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Abstract
SiamPRN algorithm performs well in visual tracking, but it is easy to drift under occlusion and fast motion scenes because
it uses �1-smooth loss function to measure the regression location of bounding box. In this paper, we propose a multivariate
intersection over union (MIOU) loss in SiamRPN tracking framework. Firstly, MIOU loss includes three geometric factors in
regression: the overlap area ratio, the center distance ratio, and the aspect ratio, which can better reflect the coincidence degree
of target box and prediction box. Secondly, we improve the definition of aspect ratio loss to avoid gradient explosion, improve
the optimization performance of prediction box. Finally, based on SiamPRN tracker, we compared the tracking performance
of �1-smooth loss, IOU loss, GIOU loss, DIOU loss, andMIOU loss. Experimental results show that theMIOU loss has better
target location regression than other loss functions on the OTB2015 and VOT2016 benchmark, especially for the challenges
of occlusion, illumination change and fast motion.

Keywords Visual tracking · Multivariate intersection over union · Scale invariance · SiamRPN

1 Introduction

Visual target tracking is a subtask of computer vision, and
many advanced methods have been explored in this research
area. It has numerous applications in many domains, includ-
ing visual navigation, intelligent video surveillance system,
intelligent human–computer interaction, medical diagnosis.
Deep learning demonstrates powerfulness in extracting and
processing semantic features, and can model the appearance
of object by learning multimedia information. Inspired by
this, many successful applications of deep learning have been
achieved in computer vision, such as image segmentation,
object detection, image classification, target tracking, and so
on.
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Since 2013, the deep learning framework represented by
SAE (stack auto-encoding) [1,2], CNN (convolution neural
network) [3,4] and Siamese [5,6] has become the main back-
bone network of tracking algorithm. Deep learning has been
showing great success on object tracking.DLT [1] for the first
time introduced deep network to break the bottleneck of tra-
ditional tracking model. After that, CNN has been brought to
enhance the target learning capability of tracker [3], owing to
the invariance principle in nonlinear changes such as transla-
tion, scale change and rotation. With the continuous research
of depth structure, Tao et al. [5] successfully applied Siamese
network as the backbone network of tracking algorithm and
made greatly progress in speed. However, it is weakness in
many practical applications due to challenges such as illu-
mination changes, partial occlusion, motion blur and low
resolution, which obstruct the robust of tracking model. In
recent years, the optimization trend of visual target tracking
focuses on deepening neural network and improving feature
extraction strategy, but ignoring the key role of loss func-
tion in model optimization. In computer vision such as target
detection, recognition and semantic segmentation, the loss
function can measure the performance of training model by
comparing the difference between predictive value and actual
data.
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In this paper, we take advantage of the recent progress
in bounding box (BBox) regression loss and to propose a
novel multivariate intersection over union (MIOU) loss in
SiamRPN [7] tracking framework. The proposedmethod can
deal with the non-overlapping case between target box and
prediction box, and speedup the convergence rate of the train-
ing model. In summary, this work has the following steps.
Firstly, MIOU regression includes three important geomet-
ric factors in BBox regression: overlapping area ratio, center
distance ratio and the aspect ratio, which can better reflect
the coincidence degree of the target box and prediction box.
Secondly, we improve the definition of aspect ratio loss to
avoid gradient explosion and improve the optimization per-
formance of prediction box. Finally, extensive experiments
on OTB2015 and VOT2016 benchmark are carried out to
validate our method effectiveness.

2 Related work

It is difficult to design a tracking model with both strong
robustness and high precision. Therefore, many theoretical
methods have been introduced to solve the tracking prob-
lem, such as classifier [8–10], sparse representation [11–13],
saliency detection [14,15], feature selection [16–19] and
deep learning [20,21]. Based on off-line training and online
fine-tuning, prior depth trackers achieve better results than
traditional methods, and the online fine-tuning timely adjust-
ment parameters to adapt the change of target better. How-
ever, despite the favorable performance of deep learning on
object tracking, it is still limited by many difficulties, includ-
ing insufficient training samples, the foreground-background
class imbalance, and high computational complexity in terms
of time and space. Therefore, online depth methods are
hardly meeting the requirements of real-time tracking.

