∈ X , it is firstly upsampled to Iz

by a pre-trained ESRGAN model GXZ . To effectively learn
the geometric representation, we propose a gradient branch
Ggra and two gradient loss functions.Ggra takes the gradient
map of Iz as input to reconstruct a high-resolution gradient
map. Then,GZY concatenates featuremaps from the gradient
branch Ggra to reconstruct image Îy with gradient infor-
mation. Moreover, to recover HR images with sharp edges,
we propose a semantic-adaptive sharpen module (SASM),
which is embedded into GZY . The proposed SASM sharp-
ens facial components with different degrees according to
semantic parsing maps, and thus can sharpen different facial
regions adaptively.

The discriminators distinguish the synthesized data from
the real data to improve the reconstructing ability of gen-
erators. In particular, we propose a semantic-guided dis-
criminator Dsm that can discriminate on different regions,
respectively, under the guidance of semantic parsing maps.
In this way, Dsm enablesGZY to reconstruct HR images with
diverse details in different facial components.

3.2 Gradient enhancement branch

Generating sharp edges and fine-grained details is impor-
tant but challenging when super-resolving images. Most of
the previous works [6,7,27] try to improve sharpness and
fidelity through optimization in image space. However, these
methods still cannot reconstruct sharp edges and details as
that in real HR images. Gradient maps of images can reflect
the sharpness of edges.Wefind that there are huge differences
between gradient maps of LR images and that of HR images,
as shown in Fig. 1. The gradient maps of HR images are with
clearer edges and stronger contrast between the high and the
low intensity. Thus, we hope to utilize gradient information
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HRInter-HRLR

Fig. 1 Visualization of gradient maps. From left to right, we show the
image and its gradient map in LR domain, intermediate domain, and
HR domain

to guide face super-resolution. Ma et al. [8] built a gradi-
ent branch for supervised SR, which shows effectiveness in
preserving geometric structures and edge sharpness. Encour-
aged by [8], we build a gradient enhancement branch Ggra

as shown in Fig. 2, which takes LR gradient maps of Iz ∈ Z
as input and estimates HR gradient maps. Then the super-
resolution network GZY integrates the gradient features and
the previous image features to reconstruct super-resolution
images Îy = GZY (Iz).

The gradient map G(Iz) of an image Iz ∈ Z can be
described as

∇h (Iz) = Iz (x + 1, y) − Iz (x − 1, y) ,

∇v (Iz) = Iz (x, y + 1) − Iz (x, y − 1) ,

∇ (Iz) = (∇h (Iz) ,∇v (Iz)) ,

G(Iz) = ‖∇(Iz)‖2 ,

(1)

where (x, y) are pixel coordinates of image Iz .
Since Ggra aims to estimate gradient maps of images in

real HR domain, we first propose a statistical gradient loss
to make the estimated gradient maps Ggra(G(Iz)) have the
same intensity distribution as the gradient maps G(Iy) of real
HR images Iy . The statistical gradient loss is formulated as

Lgra_s = EIz ,Iy

[‖H (
Ggra(G(Iz))

) − H (G(Iy)
)‖1

]
, (2)

where Iz ∈ Z , Iy ∈ Y , and H(·) is the intensity histogram
of gradient map.

Besides, the estimated gradient maps Ggra(G(Iz)) should
retain geometric structures as G(Iz). Hence, we propose a
pixel-wise gradient loss, which is formulated as

Lgra_p = EIz

[‖Ggra (G(Iz)) − G(Iz)‖1
]

. (3)

The combination of Lgra_s and Lgra_p enables the esti-
mated gradient maps Ggra(G(Iz)) to have the similar inten-
sity and distribution as gradient maps of real HR images. In
this way, our proposed method can reconstruct HR images as

Fig. 2 Overall framework of our proposed method. Given an input LR
image Ix , we aim to recover the corresponding HR image Îy . GXZ
converts Ix to Iz . Then GY Z and GZY enable unsupervised transfor-
mation between domain Z and Y . We propose a gradient branch Ggra ,

a semantic-adaptive sharpen module (SASM), and a semantic-guided
discriminator Dsm to reconstruct photo-realistic HR face images with
geometric structure preservation
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sharp as real HR images, while preserving geometric struc-
tures simultaneously.

