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Abstract
With the pervasiveness of secured biometric authentication applications, the fingerprint-based identification system has 
fascinated much attention recently. However, the major detriment is their recognition sensors are vulnerable to presentation 
or spoofing attacks from fake fingerprint artifacts. To resolve these issues, a viable anti-deception countermeasure known 
as presentation attack detection (PAD) mechanism is developed. As handcrafted feature-based classification techniques 
exhibit encouraging results in computer vision, they are widely employed in fingerprint spoof detection. Notably, the single-
feature-based techniques do not perform uniformly over different spoofing and sensing technologies. In this research work, 
we expound a new hybrid fingerprint presentation attack detection approach (HyFiPAD) that discriminates live and fake 
fingerprints using majority voting ensemble build on three local and adaptive textural image features. We propose a new 
descriptor (i.e., a variant of LBP) which is termed as Local Adaptive Binary Pattern (LABP). Thus, the notion of proposed 
LABP is used to extract more detailed micro-textural features from the fingerprint images. Our LABP features are combined 
with an existing Complete Local Binary Pattern (CLBP) descriptor to learn two respective SVM classifiers and additionally 
a sequential model is trained with the manually extracted Binary Statistical Image Features (BSIF). The experiments are 
performed on benchmark anti-spoofing datasets namely; LivDet 2009, LivDet 2011, LivDet 2013, and LivDet 2015, where 
an average classification error rate (ACER) of 4.11, 3.19, 2.88, and 2.97% is, respectively, achieved. The overall experi-
mental analysis of the HyFiPAD demonstrates superiority against majority of the state-of-the-art methods. In addition, the 
proposed technique yields a promising performance on cross-database and cross-sensor liveness detection tests, claiming 
good generalization capability.
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1  Introduction

With an expeditious growth in the demand for secured 
authentication, the conventional methods are being replaced 
with contemporary biometrical approaches as they cannot be 
stolen, misplaced, transferred or forged [1, 2]. Dominantly, 
the fingerprint biometric is widely deployed for this task due 
its higher reliability and low sensing cost with user’s con-
venience. Thus, the fingerprint-based recognition systems 
are utilized in several applications including law enforce-
ment, border control, cell-phone authentication, physical and 

logical access, citizen identification, healthcare and subsi-
dies, commercial applications and public security [3]. How-
ever, these systems endure a variety of attacks threatening 
the security that has hindered their use in various computing 
applications. In a biometric system, out of eight vulnerable 
attack points, the presentation or spoof attacks is regarded as 
most commonly attempted as it does not require any internal 
information [4]. Generally, the presentation attack in fin-
gerprint biometrics is an attempt by an imposter to capture 
the biometrical subsystem by presenting a fake fingerprint 
artifacts usually created from glue, wax, and play-doh. Few 
samples of fingerprint artifacts created through cooperation 
and non-cooperation of users and thereby acquired with a 
variety of sensing devices are shown in Fig. 1.

To alleviate presentation attacks, a fingerprint PAD 
(FiPAD) a.k.a liveness detection module is integrated with 
the biometric recognition system which serves as a security 
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check. Broadly, the PAD mechanism may be treated as a 
binary classification problem that is accomplished through 
computing the difference of micro-textural or image quality 
characteristics of live or fake fingerprint traits. Contemporar-
ily, the development of FiPAD mechanisms has become an 
active field of research that has witnessed numerous contri-
butions to offer effective liveness detection solutions. While 
the use of single or multiple image features-based PAD 
techniques has resulted in accurate detection systems, per-
formance and generalization capability to unknown attacks 
(anomaly detection) [6–10] has been limited. Additionally, 
one of the hefty tasks of traditional FiPAD techniques is 
to decide upon the appropriate number and type of image 
features for classifying the given image as real or fake. The 
field of deep learning-based PAD is emerging as a potential 
alternate compared to traditional methods in current time. 
There are multiple reasons behind it, like automatic deep 
feature extraction and their improved accuracy. However, 
the limitations associated with these techniques include an 
added overhead and larger training dataset requirement. Fur-
thermore, deep learning-based PAD mechanisms necessitate 
particular hardware infrastructure. Whereas, the traditional 
classifier-based approaches may also perform well with 
smaller training datasets with higher discrimination capa-
bility of the feature set. The texture-based approaches that 
utilize single image features such as [8, 10–17] demonstrate 
limitations to execute uniformly over different fingerprint 

materials and sensing devices. To counter these problems 
few multiple feature-based approaches have been reported 
in past such as WLD + LPQ [14], PHOG + SURF [18], and 
PHOG + SURF + Gabor [18] which results in comparatively 
higher ACER (%) of 7.87, 7.32 and 6.90 respectively. Thus, 
to further improve the performance, our HyFiPAD model 
relies on extracting three micro-textural textural features 
from a single fingerprint.

A plentiful of handcrafted feature descriptors is avail-
able for the task of image classification problems like LBP, 
LPQ, LCP, SIFT, SURF, HoG, PHOG, and WLD. The origi-
nal LBP feature set encodes the information based only on 
basic relationship among the central pixel with its neigh-
bors. One of the variant of LBP (CeLBP) utilizes global 
threshold for computing binary code that may result in lower 
discrimination capability as it extract comparatively lesser 
significant information from local region. To address this 
issue, we propose a new variant of local features termed 
as LABP which calculates the binary codes by making 
use of dynamically adapting a new threshold. The newly 
proposed LABP features are combined with existing Com-
plete Local Binary Pattern (CLBP) and BSIF to enhance 
the overall performance of the HyFiPAD model. Moreover, 
CLBP features are yet to be explored for FiPAD task that 
may be a constructive descriptor to minimize the effect of 
rotational variance in the images. One of the problems in 
fingerprint images involves unusual characteristics due to 

Fig. 1   Fake fingerprint images acquired from: a Biometrika sensor 
using non-cooperative method, b ItalData sensor using Non-coopera-
tive method, c CrossMatch sensor by using with cooperative method, 

d Swipe sensor by using with cooperative method (adopted from Liv-
Det 2013 DB [5])
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several inconsistencies encountered during capturing pro-
cess. To conquer these problems, the BSIF descriptor is 
popularly useful for encoding the texture information into 
a feature set by utilizing filters that are learned from the 
natural images unlike other descriptors such as LPQ, LCP, 
SIFT, HoG and many others. The learning using BSIF offers 
a flexible way to adjust the length of descriptor and also 
helps to adapt in anti-spoofing task involving unusual image 
properties like blurring, imperfect alignment, and rotation. 
In the light of aforementioned challenges, and to further 
improve the performance, the obvious choice for our novel 
hybrid PAD model is to exploit the key characteristics of the 
proposed LABP together with CLBP and BSIF descriptors. 
Indeed, our experiments that are performed on LivDet 2009 
to LivDet 2015 datasets manifest that our selected individual 
feature descriptors do not perform well to separate finger-
print images into live and fake classes. Hence, all the chosen 
feature set complements each other to yield excellent clas-
sification accuracy.

To the best of our knowledge, the literature affirmed a few 
hybrid techniques for FiPAD mechanism that are based on 
ensemble learning (i.e., Random Forest, AdaBoost) using 
multiple features [18, 14]. With this motivation, our work 
focus to design a novel hybrid approach that makes use of 
enhanced image textural features to build an ensemble with 
traditional SVM classifier and a basic sequential model. A 
viable solution is to build a majority voting-based ensemble 
using three classifiers trained on selected feature set.

Therefore, this work broadly aims to develop a generalized 
hybrid technique that is not impacted by the type of fabrication 
material used for spoof creation. To attain this, we train and 
test our model on different dataset (cross-database) and with 
different sensing technologies (cross-sensor). In summary, the 
major contributions of this work are listed as follows:

	 i.	 The proposed LABP descriptor used in the HyFiPAD 
technique produces robust feature set with higher dis-
crimination potential.

	 ii.	 The complementary combinations of the proposed 
LABP together with CLBP and BSIF offer superior 
performance.

	 iii.	 An ensemble based on majority voting created with 
SVM and sequential model yields additional improve-
ments in performance.

	 iv.	 The HyFiPAD approach exhibits promising generali-
zation capabilities across unknown attack scenarios 
evaluated on two publically available anti-spoofing 
datasets.

	 v.	 The experimental results demonstrate the effective-
ness of proposed approach in terms of performance 
as compared to existing state-of-the-art methods.

The remainder of the paper is organized as follows: 
Sect. 2 presents a review on recent advancements in FiPAD 
techniques. Section 3 illustrates the framework and algo-
rithms of the proposed HyFiPAD approach. In Sect. 4, the 
experimental benchmark datasets along with performance 
protocol and a detailed experimental analysis are systemati-
cally discussed. In last, the conclusions as well as the future 
scope of this work are briefly presented in Sect. 5.