In recent years, Siamese network has been introduced to
solve the tracking problem. As an end-to-end off-line train-
ing network, Siamese network learns the matching function
from external data and finds the candidate patch matching
the target in the subsequent frame search area. It can achieve
real-time tracking without model updating or online fine-
tuning. SiamFC [22] uses the Siamese structure and makes
full convolution matching in the detection frame according
to the template frame. The tracking speed reaches 86 fps,
which has aroused widespread concern and accelerated the
application of Siamese network in object tracking. In order
to address the weakness of model robustness, SiamFC++
[23] proposed four guidelines: decomposition of classifi-
cation and state estimation, non-ambiguous scoring, prior
knowledge-free and estimation quality assessment, which
effectively improved the generalization of the tracker. Graph
convolutional tracking (GCT) [24] constructed a graph con-
volution tracking framework base on the Siamese structure,
which acquiredmore sufficient and stable characteristic from

detection frame by combining the temporal and spatial con-
text information, and the experimental results showed that
the accuracy is improved greatly.

SiamRPN [7] tracker contains Siamese network and
region proposal network (RPN). RPN subnetwork uses
multi-dimensional features to quickly generate target rec-
ommendation area, and obtains K anchor points according to
different preset aspect ratio. The introduction of RPN makes
the networknot affected bymulti-scale regression calculation
in target tracking, and improves the tracking speed and accu-
racy. However, SiamRPN is vulnerable to the case of object
occlusion, background clutters andmotion blur. SiamRPN++
[25] mainly improves the performance of feature extrac-
tion network, solves the problem that the network deepening
destroys the translation invariance, and realizes the Siamese
tracking driven by ResNet network. DaSiamRPN [26] gen-
erates semantic negative sample pairs in the training process
and expands the training dataset to solve the problem of
poor system recognition caused by unbalanced distribution
of training data. A new interference awareness module is
designed to capture targets by using context information and
time information. The SiamMask [27] enhances loss mon-
itoring by adding binary segmentation task, thus reducing
the distance between target tracking and Vos (visual object
segment). The trained learning model can achieve class inde-
pendent object tracking and segmentation only depending on
an initial boundary box. The deeper andwider SiamRPN [28]
designs deeper and wider backbone network to improve the
capability of Siamese tracker.

Although the trackers based on SiamRPN achieve good
performance in many database evaluations, they use �1-
smooth [29] loss in location regression, which does not
consider the correlation of the four corners of the bounding
box, and multiple bounding boxes may have the same loss
value. To alleviate the problem of class imbalance, Vital [30]
adopts a high-order cost-sensitive loss to decrease the effect
of easily negative samples successfully. Recently, the loss
function of bounding box regression has been optimized. The
n-normal form loss function represented by �1-smooth [29] is
very sensitive to the scale change of bounding boxes and can-
not optimize the case of non-overlapping case, which is easy
to cause the gradient to disappear. As shown in Fig. 1a, multi-
ple detection boxes have the same �1-smooth [29] loss value,
but the IOUmay vary greatly. In order to further improve the
generalization performance of regression, scholars have pro-
posed IOU loss [31] andGIOU loss [32].When the prediction
box and the target box do not intersect (non-overlapping), the
IOU loss is 0. At this time, the loss function is not differen-
tiable, so IOU loss cannot optimize the case of two boxes
not intersecting. The GIOU loss can solve this problem, but
because of the strong dependence on intersection over union,
the convergence speed is slow. In reference [33], by directly
minimizing the distance between the center points of two
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Fig. 1 Because �1-smooth is sensitive to the scale of bounding box,
which cause failing to reflect the intersection information between real
box (black) and prediction box (red) in the same value.Moreover, GIOU
loss is transformed to IOU loss when real box (black) surrounds the
prediction box (red), owing to the heavily relying on intersection over
union (IOU)

bounding boxes, a distance intersection over union (DIOU)
is proposed, which solves the problem of slow convergence.
In addition, the authors also proposed the complete inter-
section (CIOU) loss of three important geometric variables:
overlap area ratio, center distance ratio and aspect ratio.How-
ever, CIOU [33] uses the square of the angle difference of
aspect ratio to measure the scale loss, so it has the problems
of gradient explosion and non-co-directional optimization of
the border, like ∂δ

∂w
= − h

w
∂δ
∂h .