3.3 Semantic guidancemechanism

For stable unsupervised transformation from domain Z to
domain Y , we apply an adversarial loss [9], a cycle loss [35],
and an identity loss [35], which are defined as

Ladv = EIy

[‖DZ (GY Z (Iy)) − 1‖2
]

+EIz

[‖DY (GZY (Iz)) − 1‖2
]

, (4)

Lcyc = EIy

[‖GZY
(
GY Z (Iy)

) − Iy‖1
]

+EIz

[‖GY Z (GZY (Iz)) − Iz‖1
]

, (5)

Lidt = EIy

[‖GZY (Iy) − Iy‖1
] + EIz

[‖GY Z (Iz) − Iz‖1
]

.

(6)

However, the reconstructed geometric structures are easy
to distort and blur during the unsupervised learning process.
To address this issue, we propose a semantic guidance mech-
anism to preserve geometric structures with the help of facial
semantic parsing maps.

Unsupervised semantic loss. To accurately preserve
geometric structures and generate clear boundaries during
unsupervised super-resolution, we propose a semantic loss,
which is defined as

Lsm = EIz

[‖ψ (GZY (Iz)) − ψ(Iz)‖1
]

+ EIy

[‖ψ (
GY Z (Iy)

) − ψ(Iy)‖1
]

,
(7)

where ψ(·) is the output semantic maps from a pre-trained
facial parsing network [36], the parameters ofwhich are fixed
in our training process. Our proposed Lsm is beneficial for
preserving semantic structures in the transformation between
domain Z and Y .

Semantic-adaptive sharpen module. To eliminate blur
and further enhance sharpness in reconstructed images, we
propose a semantic-adaptive sharpen module.

In order to sharpen images, some previous works [38,39]
introduce unsharp masking (USM) sharpeningmethod. For a
given image I , they first implement Gaussian blur on I , and

USM Result Original Image Blurry Image

＝ ➖➖

Fig. 3 Unsharp masking (USM) sharpening method. From left to right,
we show the result of USM method, the original image, and the blurry
image. The USM result can be calculated by subtracting the blurry
image from the original image, as shown in Eq. 8

then subtract the blurring result from I . As shown in Fig. 3,
the result of USM is much sharper than the original image.
The USM sharpening process can be described as

Î = I − ω ∗ Iblur
1 − ω

= (1 + λs)I − λs Iblur ,

(8)

where Iblur is the image after Gaussian blur, ω is the coeffi-
cient, and λs = ω

1−ω
.

Encouraged by the success of USM method, we pro-
pose a semantic-adaptive sharpenmodule (SASM) to sharpen
reconstructed images. We utilize a convolutional layer with
fixed kernel to implement Gaussian blur. Besides, in order to
sharpen different facial components with different degrees,
we sharpen the components in various regions, respectively.
The sharping parameter of each region is learnable during
the training process. In this way, the reconstructed images
can be sharpened adaptively for different regions.

Specifically, as shown in Fig. 4, the semantic-adaptive
sharpen module consists of two Gaussian blurring layers, B1

and B2, which can generate a blurry image using the output
from the previous module. Given the image feature map I

′
z ,

the first convolutional layer generates its blurry resultB1(I
′
z).

The first-step sharpening result I
′′
z can be calculated by sub-

tracting B1(I
′
z) from I

′
z . Then we divide I

′′
z into different

facial regions through the element-wise product of I
′′
z and

its parsing map ψ(I
′′
z ). Each region is fed into the second

convolutional layer to get its sharpening result. Finally, we
combine these sharpened regions with I

′′
z to obtain the final

result of SASM.
The improved result I

′′′
z of semantic-adaptive sharpen

module can be described as

I
′′
z = (1 + λs) · I ′

z − λsB1(I
′
z) ,

I
′′′
z =

n∑

i=1

ψi (I
′′
z ) · ((1 + αi ) · I ′′

z − αiB2(I
′′
z )) ,

(9)

where ψi (·) is the i-th region in parsing maps and αi is a
learnable parameter. The hyper-parameter λs is set as 0.4.

I'z β1(I'z) I''z

ψ(I''z)

I'''z

Fig. 4 Semantic-adaptive sharpen module (SASM). The SASM mod-
ule consists of two convolutional layers to implement unsharp masking
(USM) sharpening method. The facial parsing map ψ(I

′′
z ) instructs

SASM to sharpen different regions with different degrees adaptively
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The semantic-adaptive sharpen module sharpens different
facial regions adaptively and hence improves visual quality
remarkably.