2 � Related work

Due to the importance of the counter mechanisms and 
recent advancements in fingerprint-based recognition sys-
tems, it becomes requisite to detect the liveness of the pre-
sented trait as intruders can easily counterfeit the authen-
tication system by using various presentation instruments 
(PAIs). Consequently, the imperative research challenge is 
to discriminate the live fingerprint from forged one, which 
has been inspirited by the ISO-Standard IEC 30107-3 
E. During the past decades, the fingerprint anti-spoofing 
techniques have witnessed different trends based on a vari-
ety of key concepts as shown in Fig. 2. Usually, FiPAD 
approaches are separated into two main categories based 
on the type of liveness indicator, i.e., (a) hardware-based 
analysis (b) software-based analysis. The former involves 
an additional sensing device along with the fingerprint rec-
ognition system to measure the vitality characteristics such 
as temperature, pulse-oximetry [19], blood pressure [20], 
odor [21], skin-impedance [22], and etc. for classifying the 
live and fake fingerprint traits. In contrary to former, the 
software module processes the single (static approach) or 
multiple (dynamic approach) fingerprint images for explor-
ing their image characteristics to detect liveness properties 
[23, 24]. The handcrafted feature-based methods (static or 
dynamic) work by extracting the textural features [11, 12, 
18, 25–30] or pore-based [31, 32] information from the 
fingerprint images, whereas dynamic approach utilizes the 
skin deformation [33, 34] or sweat secretion [35–37] at 
fingertip as an indicator for FiPAD. Due to its remarkable 
results in PAD mechanisms, software-based approaches 
have received greater attention these days. Particularly, 
texture-based approaches can discover features or pat-
terns from images that could be targeted to examine the 
difference between two classes of fingerprint traits. Our 
proposed approach is based on extracted handcrafted 
micro-textural features from the fingerprint image; there-
fore, this work purely comes under software-based FiPAD 
approach. Thus, the brief literature review in this section is 
limited to pioneer contributions related to software-based 
mechanisms.
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2.1 � Handcrafted feature‑based approaches

Most of the conventional handcrafted (manually extracted) 
feature-based PAD approaches are investigated in the early 
years of 2000s, where a variety of image descriptors were 
employed for the task of fingerprint PAD. The handcrafted 
feature-based descriptors extract texture, color, fingerprint 
pores, perspiration, and edge information from a given fin-
gerprint images to discriminate between live and fake traits. 
Early in 2005, the first proposal of texture-based FiPAD is 
established by Moon et al. [11] and their concept is centered 
around fingerprint surface analysis by using wavelet feature. 
The Wavelet analysis facilitates to explore the input signal 
from images with various scales. Therefore, it is used to min-
imize the outcome of valley or ridge pattern while surface 
coarseness estimation is the main basis of fingerprint live-
ness detection in this method. Nikam et al. [12] introduced 
wavelet energy features along with LBP histograms. The 
LBP is used to capture textural information whereas wavelet 
energy features describe the ridge orientation and frequency 
information. Zhang et al. [13] also suggested wavelet analy-
sis along with LBP for detecting the liveness of the finger-
print. They developed a scheme where the wavelet analysis 
is used for obtaining the residual noise and de-noised image. 
The images are then divided into blocks with equal size and 
LBP features are extracted from the histograms for FiPAD. 
Although, LBP is a powerful image descriptor but there is a 
limitation of small support area for LBP. Therefore, Jia et al. 
[38] address the limitation of original LBP by employing the 
multi scale LBP (MSLBP) for fingerprint liveness detection. 
The MSLBP can be implemented in two ways; the first is to 
accomplish it by increasing the operator radius and other is 
to apply filters and then LBP operator for the fixed radius. 
Ghiani et al. [30] proposed a PAD method that is based on 
Local Phase Quantization (LPQ). The LPQ is in-variant to 
rotation and is insensitive to the effects of blurring; hence, 
it is used in fingerprint liveness detection as it represents all 

the spectrum characteristics of an image in a compressed 
feature representation. In another work, Ghiani et al. [39] 
designed a PAD technique based on BSIF algorithm. BSIF 
is a local image descriptor which is created by using binary 
operation on the responses obtained from the linear filters. 
The filters as oppose to previous binary descriptors are learnt 
from the natural images by making use of independent com-
ponent analysis (ICA). The features so obtained are used 
for fingerprint liveness detection. The authors extend their 
work in [7] by thoroughly exploring the BSIF features for 
extracting textural information. Likewise, Li and Chan [40] 
presented a technique by revising the original BSIF descrip-
tor where 2-Dimensional Gaussian distribution function is 
applied on the BSIF image. Gragnaniello et al. [14] proposed 
a method using weber local descriptor (WLD) which is an 
efficient image descriptor that is inspired by the Weber’s law. 
It contains two main modules, namely differential excita-
tion and orientation. Then, joint histograms generated from 
both the components are used to build the discriminating 
FVs. Though the original WLD is a robust local descriptor 
but two imperfections were observed in it. First, the ori-
entation calculation only considers the pixels in horizontal 
and vertical directions, which does not adequately reflect 
the gradient orientations. Next, the differential excitation 
component of original WLD accumulates the sum of the 
differences between the center pixel and its neighbors. The 
positive and negative differences will counteract each other, 
which degrades the effectiveness of descriptor. Aforemen-
tioned issues are addressed with the development of a novel 
Weber local binary descriptor (WLBD) by Xia et al. [10]. To 
design an efficient descriptor, the original LBP is combined 
with Weber’s law for constructing the local binary differen-
tial excitation (LBDE). Here, a function used to obtain the 
uniform LBD that describes the change in amplitude with 
respect to neighborhood pixels. The local binary gradient 
orientation (LBGO) is defined to characterize the orientation 
related information. Hence, WLBD is an amalgamation of 

Fig. 2   A classification of 
fingerprint liveness detection 
techniques
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LBDE and LBGO to generate discriminating features from 
images. Dubey et al. [18] introduced a hybrid technique that 
use low level gradient features from SURF, PHOG as well 
as texture features are extracted from Gabor wavelet, which 
are then coalesced by using dynamic score level integration. 
The framework is divided into three main blocks such as 
image pre-processing, feature extraction, and a classifica-
tion stage. In image pre- processing stage, the quality of 
images is enhanced by first applying the crop operation and 
then increasing the perception information with histogram 
equalization technique. In the next step, the images with 
different scales and rotations are captured from multiple sub-
jects and with various scanners. The SURF is invariant to 
illumination, scale and rotation, on the other hand, PHOG 
is used to extract shape information for achieving extra dis-
criminating features. Xia et al. [6] extracted features from 
image gradients and generate a co-occurrence array. They 
applied quantization operation on each image and calculate 
their horizontal and vertical gradients. Similarly, second and 
third order array is computed by truncating the gradients. 
The extracted features are then used for image classifica-
tion. Kim et al. [15] came out with a new PAD model that is 
based on Local Coherence Pattern (LCP), where the differ-
ence of the dispersion in the image gradient field between 
the live and fake fingerprints is focused. The coherence is 
computed from the fingerprint image. Then LCP histogram 
is used to create a FV for training the PAD model training 
and classification. In analogues to prior research, Jiang and 
Liu [8] make use of Uniform LBP (ULBP) in spatial pyra-
mid and these features are used to train an SVM classifier to 
discriminate live and fake fingerprint traits. In a recent work, 
Agarwal et al. [41] employed the notion of ensemble learn-
ing by adopting stacking and bagging method. The data-
set is portioned into various subsets and LBP features are 
then extracted from each subset to train an SVM classifier. 
Recently, Gonzalez-Soler et al. [42] proposed an integrated 
approach in which local dense-SIFT descriptor is combined 
with three feature encoding techniques, namely Fisher Vec-
tor (FV), Vector of Locally Aggregated Descriptors (VLAD) 
and Bag of Words (BoW). The encoded features are used to 
train an SVM classifier. After training, the experiments are 
performed on LivDet 2011 to LivDet 2019, where the FV 
showed the best performance in realistic and more complex 
scenarios.

2.2 � Deep learning‑based approaches

With the emanation of deep convolution neural networks 
(DCNNs) and their outspread applications in pattern recog-
nition, deep learning-based PAD techniques have attained a 
momentous growth in recent years [43]. With this succes-
sion in deep learning, several attempts have been made by 

research community to apply deep feature-based extraction 
for fingerprint liveness detection.