This paper analyzes the three factors that affect the loca-
tion loss regression: the overlap area ratio, the center distance
ratio and the aspect ratio of box height and width.We remove
the square term of the angle difference corresponding to
the aspect ratio, so as to avoid the gradient explosion prob-
lem and optimize the location regression performance better.
The improved loss function (MIOU) is introduced into the
regression branch of SiamRPN tracker, and achieves good
performance.

The structure of the paper is as follows: firstly, the research
background is sorted out in the introduction, and the related
work is reviewed in the second part. Then, in the “Proposed
method” section, we describe our method in detail, includ-
ing the construction of network, the design of new geometric
loss metrics, target class and target location. The experimen-
tal process and results are given in “Experimental results”.
Finally, in the conclusion and prospect part, the work of this
paper is summarized and prospected.

3 Proposedmethod

The framework of SiamRPN tracker contains Siamese sub-
network and region proposal subnetwork (RPN), where RPN
network is constructed by two branches: classification loss
and bounding box regression loss. We use ResNet50 [34] as
the backbone instead of AlexNet in the original SiamRPN
In training, ResNet50 pays more attention to rich semantic
information, breaks the space invariance limit of connected
subnetwork, and helps the tracker to better adapt to the scene
of target appearance change. In addition, we propose a mul-
tivariate intersection over union (MIOU) loss to replace the
�1-smooth regression metric in the original RPN subnetwork
and improve the tracking robustness.

3.1 Network framework

As shown in Fig. 2, the target image Z(x) and the search
region P(x) are input into two subnetworks of Siamesemod-
ule, respectively. Meanwhile, they share the weights with the
same structure during training. Considering the difference
between classification and location, RPN is further divided
into classification branch (cls) and regression branch (reg).
In cls branch, we regard the classification problem as a qual-
itative output, and the regression problem is considered as a
quantitative output in reg branch. So the outputs of Siamese
subnetwork are fed into branch (cls) and (reg) individu-
ally. In detail, the classification branch convolutes p(x)cls
with z(x)cls as convolution kernel, and the output channel
number of Acls

w×h×2t is 2t, which indicates the positive and
negative probability of candidate samples. Similarly, z(x)reg
and p(x)reg produce the sensor Areg

w×h×4t of 4t channels
after correlation operation. We refer the regression result
(dx , dy, dw, dh) as the four coordinates offsets of candidate
targets. The specific operation process of the two tasks is as
follows:

Acls
w×h×4t = z(x)cls ⊗ p(x)cls, (1)

Areg
w×h×4t = z(x)reg ⊗ p(x)reg. (2)
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Fig. 2 Method network
structure diagram
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3.2 Classification loss

The classification loss of SiamRPN is cross-entropy (CE)
loss. Cross-entropy method [35] is a unified method of reli-
ability analysis and stochastic optimization design proposed
by Rubinstein in 1997. Its essence is to transform the opti-
mization problem into a small probability event estimation
problem by using the optimal sampling probability density
function instead of the original function of random vari-
ables based onMonteCarlo simulation. Cross-entropy can be
directly used as the evaluationmodel of loss function, and the
best training model is when the cross-entropy is minimum.