Semantic-guided discriminator. There are characteris-
tic texture details in different facial components. In order to
recover diverse texture details, we propose a semantic-guided
discriminator Dsm , which can discriminate on different facial
components with different receptive fields under the guid-
ance of facial parsing maps ψ(·).

The discriminator loss of Dsm (including D1
sm , D

2
sm ,...,

and Dn
sm) is formulated as:

LD_sm = EIz ,Iy

[
1

n

n∑

i=1

(
‖Di

sm(ψi (Iy) · Iy) − 1‖2

+‖Di
sm(ψi (GZY (Iz)) · GZY (Iz))‖2

)]
,

(10)

where n is the number of parsing regions, and ψi (·) is the
i-th region in facial parsing maps. Then Dsm improves the
adversarial learning by providing an extra adversarial loss
for GZY :

Lsm
adv = EIz

[
1
n

∑n
i=1‖Di

sm (ψi (GZY (Iz)) · GZY (Iz)) − 1‖2
]
.

(11)

By incorporating these losses, the full objective is defined as

min{GY Z ,GZY ,Ggra}
max{DY ,DZ ,Dsm }L = Ladv + λ1Lsm

adv + λ2Lcyc

+ λ3Lidt + λ4Lsm + λ5Lgra_s + λ6Lgra_p , (12)

where the hyper-parameters λ(·) control the importance of
each loss term.

4 Experiments

4.1 Datasets and implementation details

We build an unpaired dataset from CelebA-HQ dataset [40]
for unsupervised face super-resolution. We first select 2000
images in different identities and bicubically downscale them
to the size of 256×256 as HR images of the training dataset.
Then we select other 2000 images and bicubically down-
scale them to the size of 64×64 as LR images of the training
dataset. TheLR images andHR images are in different identi-
ties. Then we randomly select 500 images from CelebA-HQ
dataset and downscale them to the size of 256 × 256 and
64×64 as testing dataset. The constructed dataset and codes
can be found in .

In our experiments, the super-resolution scale factor is set
as ×4. The hyper-parameters of loss terms are empirically
set as: λ1 = 0.1, λ2 = 10, λ3 = 0.5, λ4 = 0.4, λ5 = 50, and

λ6 = 0.5. All experiments are trained for 4 × 105 iterations
on an Ubuntu18.04 server with a Intel Core i7-9700K CPU
at 3.60GHz and a Nvidia RTX 2080Ti GPU. Our model is
implemented usingPytorch. The optimizer isAdam [41]with
β1 = 0.5, β2 = 0.999. The initial learning rate is 2 × 10−4

and halved after 2 × 105 iterations. The training process of
our method takes about 40 hours. The number of parameters
of each module is shown in Table 2.

As for network structures, Ggra and GY Z are of the same
network structure. It consists of four pairs of up-sample and
down-sample convolutional layers, as well as nine residual
blocks. In addition to the above network layers,GZY consists
of an RRDB block [7], three additional convolutional layers,
and a proposed semantic-adaptive sharpenmodule.Discrimi-
nator Dsm consists of three basic discriminators that process
on different facial regions. For discriminator DZ , DY , and
each basic discriminator in Dsm , we follow the PatchGAN
discriminator structure of Pix2Pix [42].

4.2 Qualitative results

We compare our proposed method with several state-of-
the-art unsupervised super-resolution methods: ZSSR [37],
DSGAN [15], and CinCGAN [28]. The illustration of com-
parisonwith othermethods is shown inFig. 5.Wecanobserve
that our proposed GESGNet can reconstruct more realistic
and high-fidelity face images and preserve finer details than
the others. ZSSR reconstructs HR images with low-quality
and coarse details. DSGAN produces distorted geometric
structures, obvious artifacts, and unnatural colors. CinC-
GAN can recover images with satisfactory quality, but the
lack of semantic restriction leads to blurry facial geomet-
ric structures. Compared to these methods, our method can
reconstruct photo-realistic HR images approximating to the
HR ground truth. The reconstructed images of our method
are with accurate geometric structures and very clear bound-
aries among facial components. Besides, our reconstructed
images are with diverse and fine-grained details, such as tex-
tured hairs, natural skins, and sharp edges.