Initially, in 2014 Nogueira and De Alencar [44] applied 
DCNN model for the first time in fingerprint PAD mecha-
nisms. They achieved the tasks of feature extraction and 
classification in two different stages, which further makes 
the system not to be optimized simultaneously. Then, Wang 
et al. [45] removed this limitation by introducing a DCNN-
based model named Finger-Net in which Softmax layer is 
applied as classifier which optimizes the feature extraction 
and classifier training task simultaneously by using back-
propagation pass. Nogueira et al. [46] elongated their model 
by incorporating the transfer learning concept, where they 
employed a pre-trained DCNN model named AlexNet [47]. 
The network is trained by VGG model as it increased the 
classification accuracy further by 2%. The authors com-
pared four distinctive models in which (two are CNNs pre-
trained on natural and fine-tuned with fingerprint images, a 
CNN model with random weights, and a conventional LBP 
approach) pre-trained CNNs can yield the state-of-the-
art results. Park et al. [48] and Toosi et al. [49] designed 
two different techniques where fingerprint images are first 
segmented to perform data augmentation and then voting 
strategy is applied to determine the liveness of fingerprint 
images. Lazimul and Binoy [50] trained a ConvNet archi-
tecture, and employed this model for fake and live class 
prediction. The discriminating features are extracted from 
pre-trained network, i.e., conception of transfer learning 
is adopted. The authors also applied image enhancement 
techniques in order to augment the accuracy of the overall 
system. Jung and Heo [51] proposed CNN architecture that 
makes use of ‘squared regression error (SRE)’ instead of 
fully connected layer. The SRE layer sets a certain threshold 
value which restraint the suitable level of false positive or 
negative rates. Souza et al. [52] proposed a DBM model to 
extract deep features from the fingerprint image, and these 
extracted features are fed to SVM classifier for discriminat-
ing live and fake fingerprint images. Zhang et al. [53] devel-
oped a new lightweight framework known as SlimResCNN. 
The network is called SlimResCNN as the adaptation of 
neural network structure on smaller datasets broadened the 
convolutional filters to twice and compressed the depths to 
an extent in contrast to original network structure. Their 
network consists of stacked residual blocks where the local 
patches are segmented from foreground region of fingerprint 
image using ‘center of gravity’ technique. After extraction 
the patches are fed to the model to overcome the problem 
of information loss due to up or down sampling of image 
size. The proposed model outperforms the state-of-the-art 
techniques and is also a winner of LivDet2017 competition. 
Yuan et al. [54] designed an improved DCNN model which 
is based on ‘Learning Rate Adaptive Adjustment’ process. 
The main goal of the proposed technique is to model a 
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structure that is not limited to the fingerprint image scale; 
therefore a new layer known as Image Scale Equalization is 
added in the middle of the fully concatenation layer and the 
last convolution layer. Uliyan et al. [55] proposed a novel 
DCNN model for fingerprint liveness detection on the basis 
of Deep Restricted Boltzmann Machine (DRBM) and Deep 
Boltzmann Machine (DBM). This multilayer architecture 
deals with complex textural patterns in an efficient manner. 
In the proposed method, after training a DBM, such structure 
has employed to extract deep level features from the gray-
scale fingerprint images. The KNN classifier is trained with 
the feature vectors, extracted by the DBM, to examine spoof 
forgeries. Another lightweight and efficient CNN architec-
ture, named FLDNet, is given by Zhang et al. [56] which 
overcomes the limitations of Global Average Pooling (GAP) 
in fingerprint liveness detection. The FLDNet consists of 
altered dense block structure where residual path is incor-
porated and this network effectively upgrades the detection 
accuracy. In another work, Zhang et al. [57] fused the task of 
fingerprint matching and spoof detection. The authors calcu-
lated the similarity between two fingerprints on the basis of 
Octantal Nearest-Neighborhood Structure (ONNS), where 
the minutia point closest to the central minutia is taken from 
each sector of an octant. Then, the liveness detection score 
from the fingerprint image is attained by employing modi-
fied Slim-ResCNN model. Finally, a score-level fusion is 
implemented on fingerprint matching and liveness detec-
tion results by generating score feature vector. Then, logistic 
regression is applied on the obtained score feature vector for 
discriminating live and fake fingerprint images.

Please refer ‘Appendix,’ where table illustrates the exist-
ing software-based FiPAD techniques with their key concept 
and performance. The summary points out that majority of 
the single descriptor-based FiPAD methods exhibits limited 
performance, while multiple feature-based methods offer 
improved results. Though, deep feature-based methods have 
been explored in state-of-the-art techniques, but there are 
several challenges that obstruct their effectiveness. Hence, 
this encourages us to develop a texture-based FiPAD models 
that yields enhanced performance with appropriate selection 
of robust discriminating features, learning approaches, and 
the integration of handcrafted features trained classifiers to 
create an ensemble.

3 � The proposed approach

The discriminative micro-textural features are advantageous 
for capturing similarity among adjacent pixel values to safe-
guard against spoof attacks. To achieve superior detection 
results, it is essential to train an appropriate PAD model 
that is based on significant features extracted from a suf-
ficient number of relevant images. To address the specific 

concerns related to existing state-of-the-art methods such 
as low discriminative power of single descriptor and use of 
single classifier, we follow to present a hybrid PAD tech-
nique that substantially improves the overall performance. 
To obtain detailed textural features form images, use of 
dynamic threshold for local regions is a better solution. The 
rotational variance in fingerprint images may be overcome 
by exploiting CLBP features. Apart from this, to address 
the issue of unusual characteristics introduced while captur-
ing the images, there is a need to utilize a robust descriptor 
such as BSIF. In the following subsections, we describe the 
underlying idea of HyFiPAD framework, feature sets, algo-
rithms, and learning algorithms together with the ensemble 
approach for fusing the outcome of multiple classifiers.

3.1 � The HyFiPAD framework

The potential of local patterns combined with the modified 
adaptive features may result in constructing more robust FVs 
that may significantly enhance the accuracy. To this end, we 
present a hybrid framework for FiPAD to accomplish the 
task of the anti-spoofing sub-module as illustrated in Fig. 3. 
The key concept of the proposed framework is to function in 
two phases that comprise of training and testing procedures. 
The training phase broadly covers a series of activities that 
are applied to fingerprint dataset such as pre-processing, FV 
extraction, building a ensemble on base estimators, and tun-
ing parameters of the model. The goal of the testing phase is 
to validate the HyFiPAD model on a randomly selected set 
of images covering different range of sensors and datasets 
for evaluating its accuracy. The detailed explanation of these 
stages is discussed in the following sections.

3.1.1 � Image pre‑processing

The motive of image pre-processing is to enrich the quality 
of fingerprint images. The acquired fingerprint images are 
usually of low quality as they are captured under different 
environmental conditions (i.e., dry or wet fingers, poor illu-
mination effect, and moisture in the air) through a variety of 
sensing devices. To prepare and enhance these images for 
handcrafted features-based model, the dataset is subjected 
to a series of image processing operations.

To eliminate the unnecessary background information, 
firstly the region of interest (ROI) is segmented from the fin-
gerprint images. Later on, we transform the colored images 
to gray scale for reducing the computational complexity. 
Indeed, in our approach, the color feature is not necessary 
to distinguish between the class of fake and live modali-
ties as it contains more information that append unneces-
sary complexity and takes more space in memory. To attain 
uniformity, the next phase resizes the fingerprint images to 
a dimension of 312 × 372. Further, to improve quality, we 
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apply the Histogram Equalization (HE) technique, which is 
used to stretch the intensity of input images to create normal 
distribution so that the active range of the image is fully 
normalized.

3.1.2 � Feature extraction

We present a brief description of image features that are used 
for designing the HyFiPAD. The PAD architectures that are 
built on the LBP feature descriptor have achieved substan-
tial performance, particularly for fingerprint anti-spoofing 
models. In the beginning, Ojala et al. [58] introduced the 
LBP descriptor to extract texture features as a binary string 
from a local region preferably in the N × N neighborhood by 
comparing the intensity value of the central pixel with its 
neighbors. The LBP code of a pixel is computed by using 
Eqs. (1) and (2). The feature vector (FV) is constructed by 
consolidating all the patterns for a given image.

where h indicates the number of the neighborhood of a cen-
tral pixel c and N represent the total number of pixels in the 
given region, i.e., 8, or 24. The function f computes the dif-
ference between the intensity levels of both pixels.

It is clear that the original LBP fails to discriminate 
the regions within the smaller or larger variations in the 

(1)LBPN,R =

h−1
∑

h=0

f (pc − ph)2
h

(2)f (d) =

{

1, ifd ≥ 0

0, otherwise ifd < 0

intensity levels which usually results in the erroneous com-
putation of LBP codes. Moreover, the small change in the 
intensity values due to the presence of noise may lead to 
inaccurate computation of these codes. In another variant 
LBP as CLBP, the threshold for computing the binary code 
is calculated from the intensity levels of the whole image 
which result in capturing less significant information from a 
local image region. Therefore, to lessen these effects, we put 
forward a new image descriptor based on adaptive threshold 
and it is then combined with CLBP and as well as the BSIF 
feature descriptors. The fundamental approach which is 
adopted to extract micro-textural image features along with 
their pseudo-codes is described in following subsections.

3.1.2.1  Proposed local adaptive binary pattern (LABP)  To 
overcome the issue of intensity variations in existing ver-
sions of LBP, we design a modified descriptor (LABP) that 
utilize an adaptive or dynamic threshold for each central 
pixel during the process of computation of the binary codes. 
The adaptive threshold ensures to gather refined informa-
tion of the surrounding pixels to crop the micro-level details 
during feature extraction. The LABP code for a given image 
may be computed by using Eqs. (3) and (4).