In the training, SiamRPN uses binary cross-entropy loss
function for classification, assuming that the probability
score of the i th sample is pi . The tag value is yi (yi = 1
means the sample is positive, otherwise, yi = 0), and the
calculation process is as follows:

L(yi , pi ) = −((yi · log(pi )) + (1 − yi )(1 − pi )) (3)

If the total number of samples in class branch is N, then the
classification loss is:

Lcls = 1

N

N∑

i=1

L(yi , pi ) (4)

3.3 Multivariate intersection over union

There are three important geometric factors in border regres-
sion: overlap area, center distance and aspect ratio. DIOU
[33] does not include aspect ratio factor, and the metric of
aspect ratio in CIOU [33] lossmeasures the scale consistency
by the square of the angle difference between the two bound-
ing boxes, which is similar to the L2 loss principle and has
the problems of gradient explosion and instability. To solve
the above problems, this paper redefines the loss formula
to measure the aspect ratio, effectively avoids the gradient
explosion, and improves the robustness.

In Fig. 3, let Bg and Bp represent the target box and predic-
tion box, respectively, and the position of the box consisted
of the coordinates of the two vertices in the lower left corner
and the upper right corner, where (x̃1, ỹ1, x̃2, ỹ2) denotes the
position of Bg , and (x1, y1, x2, y2) is represented by Bp . In
addition, bg and bp are the center points of Bg and Bp, and
ρ represents the Euclidean distance of them. Noting that BC

denotes the smallest convex shape of Bg and Bp, c denotes
the diagonal Euclidean distance of BC .

The coordination (XC1,YC1, XC2,YC2) of BC is as fol-
lows:

XC1 = min (x̃1, x1),YC1 = min (ỹ1, y1), (5)

XC2 = max (x̃2, x2),YC2 = max (ỹ2, y2). (6)

We use I to denote the maximum intersection box between
Bg and Bp , and the coordinates (XI1,YI1, XI2,YI2) of I
come from the following formula:

XI1 = max (x̃1, x1),YI1 = max (ỹ1, y1), (7)

XI2 = min (x̃2, x2),YI2 = min (ỹ2, y2). (8)

The I OU is the ratio of the intersection and union of the
area of two rectangular boxes; the calculation process is as
follows:

Ag = (x̃2 − x̃1) × (ỹ2 − ỹ1), (9)

Ap = (x2 − x1) × (y2 − y1), (10)

AI = (XI2 − XI1) × (YI2 − YI1), (11)

Au = Ag + Ap − AI , (12)

I OU = AI

Au
, (13)

where Ag and Ap are the area of Bg and Bp, respectively,
AI means the area of intersection between Bg and Bp , and
Au is the area formed by the union of two bounding boxes.
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Fig. 3 Schematic diagram of target box and prediction box

The formula of center distance ratio of target box and
prediction box is as follows:

Rdis = ρ2

c2
, (14)

where ρ is the Euclidean distance of the center point of two
boxes, and c is the diagonal distance of the smallest exter-
nal rectangle. Rdis is the penalty term of the center point
distance.

In order to take the aspect ratio of prediction frame into
account, we define θ reflects the difference of aspect ratio
between Bg and Bp, as shown in Fig. 4. And θg denotes the
inclination angle of the target box, while θp represents the
prediction box inclination angle. Let θg = arctan wg

hg
and

θp = arctan wp
h p

, where wg and hg represent the width and
height of the target box, wp and h p are taken from the pre-
diction box. In order to achieve the aspect ratio alignment
between Bg and Bp, we can see that θ < 0 when θp < θg in
Eq.(15).

θ = θp − θg (15)

The formula of aspect ratio of target box and prediction
box is as follows:

Rasp = (
υ

1 − I OU + υ
)δ, (16)

υ = 4θ2

π2 , δ = 8

π2 × θ × (wp × h p) (17)

where δ is used to evaluate the aspect ratios alignment of
the bounding box. When the value of δ is less than zero, it
means prediction box Bp rotates counterclockwise during

Fig. 4 Schematic diagram of optimization in bounding box shape

regression optimization. On the contrary, Bp rotates clock-
wise when θ > 0, since θp > θg . This optimization process
in bounding box shape can be visualized in Fig. 4.