We also compare our methodwith a state-of-the-art super-
vised super-resolution method: ESRGAN [7]. ESRGAN can
reconstruct acceptable HR results, but the generated facial
components, such as eyes and hairs, are not realistic enough.
Besides, ESRGAN is trained in a supervised manner and
shows weak performance if there is a large gap between
LR domain and HR domain. In our method, we first use
pre-trained ESRGAN to transform the LR domain X into
an intermediate HR domain Z , then we focus on improv-
ing unsupervised super-resolution performance. Compared
to ESRGAN, our proposed method can not only tackle
unsupervised super-resolution, but also reconstruct more
photo-realistic and fine-grained HR images. The qualitative
comparison indicates that our proposed method can recon-
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struct HR images with better visual quality than the other
methods.

4.3 Quantitative results

Toquantitatively evaluate ourmethod,we utilize several pop-
ular metrics: Peak Signal to Noise Ratio (PSNR), Structural
similarity (SSIM), and Learned Perceptual Image Patch Sim-
ilarity (LPIPS) [43]. Moreover, we apply an effective face
alignment model FAN [44] to evaluate the performance of
preserving identity information. We utilize FAN to extract
68 landmarks from reconstructed images and ground truth
HR images, then calculate mean square error (MSE) among
the coordinates. We compare our method with several unsu-
pervised super-resolution methods, ZSSR, DSGAN, and
CinCGAN, as well as a supervised method, ESRGAN.

As shown in Table 1, our proposed GESGNet is supe-
rior to ZSSR, DSGAN, and CinCGAN in all metrics. Our
method shows good performance on PSNR metric, indicat-
ing that our method can reconstruct high-quality images with
pixel-wise accuracy. The highest SSIM values demonstrate
that our method can preserve the best geometric structures
when super-resolving face images. Ourmethod also achieves
the best performance on LPIPS metric. This indicates that
our method can super-resolve images with the best percep-
tual quality. The best alignment MSE shows that our method
can preserve identity information and retain facial geometric
structures much more accurately than other methods.

ESRGAN is a supervised super-resolution method. It
achieves the best PSNR score, indicating its good pixel-wise
performance. Compared to ESRGAN, our method obtains
better SSIM, LPIPS, and MSE scores, which indicates our
proposed method can reconstruct HR images with overall

CinCGAN

GT

(Ours)

DSGAN

LR

ZSSR

GESGNet

ESRGAN

Fig. 5 Comparison of super-resolution results. From up to down, we show the input LR images, results of ZSSR [37], DSGAN [15], CinCGAN
[28], ESRGAN [7], our proposed method, and the ground truth HR images
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Table 1 Quantitative results of
ZSSR [37], DSGAN [15],
CinCGAN [28], ESRGAN [7],
and our proposed method

Method Metric Time
PSNR↑ SSIM↑ LPIPS↓ MSE↓

ZSSR 29.785 0.661 0.374 24.080 0.031s

DSGAN 28.664 0.601 0.241 18.590 0.067s

CinCGAN 29.248 0.640 0.252 12.664 0.094s

ESRGAN 30.120 0.669 0.195 5.9561 0.048s

GESGNet (Ours) 29.831 0.673 0.181 5.367 0.126s

The best result of each metric is shown in bold

Table 2 The number of training parameters

Module GZY GY Z Ggra DZ DY Dsm

Para. (×106) 50.29 45.59 45.59 2.76 2.76 8.29

higher quality. The reconstructed HR images of our method
are more photo-realistic and with more accurate geometric
structures.

Moreover, we compare the computational efficiency of
our proposed method with ZSSR [37], DSGAN [15], CinC-
GAN [28], and ESRGAN [7]. As shown in the last column of
Table 1, our method consumes only a little longer run-time,
but can reconstructHR imageswith significantly higher qual-
ity than other methods.

4.4 Ablation study

In order to validate the effectiveness of the proposed method,
we conduct several ablation studies. We take a CycleGAN
model [35] with Ladv , Lcyc, and Lidt as baseline. The imple-
mentation details of ablation study can be found in Table 3.

The qualitative results of ablation study are shown in
Fig. 6. It is obvious that the baseline model generates low-
quality results with distortions and artifacts. By comparing
(a) and (b), we can observe that Lsm contributes to accu-
rate geometric structures and eliminate distortions on local
details, such as eyes and mouths in (a). The results of (c) are
much sharper andmore high-fidelity than (b),which indicates
that the gradient branch and two gradient losses contribute

(a)

(b)

(c)

(d)

(e)

Fig. 6 SR results of our proposed method and its variants

to sharp edges, and improve overall performance. The com-
parison between (c) and (d) shows that Dsm benefits diverse
and fine-grained details, such as thin hairs and skin textures.
The sharper facial components in (e) show that the semantic
adaptive sharpness module can further sharpen and improve
the reconstructed results.