(3)LABPN,R =

n−1
∑

h=0

f (pc − ph)2
h

(4)f (d) =

{

1, ifd ≥ DT

0, otherwise ifd < 0

Fig. 3   Framework of the proposed HyFiPAD technique
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where DT is the dynamic threshold that is computed by 
averaging the intensity level of all the neighboring pixels 
of central pixel pc. Therefore, LABP code for a given image 
is more discriminative and free from local variations in a 
specific region of the image. The dynamic threshold is cal-
culated for each separate region by using the expression as 
given in Eq. (5).

The adaptive threshold for computing the LABP code 
extracts more specific characteristics from a particular 
region of an image. It generates a feature descriptor that 
holds added discrimination power as compared to the origi-
nal LBP or CLBP. Hence, our proposed LABP features make 
use of adaptive threshold throughout the whole process in 
comparison with CLBP, where a single threshold value is 
used. Figure 4 displays the process of computing the LABP 

(5)DT =

∑n−1

h=0
Ph

n

code for a given image. The algorithmic steps for extract-
ing the LABP features from a fingerprint image I(x, y) are 
shown in Fig. 5.

For an input image I(x, y), a distinct adaptive threshold 
is computed for a local given region that is used to compute 
the LABP code for all the pixels. The adaptive or dynamic 
threshold of a central pixel is the average of intensity levels 
of all its neighboring pixels. Finally, the normalized histo-
gram ‘h’ of this LABP image symbolizes the feature descrip-
tor of a given image I(x, y). In this manner, the micro-
textural LABP features are extracted from the fingerprint 
image. The features obtained for a sample fingerprint image 
using LABP descriptor are illustrated in Fig. 6.

3.1.2.2  Complete Local Binary Pattern (CLBP)  To cover 
specific textural properties of an image, Guo et al. (2010) 
[59] proposed an extended version of the original LBP. The 
descriptor compute three different LBP codes from a given 
region of the image; first by considering the sign bits of the 

Fig. 4   An example of LABP code computation for a given image

Fig. 5   An algorithm to extract 
LABP features from an image 
I(x, y)
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difference of central pixel and neighboring pixels; second, 
the magnitude of the difference is compared with a pre-
decided threshold, and third by comparing the central pixel 
with the average of intensity level of all the pixels of an 
image. The sign LBP codes are computed by using Eqs. (6) 
and (7), and these are similar to the original version of LBP.

The magnitude LBP is computed by using Eqs. (8) and 
(9),

where T denotes the threshold which is computed by tak-
ing the average of the difference between central and all 

(6)SLBPN,R

(

xc, yc
)

=

h−1
∑

h=0

f (pc − ph)2
h

(7)f (d) =

{

1, ifd is + ve

0, otherwise

(8)MLBPN,R

(

xc, yc
)

=

h−1
∑

h=0

f (pc − ph)2
h

(9)f (d) =

{

1, ifd ≥ T

0, otherwise

the pixels of the image, i.e., T = mean|pc − pi| where i = 1, 
2, 3,…, N2 with an image of size N × N. Finally, the central 
LBP code is computed by using Eqs. (10) and (11).

where T is the average intensity of the whole image with 
size as N × N.

The aforementioned steps to compute CLBP image fea-
tures are summarized in an algorithm shown in Fig. 7. Given 
an image I(x, y), of size M × N, we first compute SLBP, 
MLBP, and CeLBP codes for each pixel (i, j). The CLBP of 
the image is obtained by consolidating these variants of LBP. 
Finally, the descriptor is constructed by using a normalized 
histogram of the CLBP image.

The visual and quantitative analysis of the CLBP features 
for a sample fingerprint image is depicted in Fig. 8. The cor-
responding discriminative information of the resultant CLBP 
features is clearly visible in Fig. 8d.

(10)CELBPN,R

(

xc, yc
)

=

h−1
∑

h=0

f (pc − ph)2
h

(11)f (pc), f (d) =

{

1, ifd ≥ T

0, otherwise

Fig. 6   An instance of image 
feature with LABP descriptor 
a original fingerprint image, b 
LABP image, c LABP histo-
gram

Fig. 7   An algorithm to extract 
CLBP features from an image 
I(x, y)
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3.1.2.3  Binarized statistical image features (BSIF)  Our 
approach make use of a third textural feature as introduced 
by Kannala et al. [60]. In this case, a binary string is com-
puted for all the pixels of a given image. The code value 
of a pixel may be considered as a local descriptor of the 
image intensity patterns in the pixel’s surroundings. Given 
an image segment P(u, v) of size q × t pixels, and assume a 
linear filter Xi of the same size, the response of the filter ri is 
computed by using Eq. (12).

where the vectors x and p denotes the pixels of Xi and P. The 
binarized feature bi is obtained by using Eq. (13).

For n linear filters, different convolutions results in a set 
of features that may be stacked in W of size n × q × t. The set 
of filters are derived by using a natural set of images where 
statistical independence of ri is maximized. The feature vec-
tors generated in this manner are used to construct a set of 
histograms to represent the feature descriptors of the images. 
Let there are n number of natural images denoted by Ii(x, y), 
where i = 1,2,3,…, 8. Suppose that, Xi be the filter of size 
11 × 11 pre-learned from ith image. The ith filter is con-
volved with the input image P(u, v) to compute the response 
ri(u, v). Further bi(u, v) is the binary response of the ith 
filter at pixel (u, v). In this way, the binary response of all 
the filters is computed at the pixels of the whole fingerprint 
image. These responses are used to generate a code for each 
pixel to construct a feature image. In the last, the normalized 
histogram of the BSIF image provides the resultant feature 
descriptor (Fig. 9).

An example of features extracted from the algorithm as 
applied on a sample fingerprint image with a set of filters 
derived from natural images is exhibited in Fig. 10.

(12)ri =
∑

u,v

Xi(u, v)P(u, v) = xT
i
p

(13)bi =

{

1, ri > 0

0, otherwise

3.1.3 � Classification stage

Once the image features are extracted by using the selected 
descriptors, the next task involves the training of a classi-
fier or learner to discriminate an image as fake or live. A 
classifier is typically an algorithm that maps a given set of 
input features to predefined class labels. Several classifi-
ers are available such as SVM, Decision Tree (DT), Naive 
Bayes, Random Forest, and etc. that works on the principle 
of supervised learning using labeled datasets. However, the 
modern techniques involve automatic feature extraction with 
multiple hidden layers followed by a fully connected clas-
sification layer, and these networks are known as DCNNs. 
Our approach employs two SVM classifiers and a generic 
sequential model as base estimator to accomplish the task 
of classification, that are all integrated through an ensemble. 
We briefly discuss the underlying principle of these classi-
fiers in the following subsections.

3.1.3.1  Support vector machine (SVM)  The HyFiPAD 
makes use of linear SVM to train two classifiers based on 
CLBP and LABP feature descriptors. Vapnik et  al. [61] 
introduced the SVM as a part of his Doctoral thesis from 
the Moscow University. The SVM constructs a hyper-plane 
as a decision boundary in such a manner that the margin of 
separation between two class items is maximized. Typically, 
SVM algorithms construct learning model based on three 
functions, namely: polynomial, radial basis function (RBF), 
and a two-layer perceptron. The SVMs have good generali-
zation performance and also called as the max-margin clas-
sifier. Usually, a linear classifier solves simple linearly sepa-
rable problems of binary classification. For non-linearly 
separable problems the kernel trick is used for projecting 
the data into higher dimensional space to make it linearly 
separable. In our HyFiPAD, for training two different clas-
sifiers on CLBP and LABP descriptors, we use linear SVM 
with c = 100 and function = ‘RBF.’

Fig. 8   An instance of image fea-
tures with CLBP descriptor. a 
Original image, b histogram of 
original image, c CLBP image, 
d histogram of CLBP features
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3.1.3.2  Sequential model  For the BSIF features in our 
method, we make use of the sequential model in Keras via 
sequential API. These are the simplest neural networks that 
allow building the model layer by layer. In these cases, each 
layer has a weight that corresponds to the next layer in the 
sequence. We use ‘add ()’ function to add new layers in the 
model. The basic sequential model used in our approach is 
summarized in Table 1. The dense layer is a regular layer of 
neurons in the neural network where each neuron gets inputs 
from all the neurons in the previous layer, thus densely con-
nected. The purpose of the dense layer is to change the 
dimensionality of the data. We use the Rectified Linear 
Activation Unit (ReLu) in a dense layer for its activation. In 
this model, we use the Gaussian Noise layer for regulariza-

Fig. 9   An algorithm to extract 
BSIF features from an image 
I(x, y)

Fig. 10   An instance of image 
feature with BSIF descriptor a 
original image, b histogram of 
original image, c BSIF image, d 
BSIF histogram

Table 1   A description of basic sequential model for learning BSIF in 
HyFiPAD

Sr. no. Layer (Type) Out shape Arguments

1 Dense_1 (dense) (None, 258) activation = ’relu’
2 Gaussian_noise_1 (None, 258) stddev = 3.5
3 Dropout_1 (dropout) (None,258) Rate = 0.3
4 Dense_2 (None,258) activation = ’Relu’
5 Dropout_2 (dropout) (None,258) Rate = 0.3
6 Dense_3 (dense) (None,258) activation = ‘Relu’
7 Dropout_3 (dropout) (None, 258) Rate = 0.35
8 Dense_4 (dense) (None, 1) activation = ’sigmoid’
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tion purpose that is active during the training phase. The 
additive Gaussian layer in this case is used at stddev = 3.5 
and the layer has the same output as input. The dropout layer 
is used to prevent the over fitting and it randomly sets the 
input to ‘0’ with a frequency rate of training time. The input 
which is not set to 0 is incremented by 1/(1 − rate) so that 
overall inputs are unchanged. In our approach, we use the 
rate = 0.35 or 0.3 in the dropout layer.