In Eq. (17), δ is linearly related to angle difference θ and
box area wp × h p to avoid gradient explosion. At the same
time, in the process of scale optimization, there is no reverse
relationship between the gradient ∂δ

∂w
and ∂δ

∂h . The gradient
of δ w.r.t. w and h is as follows:

∂δ

∂w
= 8

π2 (arctan
wp

h p
− arctan

wg

hg
− wh

w2 + h2
) (18)

∂δ

∂h
= 8

π2 (arctan
wp

h p
− arctan

wg

hg
+ wh

w2 + h2
) (19)

Then, our loss function based on multivariate intersection
over union (MIOU) is defined as follows:

MIOU = I OU − Rdis − Rasp (20)

The loss function of MIOU is defined as follows:

LMI OU = 1 − I OU + Rdis + Rasp (21)

= 1 − I OU + ρ2

c2
+ (

υ

1 − I OU + υ
)δ (22)

In the bounding box regression loss, the overlap area
ratio and center distance ratio reflect the relative position
relationship between the target box and the prediction box.
According to these two loss functions, we can guide the
regression of the prediction bounding box and accelerate
the convergence speed in the training stage. In addition,
the aspect ratio of boxes can avoid the invalid regression
in the case of non-overlapping or the case that the target
box completely contains the prediction box, which has good
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Table 1 The distribution of 11 challenging attributes in the OTB2015
dataset: illumination variation (IV), scale variation (SV), occlusion
(Occ), deformation (Def), motion blur (MB), in-plane rotation (IPR),

out-of-plane rotation (OPR), out of view (OV), background clutters
(BC), low resolution (LR), and fast motion (FM)

IV SV Occ Def MB IPR OPR OV BC LR FM

Sequences 38 65 49 44 29 51 64 14 31 9 39

Algorithm 1: Multivariate intersection over union metric as bounding box loss

Input: ground truth Bp(x̃1, ỹ1, x̃2, ỹ2) and prediction (Bpx1, y1, x2, y2) bounding box
Output: LMI OU
1. Ensuring Bp meets the condition: x2 > x1, y2 > y1 :
x1 = min(x1, x2), x2 = max(x1, x2),y1 = min(y1, y2), y2 = max(y1, y2)

2. Calculating area of Bg and Bp in Eq.(9) and Eq.(10), getting Ag, Ap .
3. Finding the coordinates of smallest enclosing box BC in Eq.(5) and Eq.(6), getting

(XC1, YC1, XC2, YC2) and c2 = (XC2 − XC1)
2 + (YC2 − YC1)

2.
4. Calculating the center point of Bg and Bp , bg = (xbg , ybg ), bp = (xbp , ybp ):

xbg = x̃1+x̃2
2 , ybg = ỹ1+ỹ2

2 ,xbp = x1+x2
2 , ybp = y1+y2

2
5. Calculating the Euclidean distance between bg and bp , ρ2 = (xbp − xbg )

2 + (ybp − ybg )
2

6. Calculating the center distance ratio Rdis : Rdis = ρ2

c2

7. Finding the coordinates of intersection I between Bg and Bp in Eq.(7) and Eq.(8),getting:
(XI1, YI1, XI2, YI2)

8. Calculating area of AI , Au in Eq.(11), Eq.(12), I OU = AI
Au

.
9. Calculating aspect ratio Rasp = ( υ

1−I OU+υ
)δ, where υ and δ were calculated in Eq.(17).

10. Calculating the MIOU loss: LMI OU = 1 − I OU + Rdis + Rasp .

scale invariance. Our method uses these three factors to carry
out the bounding box regression, which avoids the gradient
explosion problem, improves the convergence speed of the
model training, and enhances the robustness of the tracker.