The quantitative results of ablation study are shown in
Table 3. We can observe that semantic loss improves the per-
formance on SSIM and alignmentMSEmetrics significantly,

Table 3 Quantitative results of our proposed method and its variants

No. Method Metric

Module Loss PSNR↑ SSIM↑ LPIPS↓ MSE↓
(a) Baseline 30.186 0.647 0.212 6.029

(b) Baseline Lsm 29.711 0.670 0.210 5.672

(c) Baseline+Ggra Lsm + Lgra_s + Lgra_p 29.476 0.682 0.194 5.413

(d) Baseline+Ggra + Dsm Lsm + Lgra_s + Lgra_p + Lsm
adv 29.650 0.675 0.186 5.468

(e) Baseline+Ggra + Dsm+SASM Lsm + Lgra_s + Lgra_p + Lsm
adv 29.831 0.673 0.181 5.367

The best result of each column is shown in bold
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CinCGAN

(Ours)

DSGAN

LR

ZSSR

GESGNet

ESRGAN

Fig. 7 SR results on real-world images. From up to down, we show the
input LR images, results of ZSSR [37], DSGAN [15], CinCGAN [28],
ESRGAN [7], and our proposed method

indicating its ability to maintain geometric structures. Note
that the statistical gradient loss and pixel-wise gradient loss
are applied simultaneously for gradient branch Ggra . Hence,
we evaluate the effectiveness of Ggra and the two gradient
losses together. By comparing (b) and (c), we can observe
that Ggra and the two gradient losses improve perceptual
quality and geometric structures. The better LPIPS score in
(d) and the better MSE score in (e) show that the proposed
semantic guidance mechanism is beneficial for preserving
perceptual consistency and geometric structures.

4.5 Experiments on real-world images

We also implement experiments on real-world images from
FDDBdataset [45]. Because there is no ground truth, we only
show qualitative comparisons.

As shown in Fig. 7, Our method shows good performance
on real-world images. The results of ZSSR are of low quality.
DSGAN introduces artifacts in reconstructed results. CinC-
GAN reconstructs HR images with severe distortions; some
facial components are even in the wrong position. The per-
formance of ESRGAN on real images is not as well as that in
Sect. 4.2, due to the large domain gap in real-world setting. In
contrast, our proposed method can generate photo-realistic
and visually reasonable results, with very few artifacts.

5 Application

5.1 Post-generation image enhancement

Recently, a large number of image generation methods [42,
46–48] have been proposed, which can generate high-quality
images with fine-grained details. However, it requires expen-
sive computational resources to generate high-resolution
images directly through these complicated networks. To
tackle this problem, several researchers [49,50] employ
super-resolution methods as post-process enhancement tools
to generate high-quality images with low resource consump-
tion. Since our proposed method can reconstruct photo-
realistic high-resolution images, it can be used as a post-
process enhancement tool for image generation tasks. We
conduct image-generation experiments and then super-resolve
the generated images through our proposed method to vali-
date its ability for post-process enhancement.

Experimental setting and results. We generate face
images through StyleGAN2 [47] and super-resolve the
generated images through our proposed GESGNet as a
post-process enhancement. First, We train StyleGAN2 on
CelebA-HQ dataset [40] to generate face images with the
size of 256 × 256 and 64 × 64, respectively. All of exper-
iments are conducted with 1.0 × 105 iterations. Then we
super-resolve images with the size of 64 × 64 to the size of
256×256 through our trained GESGNet model, the training
details of which can be found in Sect. 4.1.

Evaluation.Because there is no ground truth when gener-
ating images through StyleGAN2, we only show qualitative
results. Figure 8a shows images generated by StyleGAN2
with size of 64 × 64. Figure 8b shows images in row (a)
super-resolved by our proposed GESGNet. Figure 8c shows
images generated by StyleGAN2 with size of 256× 256. As
shown in Fig. 8b,we can observe that the images enhanced by
our method are almost photo-realistic as the high-resolution
images generated directly by StyleGAN2. Note that generat-
ing images with the size of 256×256 by StyleGAN2 directly
consumes about twice time as generating images with the
size of 64 × 64. This demonstrates that our proposed GES-
GNet can be used as a post-generation image enhancement
tool, which saves computational resources while enhancing
image quality significantly.