3.1.4 � Ensemble using majority voting

In general, a voting ensemble or a ‘majority voting ensemble’ 
is a machine learning model that integrates the predictions 

from multiple classifications or regression learners. We 
employ a simple majority voting method in HyFiPAD to 
achieve fused outcomes of the three classifiers, i.e., SVM1, 
SVM2, and Sequential model. The voting scheme that pre-
dict class labels is called hard voting whereas soft voting 
predicts class membership probabilities. We use hard voting 
in our approach to predict the outcome as fake or live. The 
key lines of python code that are used in our approach are 
shown below.

Fig. 11   A training algorithm for 
HyFiPAD

models = list()
Models = [('model1',SVC( )),('model2',SVC( )), (‘model3’, Sequential())]
ensemble = VotingClassifier (estimators =’Models’ , voting='hard')

3.2 � The HyFiPAD learning and validation

The learning of our PAD approach by using a training algo-
rithm is depicted in Fig. 11. Initially, a training set of fin-
gerprint images of size ‘t’ is chosen from the benchmark 
anti-spoofing dataset (Dt). For the better performance of the 
model, the training dataset should be of sufficient size and 
also cover samples from all the labeled classes and as well 

as sensors. Thereafter, the training images are pre-processed 
by applying few basic image processing operations to obtain 
a standardized set of images. Let Ti(x, y) is the ith image of 
Dt obtained after applying pre-processing operations on cor-
responding input image Ii(x, y). In the next step, we apply 
three image descriptors namely CLBP, LABP, and BSIF on 
Ti(x, y) to extract respective micro-textural features as FD1

i, 
FD2

i, and FD3
i respectively. In this manner, three feature 
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vectors, D1, D2, and D3 are generated from Dt. The label of 
ith image is concatenated with the corresponding value of 
the FV to build a dataset (Dj). As a result, three feature sets 
are built, i.e., Dj (j = 1, 2, 3) from Dt (i = 1, 2, 3,…, t).

Thereafter, D1 and D2 feature sets are used to learn SVM 
to build two respective classifiers. Further, the D3 that hold 
handcrafted BSIF features is used to train a basic sequential 
model comprising of eight layers. Afterward, a hard major-
ity voting ensemble is created by using three base estimator 
classifiers. Finally, the trained model is fine-tuned to various 
parameters with proper experimentation at an appropriate 
search space.

The steps for testing algorithm of the HyFiPAD method 
are listed in Fig. 12. The trained HyFiPAD model is vali-
dated by presenting images from the testing dataset. A 
similar sequence of steps such as image pre-processing and 
feature extraction from three descriptors is applied on test 
images to generate the corresponding feature sets. Finally, 
the classification of the test samples is carried out by HyFi-
PAD by assign a class label as either live or fake.

4 � Experimental results and discussions

In this section, we evaluate our technique for effectiveness 
of liveness detection mechanism. Firstly, we present a con-
cise introduction of datasets and the evaluation protocols 
which are being used as a standard criterion for measuring 
the performance. Afterward, the HyFiPAD is fine-tuned and 
the resultant model is evaluated on the four publically avail-
able datasets namely; LivDet 2009, LivDet 2011, LivDet 
2013, and LivDet 2015. For measuring the generalization 
capability of the technique, it is also tested with cross-data 
and cross-sensor scenarios. An ablation study is also carried 
out to evaluate the performance of the model under exci-
sions of various components. Finally, the performance of 

the HyFiPAD is compared against the related state-of-the-art 
PAD methods.

4.1 � Experimental datasets

For evaluation purposes four benchmark fingerprint anti-
spoofing datasets, i.e., LivDet 2009 [62], LivDet 2011 [63], 
LivDet 2013 [5] and LivDet 2015 [64], are used. The detail 
of these datasets is summarized in Table 2. The LivDet 2009 
is comprised of 11,000 images acquired from 464 subjects 
using three different optical sensors. On the other hand, the 
LivDet 2011 dataset contains 8000 images acquired from 
712 subjects using four different optical sensing devices. 
The ‘with cooperation’ method of fake fingerprint crea-
tion is used for creating the majority of the spoof images 
as it results in spoof images of better quality. The LivDet 
2013 consists of images captured from four different sen-
sors namely Swipe, ItalData, CrossMatch and Biometrika. 
Besides, LivDet 2013 uses first time the non-cooperation 
method for creating spoof images from material such as 
latex, gelatine, body glue, ecoflex, wood glue, modasil and 
play-doh. Additionally, the LivDet 2015 uses Biometrika, 
Digital Persona, GreenBit and CrossMatch sensors for 
image acquisition. The whole database in all the datasets 
is divided into two components namely training and testing 
sets. The classifiers are trained by using the training dataset 
whereas the testing dataset is used for validating the result-
ant classifiers.

4.2 � Performance protocols

For performance evaluation, we select the overall protocol 
related to metrics and appropriate dataset selection. We uti-
lize the training images from all the datasets to learn the 
HyFiPAD and testing samples are selected across various 
domains to compute the performance. The technique is 

Fig. 12   Testing algorithm for 
HyFiPAD
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evaluated in terms of three standard performance metrics, 
namely average classification error rate (ACER), average 
classification accuracy (ACA) and receiver operating char-
acteristic (ROC).

4.2.1 � ACER

The average error is resulted due to misclassification while 
testing a PAD method by presenting a set of sample images 
is expressed as ACER. The ACER performance metric is 
computed by using Eq. (14).

where FPR stands for ‘false positive rate’ and it measures the 
percentage of live fingerprints which are actually misclas-
sified. Whereas, FNR stands for ‘false negative rate’ and it 
measures the percentage of misclassified fake fingerprints.

4.2.2 � ACA​

It represents average number of instances correctly classified 
by the PAD algorithm when presented with the set of fin-
gerprint samples. The ACA is computed by using Eq. (15).

where Nf represents the total number of live and fake finger-
print images and Nc represents the total number of images 
which are correctly classified as live or fake.

(14)ACER =
FPR + FNR

2

(15)ACA =

(

1

Nf

Nf
∑

i=1

Nc

)

× 100

4.2.3 � ROC

An ROC curve represents the variation of true positive rate 
with false positive rate to evaluate the output quality of the 
classifier. Particularly, ROC curves are useful for the binary 
classification problems to study the outcome of the classi-
fiers. Further, the area under curve (AUC) denotes the region 
bounded between the plot of false positive rate versus true 
positive rate and a line emerging from origin. The bigger 
AUC represents a better machine learning model for dis-
criminating the specified classes.

4.3 � Performance evaluation

To evaluate and validate the robustness of the proposed 
HyFiPAD technique to a variety of fingerprint PAs or spoof 
attacks, rigorous experiments are performed. These experi-
ments aim to test the performance of the proposed algorithm 
on selected datasets that won various liveness detection 
competitions conducted by Clarkson University during the 
year 2009, 2011, 2013, and 2015.

4.3.1 � Performance tuning

The hyper-parameter settings may have a significant impact 
on the detection accuracy of the anti-spoofing model. The 
optimal hyperparameters are tuned for each dataset by using 
a Meta-process. For HyFiPAD, we choose the hyperparam-
eters such as kernel function and C-value (regularization) 
in SVM, Stddev for Gaussian layer, rate in dropout layer, 
activation in dense layer and type of voting in majority vot-
ing classifier. The hyper-parameter tuning results of our pro-
posed model are listed in Table 3.