4 Experimental results

4.1 Experimental design

Since the training of Siamese network only needs image
pairs, we use ILSVRC-VID dataset to train model and use
OTB2015 dataset [36] to test model. ILSVRC-VID is the
target detection dataset in ImageNet Large Scale Visual
Recognition Competition. It includes 3862 snippets for train-
ing, 555 snippets for verification and 937 snippets for testing.
Each snippet consists of 56,458 images. The ILSVRC-VID
dataset has 30 categories, which are carefully selected, taking
into account different scene factors, such as motion, video
background interference, illumination changes, and so on.
The size of the ILSVRC-VID dataset is 85GB, and the train-
ing time on the remote supercomputing server is about 3 days
(CPU is 2*12 cores, Intel Xeon E5-2692 V2, 64GBmemory,
1T disk storage).

The OTB2015 dataset is one of the standard datasets for
target tracking, which consists of 100 fully annotated videos
with 11 challenging attributes, including illumination varia-
tion (IV), scale variation (SV), occlusion (Occ), deformation

(Def), motion blur (MB), fast motion (FM), in-plane rotation
(IPR), out-of-plane (OPR), out-of-view (OV), background
clutters (BC) and low resolution (LR). Table 1 shows the
distribution of various challenge attributes in the OTB2015
dataset. Among them, the video test scenarios covered by
SV and OPR attributes are relatively wide, accounting for
more than half of the total dataset. Secondly, Occ, IPR and
Def account for a relatively high proportion, indicating that
OTB2015 pays more attention to the test of the target’s own
deformation.

During training, for each video sequence, the target that
comes from the first frame is regarded as template frame
and the subsequent frame is put into search branch. Among
them, the template branch adjusts the input image block size
to 127 ∗ 127 by using the convoluted operation, while the
uniform scale of image block in searching branch is 255∗255.
Finally, according to the overlap area ratio calculation results,
when iou value of candidate patches is greater than 0.6, it is
judged as positive sample, while the iou value of negative
samples is set to be no more than 0.3. The learning rate is
initially set to 5 ∗ 10−3 and the number of anchors is 5.
Since the target deformation difference is not obvious in the
tracking process, the anchor aspect ratios are set to (0.33, 0.5,
1, 2, 3), while the anchor area is constant. Finally, a total of
20 epochs are performed.
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4.2 Experimental analysis

Quantitative analysis: In the performance evaluation, we
mainly compare our method against the four state-of-the-art
metrics including �1-smooth loss, IOU loss, GIOU loss and
DIOU loss simultaneously. Firstly, We choose the average
center location error as evaluation standard to quantify the
performance of the methods. When the effective of tracker
is better, the error value is lower, otherwise, the higher. To
quickly validate the effectiveness of our proposed method,
we only select 10 videos sequences from OTB2015 dataset.
Table 2 shows the center error values in 10 videos, in which
bold represents the best verification results. According to the
results, our method performs better than �1-smooth, IOU,
GIOU and DIOU.

In Table 2, the scene attributes contained in the video
sequences are labeled: illumination variation (IV), scale vari-
ation (SV), occlusion (Occ), deformation (Def), motion blur
(MB), fastmotion (FM), in-plane rotation (IPR), out-of-plane
(OPR), out-of-view (OV), background clutters (BC) and low
resolution (LR).

In order to further verify the influence of three vari-
ables (overlap area ratio, center distance ratio and aspect
ratio) on boundary regression, we compared the tracking
effect and training iterations under different regression vari-
able combinations on SiamRPN tracker with 100 sequences
of OTB2015, as shown in Table 3, where I OU , Rdis and
Rasp represent the loss functions of overlap area ratio, cen-
ter distance ratio and aspect ratio, respectively, and epoch
is the number of iterations with the best performance dur-
ing training. The smaller the number of iterations, the
faster the convergence speed. Otherwise, the regression
optimization takes a long time. It can be seen that the per-
formance of SiamRPN+(1-IOU+Rdis) is better than that
of the single one, and the number of iterations is reduced
by one. The performance of SiamRPN+(1-IOU+Rasp) is
improved in average precision, but the average success and
epoch are not improved. The performance of SiamRPN+(1-
IOU+Rdis+Rasp) (ours) is better than other models. This
shows that Rdis plays a major role in accelerating conver-
gence, and Rasp plays a major role in improving tracking
accuracy, and the comprehensive performance of loss mea-
sure of three geometric variables is the best.