5.2 Low-resolution face recognition

Face recognition has been a popular task in the field of
computer vision for several decades. However, most state-of-
the-art face recognition methods achieve good performance
on datasets with high-resolution images. The recognition
accuracy of these methods decreases dramatically in some
practical applications, such as video surveillance, because the
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(c) StyleGAN2

(256 256)

(a) StyleGAN2

(64 64)

(b) Ours

(256 256)

Fig. 8 Qualitative results of our proposed method as a post-process enhancement tool. From up to down, we show the images generated by
StyleGAN2 with size of 64 × 64, the former images with a post-process through our method, and the images generated by StyleGAN2 with size
of 256 × 256

input images are of low resolution. To address this issue, sev-
eral efforts [51–53] have been made to super-resolve images
before face recognition,which successfully improves the per-
formance for low-resolution face recognition.

Our proposed GESGNet can reconstruct photo-realistic
high-resolution face images from the low-resolution coun-
terparts, and thus can boost face recognition performance on
low-resolution face images. To demonstrate its performance,
we conduct face recognition experiments on low-resolution
face images, original high-resolution face images, and recon-
structed high-resolution face images by our proposed GES-
GNet method and other SR methods.

Experimental setting and results. We perform super-
resolution and face recognition experiments on LFWdataset,
images of which are resized to 256 × 256 as original high-
resolution images and64×64 as low-resolution images. First,
we select 6409 images of 3705 identities in LFW dataset
[54] as training dataset for face super-resolution, while other
1403 images of 685 identities as testing dataset. Second, we
train ZSSR, DSGAN, CinCGAN, ESRGAN, and our pro-
posed GESGNet on the training dataset. All experiments are
conducted with the same implementation details as that in
Sect. 4.1. Thenwe evaluate the super-resolution performance
of the above methods on the testing dataset. Afterward,
we employ a pre-trained state-of-the-art face recognition
model (SphereFaceNet [55]) to conduct face recognition on
low-resolution images, original high-resolution images, and
reconstructed high-resolution images by the above super-
resolution methods, respectively. We compute the cosine
distance of extracted features to evaluate face recognition
accuracy.

Evaluation. Table 4 shows the performance compar-
isons of our proposed method and other super-resolution
methods for low-resolution face recognition. We com-

Table 4 Face recognition accuracy on LFW dataset [54]. From up to
down, we show the face recognition accuracy on LR images, original
HR images, as well as reconstructedHR images by ZSSR [37], DSGAN
[15], CinCGAN [28], ESRGAN [7], and our proposed method

Method Accuracy (%)

Original HR images 99.1

LR images 58.3

ZSSR 76.3

DSGAN 53.7

CinCGAN 77.3

ESRGAN 82.4

GESGNet (Ours) 86.7

The best result is shown in bold

pare the face recognition accuracy on LR images, origi-
nal HR images, and reconstructed HR images by ZSSR,
DSGAN, CinCGAN, ESRGAN, and our proposed GES-
GNet. We can observe that face recognition accuracy on
low-resolution (LR) images is much lower than that on orig-
inal high-resolution (HR) images. Several super-resolution
methods, including ZSSR, CinCGAN, ESRGAN, and our
method GESGNet, can improve face recognition perfor-
mance by reconstructing HR face images from LR inputs.
However, the face recognition accuracy on HR images
reconstructed by DSGAN is even lower than the accu-
racy on LR images, because the facial geometric structures
are distorted in super-resolution process. We can observe
that our proposed method achieves the highest face recog-
nition accuracy. This demonstrates that our method can
preserve geometric structures and identity information, and
thus significantly improves low-resolution face recognition
performance.
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6 Conclusion

In this paper, we have proposed an unsupervised face
super-resolution network with gradient enhancement and
semantic guidance. A gradient enhancement branch is pro-
posed to generate sharp edges and preserve structures with
the restriction of statistical gradient loss and pixel-wise gra-
dient loss. Furthermore, a semantic guidance mechanism,
including a semantic-adaptive sharpen module, a semantic-
guided discriminator, and a semantic loss, is proposed to
further preserve geometric structures and generate diverse
details. Experiments show that our GESGNet can reconstruct
photo-realistic high-resolution face images, significantly out-
performing state-of-the-art methods.
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