Table 2   An outline of LivDet 
2009 to LivDet 2015 datasets

Dataset Technology Type of sensor Resolution (dpi) Image size Live Spoof Subjects

LivDet 2009 Optical CrossMatch 500 480 × 640 2000 2000 254
Optical Biometrika 569 312 × 372 2000 2000 50
Optical Identix 686 720 × 720 1500 1500 160

LivDet 2011 Optical Biometrika 500 312 × 372 1000 1000 200
Optical Digital Persona 500 355 × 391 1000 1000 200
Optical ItalData 500 640 × 480 1000 1000 200
Optical Sagem 500 352 × 384 1000 1000 112

LivDet 2013 Optical CrossMatch 500 800 × 750 2000 2000 225
Optical Biometrika 569 315 × 352 2000 2000 100
Optical ItalData 500 640 × 480 2000 2000 100
Thermal Swipe 96 208 × 1500 2000 2000 225

LivDet 2015 Optical Green Bit 500 500 × 500 1000 1500 100
Optical Digital Persona 500 252 × 324 1000 1500 100
Optical Biometrika 1000 1000 × 1000 1000 1500 100
Optical CrossMatch 500 640 × 480 1500 1448 100
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The proposed HyFiPAD model is optimally tuned for 
various hyperparameters that demonstrate higher accuracy 
with selected parameters. For both the SVM classifiers, the 
kernel parameter chosen as RBF and a c-value of 100 pro-
vides best performance. On the other hand, the Stddev with a 
value of 3.5 result in 97.00% classification accuracy, dropout 
rate = 0.30 or 0.35 offers best detection results in the search 
space. For dense layer out of ReLU and sigmoid, former pro-
vides better performance, latter results in significant decline 
in accuracy by a factor of around 11%. Similarly, the model 
has been tuned with respect to different levels of epochs, 
where it provides an accuracy of 96.30% at a value of 40. For 
optimizing the loss in sequential model, our framework has 
been tested with two optimizers, namely Stochastic Descent 
Gradient (SDG) and Adam Delta (Adam), where the latter 
is chosen that tune the model with optimal performance of 
96.90% classification accuracy.

4.3.2 � HyFiPAD performance on LivDet 2009‑LivDet 2015 
datasets

We evaluate the HyFiPAD individually on each selected 
benchmark dataset. The ACA and ACER values are 

computed for diverse combinations of image descriptors 
used in our technique and the combined results are illus-
trated in Table 4.

4.3.2.1  Experimental analysis with  LivDet 2009  The com-
bination of different feature descriptors is evaluated for sam-
ples acquired from three different sensors (i.e., Biometrika, 
CrossMatch, and Identix). The proposed LABP descriptor 
outperforms the existing CLBP in terms of ACA which 
is 80.7% compared to 61.0% for CLBP. It is obvious that 
LABP exhibits more discriminative powers than the CLBP 
descriptor. Moreover, the combination of CLBP and LABP 
that are trained on two SVM classifiers even provides an 
improved ACA of 84.4%. The additional improvement is 
achieved by augmenting a sequential model trained with 
BSIF features. The training and testing loss as well as accu-
racies across various epochs is shown in Fig. 13.

The BSIF features in our approach exploit the supremacy 
of simple sequential model. The effectiveness of the HyFi-
PAD technique is mainly due to the addition of the dual 
power of BSIF as well as the sequential model. The BSIF 

Table 3   Performance evaluation 
of HyFiPAD at different 
parameter settings

Hyper-parameter Search space Parameter setting Model 
performance 
(%)

Selected Value

Kernel (SVM) [Polynomial, RBF, linear] Polynomial 89.90 RBF
RBF 97.00
linear 95.60

C-value (regularization) [0.1,1,10,100,1000] 0.1 88.95 100
1 89.00
10 86.00
100 96.10
1000 95.00

Stddev [1,3.5,4.0] 1.0 93.40 3.5
3.5 97.00
4.0 96.60

Dropout rate [0.1,0.2,0.3,0.35, 0.4] 0.10 95.65 0.30and 0.35
0.20 96.20
0.30 96.25
0.35 96.30
0.40 96.20

Activation (dense layer) [ReLU, Sigmoid] ReLU 96.30 ReLU
Sigmoid 85.92

Epochs (sequential model) [20, 30, 40, 50] 20 95.20 40
30 95.20
40 96.30
50 96.00

Optimizer [‘SDG’, ‘Adam’] SDG 70.25 Adam
Adam 96.90
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features when augmented with the LABP and CLBP exhibit 
superior ACA of 96.44%.

The training performance of the sequential model using 
only BSIF features in terms of ROC is illustrated in Fig. 14. 
The discrimination proportion of the BSIF for HyFiPAD is 
evidently interpreted from the better true positive rate (TPR) 
along with AUC values of 0.79 and 0.60 respectively for live 
and fake classes.

However, the proposed LABP improves ACA, but its 
complexity is relatively higher than CLBP. The general trend 
of ACA computed through a variety of combination of fea-
ture sets along with HyFiPAD demonstrate that CLBP result 
in the lowest ACA of 59.1% and the highest ACA is 97.2% 
for the HyFiPAD technique in case of CrossMatch sensor. 
The overall accuracy of our approach on the LivDet 2009 
dataset offers ACA of 96.44% which confirms its robustness. 
An ROC curve of the HyFiPAD that is validated on LivDet 
2009 is depicted in Fig. 15a. It indicates a higher TPR and 
FPR values in both the classes during a testing of the model. 
The AUC of 0.92 for both the live and fake classes that fur-
ther indicates the effectiveness of the overall performance 
of our approach.

4.3.2.2  Experimental analysis with  LivDet 2011  In this 
case, our proposed LABP descriptor performs better than 
CLBP with an ACA of 79.1%. Above all, interesting results 
are observed for CLBP on the Biometrika sensor with a 
lower ACA of 59.1% while the same descriptor exhibits a 
lower ACA of 59.1% in the case of the Identix sensor of Liv-
Det 2009 dataset. For the proposed HyFiPAD approach, the 
images acquired by the ItalData sensor have shown the high-
est ACA of 97.18% whereas the overall accuracy of 96.31% 
is achieved. It is observed that the overall accuracy of the 
proposed technique is almost similar for both the datasets. 
The ROC curve of the HyFiPAD method when validated 
on LivDet 2011 is shown in Fig. 15b. A higher value of the 
TPR in both live and fake classes is reported during the test-
ing of the model. A higher AUC of 0.96 as exhibited in the 
testing is quite evident of the excellent performance of our 
HyFiPAD method.

4.3.2.3  Experimental analysis with  LivDet 2013  A similar 
protocol is used for evaluating our approach on LivDet 2013 
dataset to explore the detection accuracies of various fea-
tures descriptors. It may be clearly interpreted from Table 4 
that our LABP descriptor adds a significant discriminating 
capability to the overall model for effectively classifying 
live and fake fingerprint traits. An additional improvement 
of 9.01% is achieved in the model with the proposed LABP 
descriptor as compared to ACA of 87.94% with a combi-
nation of CLBP and BSIF. The overall effectiveness of the 
proposed method is clearly indicated with a lower ACER 
of 2.88%. The ROC curve of HyFiPAD on LivDet 2013 is 
depicted in Fig. 15c which specifies its outstanding perfor-
mance.

4.3.2.4  Experimental analysis with  LivDet 2015  In yet 
another analysis, our approach is evaluated on a compara-
tively larger and more recent dataset comprising of addi-
tional generalized samples from both the classes. The 
results with LivDet 2015 further strengthen our claim that 

Fig. 13   a Training and testing 
loss. b Training and testing 
accuracy of sequential model

Fig. 14   The ROC curve of BSIF features trained on sequential model
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model effectively discriminates live and fake fingerprint 
traits brilliantly. The average accuracy of our approach is 
96.1% which is approximately identical to results with other 
datasets. In the same manner, an additional classification 
accuracy of 6.75% is yield with augmentation of our pro-
posed LABP descriptor with HyFiPAD. The performance 
in terms of ROC is highlighted in Fig. 15d with AUC for 
both the classes.

4.3.3 � Cross‑database and cross‑sensors evaluation

Another significant aspect of any PAD method is its effective-
ness in terms of generalization capability to unknown attacks. 
Therefore, we perform an experiment to evaluate the perfor-
mance of our approach in cross-database and cross-sensor 

scenario. To generalize the PAD technique across unknown 
attacks, cross-database testing is performed where the model 
is trained and validated on different datasets consisting of 
fingerprint artifacts generated from different spoofing mate-
rials. In this test, we trained our model using images from a 
dataset and examined with samples from other dataset and 
the results are depicted in Table 5. The experiment focuses on 
testing the approach by using fingerprint artifacts generated 
from materials like Silicon, Gelatine, and Play-doh in LivDet 
2009, Eco-flex, Latex, Gelatine, Silgum, and Wood-glue are 
used for creating fake fingerprints in LivDet 2011. Similarly, 
artifacts in the LivDet 2013 and LivDet 2015 are created 
by using Gelatine, Wood glue, Latex, Ecoflex, Modasil; and 
Ecoflex, Body double, Wood glue, Play-doh, and Latex, 
respectively. Table 5 shows that in seven different scenarios, 
dissimilar training and testing datasets are used to evaluate 
the performance of HyFiPAD. In the case of 2015 dataset, 
the ACA is above 90%. The highest accuracy is exhibited by 
the HyFiPAD in cross-database scenario when the model is 
trained with LivDet 2015 dataset and tested on LivDet 2013 
samples. This may be because of the fact that LivDet 2015 
dataset comprised of wide range of images acquired from dif-
ferent spoofing materials and sensing technologies. Addition-
ally, when LivDet 2009 dataset is chosen either for training 
or testing purpose highest error rates are achieved. It may be 
due to deprived quality of images in LivDet 2009 dataset. 
Further, it can be noticed from Table 5 that the implication of 

Fig. 15   ROC curve perfor-
mance of HyFiPAD on different 
datasets

Table 5   Cross-dataset performance of the HyFiPAD

Training dataset Testing dataset ACER (%) ACA (%)

LivDet 2009 LivDet 2011 11.78 86.29
LivDet 2011 LivDet 2009 12.30 87.50
LivDet 2009 LivDet 2013 10.60 88.75
LivDet 2011 LivDet 2013 9.92 89.28
LivDet 2013 LivDet 2015 9.14 90.00
LivDet 2015 LivDet 2013 7.82 92.34
LivDet 2015 LivDet 2011 7.90 91.40
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proposed HyFiPAD algorithm mitigates the unknown attack 
with moderate accuracy that depicts its good generalization 
capability.

An additional essential factor that pertains to a typical 
PAD model is to evaluate its performance on images cap-
tured under different sensing techniques and conditions. 
Thus, we experiment to validate our approach in cross-
sensor scenario for sets of images acquired through differ-
ent sensors in all the datasets. The performance in terms 
of ACER and ACA for cross-sensor testing is shown in 
Table 6. The results obtained in cross-sensor testing cover 
lower ACER compared to the cross-database scenario. Fur-
ther, we carry out exhaustive experimentation for some 
combinations of training and testing image sets acquired 
with different sensors. The illustration in Table 6 infers that 
our approach exhibit better accuracy in GreenBit-Digital 
Persona cross-sensor testing scenario for LivDet 2015 fol-
lowed by ItalData-Swipe pair with accuracy of 86.6% for 
LivDet 2013. In terms of ACER the highest error rates are 
reported in case of LivDet 2009 Biometrika–CrossMatch 
pair. Similarly, the CrossMatch–Biometrika pair in LivDet 
2013 results in ACER of 17.0%. It may also be seen that the 
overall accuracy of the cross-sensor evaluation lies between 
79.0 and 87.07% that suggests a reasonable generalization 
capability of our approach.

4.3.4 � Ablation study

We perform several ablation experiments to evaluate HyFi-
PAD under all selected datasets successively by removing 
the key features and some of the layers from the sequential 
model. The performances as ACA under different scenario 

Table 6   Cross-sensor testing of HyFiPAD method on different data-
sets

LivDet 2009 Sensors ACER (%) ACA (%)

Training Testing

Biometrika CrossMatch 19.02 80.0
Identix CrossMatch 11.9 79.0
LivDet 2011 sensors
Biometrika Digital persona 12.0 81.67
Digital Persona Sagem 13.9 81.3
Sagem Digital persona 13.4 84.1
LivDet 2013 sensors
ItalData Swipe 11.5 86.6
CrossMatch Biometrika 17.0 82.5
Swipe ItalData 14.9 84.0
LivDet 2015 sensors
GreenBit Digital persona 12.4 87.07
Biometrika GreenBit 16.82 82.70
CrossMatch Digital persona 13.10 84.62
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are listed in Table 7 for different sensors of LivDet 2009 to 
LivDet 2015 datasets. The ablation of our proposed LABP 
descriptor in HyFiPAD using LivDet 2009 results in an ACA 
of 81.86% which significantly degrades the performance of 
the model by 14.58%. Thus, it demonstrates the robustness 
of LABP features that offer additional discrimination power 
to the overall system. As opposite to this, in case of LivDet 
2015 the average ACA with ablation of our LABP results in 
91.40%. The successive ablation of existing CLBP and BSIF 
descriptor in HyFiPAD reduces the accuracy by 25.56 and 
13.98%, respectively. An enhancement of 8.71 and 9.54% 
in the accuracy is indicated with an ablation of LABP fea-
tures using LivDet2011 and LivDet 2015 dataset that further 
proves worth of the descriptor. Furthermore, ablation with 
the CLBP and BSIF feature descriptors from the system 
results in reduction of accuracy by an amount of 25.54 and 
15.64%, respectively. The overall ablation with features in 
our approach exhibits the substantial potency of LABP in 
comparison with other descriptors in the model.

We also evaluated the effect on the HyFiPAD by ablating 
few layers in the sequential model that learns with BSIF 
features. The Dense layer2 ablation result in an ACA of 
96.29% with LivDet 2009 and 96.56% LivDet 2011,whereas 

for LivDet 2013 and 2015 their results are 96.40 and 96.70% 
respectively, that is approximately identical to the overall 
performance of the model. However, Gaussian layer1 abla-
tion declines the accuracy by an amount of ~ 1.0–2.0% 
(approx.). Surprisingly, a slight improvement in accuracy is 
observed with ablation of Dropout layer1 and a mild drop 
in accuracy with Dropout layer2 with all the datasets. The 
overall ablation experiments offer promising performance of 
the HyFiPAD model with different scenarios.

4.3.5 � Comparison of HyFiPAD against state‑of‑the‑art 
methods

To address the problem of fingerprint anti-spoofing, sev-
eral texture-based techniques are presented in the literature. 
Since our method is hybrid and uses the new proposed vari-
ant of local features together with existing descriptors along 
with SVM and a basic sequential model. To evaluate the 
effectiveness of the HyFiPAD, we compare it with similar 
state-of-the-art methods based on either single or multiple 
image feature descriptors. Here, we carry out the compara-
tive analysis of HyFiPAD with both handcrafted and DL-
based state-of-the-art methods evaluated on the identical 

Table 8   Comparative analysis 
of HyFiPAD using LivDet 2009 
dataset

Technique Feature engineering ACER (%)

Handcrafted DL-Based

Image quality Assessment based [65] ✓ ✗ 8.20
Wavelet Markov Descriptor [17] ✓ ✗ 2.83
CNN + LBP [44] ✓ ✓ 4.75
CNN [48] ✗ ✓ 3.42
CNN Random [46] ✓ ✓ 3.35
CNN with patch-based voting approach [49] ✗ ✓ 5.00
Gradient-based texture features [6] ✓ ✗ 6.20
Ridge-Valley structure Local Quality features [9] ✓ ✗ 5.30
HyFiPAD ✓ ✗ 4.11

Fig. 16   Performance com-
parison of HyFiPAD on LivDet 
2009 dataset
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datasets (e.g., LivDet 2009) in terms of ACER. The results 
are recorded in Table 8 and a comparative plot in Fig. 16 
implies the effectiveness of our technique with an ACER of 
4.11%. This performance noticeably outperform the other 
methods in [6, 9, 17, 19, 45, 47, 49, 50, 67], where superior 

performance is exhibited by [17] with an ACER of 2.83%, 
which is nearly close to our model. However, our model also 
shows comparable performance against the modern CNN-
based approaches in [47, 49], but these approaches involve 
additional levy in terms of training overhead.

Table 9   The comparison of 
HyFiPAD using LivDet 2011 
and LivDet 2013 dataset

Technique Feature engineering ACER (%)

Handcrafted DL-Based LivDet 2011 LivDet 2013

LBP [58] ✓ ✗ 14.85 4.90
LPQ [66] ✓ ✗ 12.30 –
WLD[14] ✓ ✗ 15.33 6.90
WLD + LPQ [14] ✓ ✗ 7.87 14.31
BSIF [39] ✓ ✗ 7.21 4.61
LCPD [16] ✓ ✗ 6.28 2.40
CNN + LBP [44] ✓ ✓ 4.75 –
SURF [18] ✓ ✗ 8.04 5.26
PHOG [18] ✓ ✗ 17.92 7.24
Gabor [18] ✓ ✗ 9.46 3.50
SURF + PHOG [18] ✓ ✗ 7.32 3.85
SURF + PHOG + Gabor [18] ✓ ✗ 6.90 4.20
LCP [15] ✓ ✗ 33.21 27.95
CNN Random [46] ✓ ✓ 6.16 5.71
TCAG [6] ✓ ✗ 6.63 7.96
WLBD [10] ✓ ✗ 5.96 1.89
TinyFCN[67] ✗ ✓ 3.12 3.12
DCNN + ISE [54] ✗ ✓ 6.45 3.70
ROI [68] ✗ ✓ 5.65 2.99
ROI + LGP [68] ✗ ✓ 6.68 2.96
DenseNet model[69] ✓ ✗ – 1.73
Q-FFF [70] ✓ ✗ – 2.15
FLDNet [56] ✓ ✗ – 1.18
dense-SIFT [42] ✓ ✗ 1.73 –
LivDet Winner – – 22.92 13.36
HyFiPAD ✓ ✗ 3.19 2.88

Fig. 17   Performance com-
parison of HyFiPAD on LivDet 
2011 dataset
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Though, Park et al. [49] achieve an ACER of 3.42% that is 
comparatively smaller than our results, but their PAD model 
is trained with a smaller dataset of merely 523 fingerprint 
images.

Likewise, Table 9 depicts a comparison of our approach 
opposed to the existing state-of-the-art methods that were 
evaluated on LivDet 2011 and LivDet 2013 datasets with 
ACER protocol. Figure 17 illustrates the comparative results 
of techniques evaluated on LivDet 2011, it may be noticed 
that, HyFiPAD yields ACER of 3.19%, which is further an 
evident of its efficiency.

The HyFiPAD exhibits superior performance compared to 
majority of the PAD techniques on both the texture and deep 
learning-based counterparts. On the other hand, it reveal 
almost equivalent performance against some approaches that 
utilize TinyFCN (ACER = 3.12%) and dense-SIFT algorithm 
(ACER = 1.73%) where former is a deep learning-based 
method and latter exploits scale-invariant texture features.

Fig. 18   A comparison of HyFi-
PAD with related approaches on 
LivDet 2013 dataset

Table 10   A comparative analysis of HyFiPAD on LivDet 2015 data-
set

Technique Feature engineering ACER (%)

Handcrafted DL-Based

LBP [58] ✓ ✗ 11.82
WLD [14] ✓ ✗ 14.27
LCP [15] ✓ ✗ 13.61
MSDCM (deep residual 14) ✓ ✗ 7.59
WLBD [10] ✓ ✗ 9.68
HoG [71] ✓ ✗ 5.27
DCNN [72] ✗ ✓ 0.97
SlimResCNN [53] ✗ ✓ 3.11
ROI [68] ✗ ✓ 5.32
ROI + LGP [68] ✗ ✓ 6.11
DenseNet model [69] ✗ ✓ 1.61
Q-FFF [70] ✓ ✗ 6.58
FLDNet [56] ✗ ✓ 2.22
HyFiPAD ✓ ✗ 2.97

Fig. 19   Comparative analysis 
of HyFiPAD on LivDet 2015 
dataset
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The comparison of HyFiPAD against state-of-the-art 
techniques evaluated on LivDet 2013 dataset is depicted in 
Fig. 18. The diagram clearly demonstrates that the HyFiPAD 
outperforms the existing handcrafted feature-based PAD 
techniques except for WLBD where the ACER is 1.89% that 
is almost close to 2.8% for our method. In case of DL-based 
techniques, the DenseNet and FLDNet models surpasses our 
approach with an ACER of approximately 1.0%.

At last, the HyFiPAD is compared against the techniques 
that are evaluated on LivDet 2015 dataset and results are 
depicted in Table 10. The HyFiPAD outperforms the state-
of-the-art PAD approaches.

From Fig. 19, it is may be inferred that the results of 
DCNN [72], DenseNet [69], and FLDNet [56] models are 
superior to our HyFiPAD approach. The core reason behind 
this better performance is that these models exploit deep 
level features from the fingerprint images to build CNN 
architecture. In other cases, our technique overtakes the 
existing PAD techniques. The handcrafted feature-based 
techniques show higher ACER value as compared to our 
resultant ACER of 3.19%.

The overall experimental analysis of the novel HyFi-
PAD can put forward several advantages: (i) the HyFiPAD 
explores the proposed LABP micro-textural image features 
with existing CLBP and BSIF descriptors. (ii) The power of 
a basic sequential model trained on BSIF features along with 
two SVM classifiers work as an integrated hybrid model 
with better accuracy and lower error rate. (iii) Our technique 
provides a promising performance in the case of both cross-
database and cross-sensor scenario that supports a good gen-
eralization capability of the proposed approach to unknown 
attacks. (iv) The proposed LABP helps to improve the dis-
criminative power of combination of CLBP and BSIF by an 
average accuracy of 8.71%. (v) The HyFiPAD outperforms 
the state-of-the-art PAD methods in terms of its efficiency 
on the majority of the selected datasets.

5 � Conclusions

This research work addresses the fingerprint presentation 
attack detection mechanism by using a hybrid approach, 
where the newly proposed LABP features are coalesced with 
two other existing CLBP and BSIF image feature descriptors 
to boost the classification accuracy. The local threshold used 
in proposed LABP helps to extract more refined discrimina-
tive information from the local region that grants enhanced 
discrimination capabilities in comparison with earlier ver-
sion of LBP. Furthermore, a majority voting ensemble is 
created on the three trained classifiers to attain the final 
decision. Our analysis over four datasets reflects that the 
performance of our HyFiPAD technique outperforms the 
existing similar state-of-the-art FiPAD methods. The exten-
sive experiments confirmed that our method exhibit stable 
performance in generalization to unknown attacks. Although 
our modified LBP descriptor (LABP) helps to improve the 
classification accuracy of the hybrid model, one of the limi-
tations includes its comparatively higher complexity that 
may be improved in future. Besides, we plan to evaluate 
our HyFiPAD approach on few more recent datasets such as 
LivDet 2017 and LivDet 2019. An additional future work 
directs to improve the accuracy of HyFiPAD model particu-
larly in the cases of cross-sensor and database scenarios, as 
it will more effectively deal with the problem of unknown 
attacks.

Appendix

See Appendix Table 11.
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Table 11   A summary of state-of-the-art fingerprint PAD techniques

Year Author(s) Handcrafted 
features-based

Deep learn-
ing-based

Key concept Classifier Datasets Performance

2010 Marasco and Sansone 
[28]

✓ ✗ Image Quality
Features

LDA LivDet 2009, 
ATVS

ACA = 90%

2013 Gragnaniello et al. 
[14]

✓ ✗ WLD SVM LivDet2009 and 
LivDet 2011

Results demonstrated 
superiority

2013 Ghiani et al. [39] ✓ ✗ BSIF ICA LivDet 2011 7.215%
2013 Pereira et al. [73] ✓ ✗ Spatial surface

coarseness
SVM LivDet 2011 12.8%

2014 Zhang et al. [13] ✓ ✗ Wavelet  
Analysis/LBP

SVM LivDet2011 and
LivDet2013

ACA, LivDet 
2011 = 88.53% and
LivDet2013 = 88.98%

2014 Gragnaniello et al. 
[16]

✓ ✗ LCPD SVM LivDet 2011 5.7%

2014 Gragnaniello et al. 
[17]

✓ ✗ Wavelet Markov 
descriptor

SVM 
with 
RBF

LivDet 2009 2.83%

2014 Nogueira et al. [44] ✓ ✓ CNN and LBP – LivDet 2009,
LivDet 2011, and
LivDet 2013

4.75% for CNN and 9.67% 
for LBP

2015 Wang et al. [45] ✗ ✓ DCNN with vot-
ing strategy

– LivDet 2011 and
LivDet 2013

Better overall results are 
achieved

2016 Xia et al. [6] ✓ ✗ Co-occurrence 
array construc-
tion

SVM LivDet2009 and
LivDet2011

TCGA have better clas-
sification as compared to 
SCGA​

2016 Dubey et al. [18] ✓ ✗ PHOG + SURF 
and Gabor 
wavelet

SVM,
Random 

forest

LivDet 2011,
LivDet 2013

EER = 3.95% for LivDet 
2011 and for LivDet 2013 
is 2.27%

2016 Park et al. [48] ✗ ✓ CNN – LivDet 2009 3.42%
2016 Nogueira et al. [46] ✗ ✓ CNN – LivDet 2009,

LivDet 2011 and
LivDet 2013

ACA = 97.1%

2017 Kim [15] ✓ ✗ LCP SVM ATVS and
LivDet2009

ACA for ATVS = 95.63% 
for LivDet2009 = 86.83%

2017 Jung and Heo [51] ✗ ✓ CNN – LivDet 2015 Accuracy degeneration of 
Digital Persona was lowest

2017 Lazimul and Binoy 
[50]

✗ ✓ CNN with image 
enhancement

– – ACA = 98%

2018 Xia et al. [10] ✓ ✗ WLBD SVM LivDet 2009,
LivDet 2011 and
LivDet 2015

5.96%, 1.89% and 9.67% 
respectively

2018 Jiang and Liu [8] ✓ ✗ ULBP SVM LivDet 2013 21.20%
2019 Souza et al. [52] ✓ ✓ DBM SVM LivDet2013 ACA = 85.82%
2019 Agarwal et al. [41] ✓ ✗ LBP Ensemble LivDet 2011 ACA lies between 70%-80%
2019 Uliyan et al. [55] ✗ ✓ RBM and DBM – LivDet 2013 and

LivDet 2015
3.6% for LivDet 2013

2019 Zhang et al. [53] ✗ ✓ SlimResCNN – LivDet 2011,
LivDet 2015 and
LivDet 2017

ACA = 95.25%

2019 Yuan et al. [54] ✗ ✓ DCNN with 
image scale 
equalization

– LivDet 2011 and
LivDet 2013

6.45% for LivDet 2011 and 
3.7% for LivDet2013

2019 Park et al. [67] ✗ ✓ FCN and 
SqeezeNet

– LivDet 2011,
LivDet 2013 and
LivDet 2015

0.27% of improvement in 
error detection rate
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