To further enhance the quantitative analysis, we use the
vot2016 dataset to compare the tracker performance of our
method with other algorithms. VOT2016 is a benchmark
containing 60 video sequences. The common evaluation of
VOT2016 includes accuracy (average overlap while track-
ing successfully), robustness (failure times) and expected
average overlap (EAO). EAO is used to evaluated the over-
all performance which takes account of both accuracy and
robustness. The bold in Table 4means the better performance
of method. In EAO and accuracy, the higher the value, the Ta
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Table 3 The average success,
average precision and epoch of
different regression losses in
SiamRPN tracker framework on
100 sequences of OTB2015

Method Average success Average precision Epoch

SiamRPN+(�1-smooth) 0.585 0.816 15

SiamRPN+(1-IOU) 0.594 0.815 13

SiamRPN+(1-IOU+Rdis ) 0.603 0.823 12

SiamRPN+(1-IOU+Rasp) 0.600 0.824 13

SiamRPN+(1-IOU+Rdis+Rasp)(ours) 0.610 0.845 12

Bold data represent the best results

Table 4 Comparison with the
various method in terms of
expected average overlap
(EAO), robustness (failure rate),
and accuracy on theVOT2016
benchmark

Method �1-smooth [29] IOU [31] GIOU [32] DIOU [33] Ours

EAO 0.311 0.343 0.338 0.329 0.358

Accuracy 0.568 0.577 0.571 0.581 0.578

Robustness 0.322 0.252 0.270 0.280 0.238

Fig. 5 The comprehensive
success plots (left) and precision
plots (right) of comparison loss
functions on 100 sequences in
OTB2015

better the performance of the algorithm. On the contrary,
the lower the robustness is, the less time the tracking fails,
which means the method is more robust. Table 4 shows that
our method (MIOU) is able to outperform the trackers in
robustness and EAO.

Figure 5 shows the overall tracking success plots and
precision plots for all 5 loss functions on 100 sequences
in OTB2015. The success score and precision score of our
approach are 0.610 and 0.845. The curves of these five meth-
ods are very close, but our method is 0.7% and 2.2% higher
than the second method in success score and precision score,
respectively. We set the error threshold of 20 pixels in preci-
sion plots, and the area under curve values of success plots
represents the overlap rate between the prediction box and
target bounding box.

Figure 6 shows success plot of different algorithms on
9 challenging attributes, including fast motion, occlusion,
scale variation, motion blur, illumination variation, low res-
olution, deformation, out-of-view and out-of-plane rotation.

Our method outperforms the other metrics trackers signifi-
cantly in terms of 9 challenges, especially in occlusion, scale
variation and motion blur, owing to provide regression direc-
tion in distance and shape of bounding box. Since GIOU loss
and �1-smooth loss have strong laziness on intersection over
union calculation, it shows slow convergence and easy diver-
gence of training. However, our method is less sensitive to
the 9 challenges, which performs more generalization and
robustness.
Qualitative analysis:

We illustrate the qualitative results in five different meth-
ods on a subset of 6 sequences in Fig. 7. The sequences
of Football and Subway contain serious Occ (Occlusion),
Def (deformation) andBC (BackgroundClutters), �1-smooth
[29] and DIOU [33] occur tracking drift in 	109 of Football,
but our method, IOU [31] and GIOU [32] keep tracking suc-
cessfully in the end. Sequences Surfer is typical of target
SV (scale variation) and FM (fast motion), as we can see
that GIOU has the problem of serious scale tracking fail-
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Fig. 6 The success plots between different algorithms in 9 sequence challenges, including fast motion, occlusion, scale variation, motion blur,
illumination variation, low resolution, deformation, out-of-view, out-of-plane rotation

ure, while other trackers perform well in these challenges.
In sequences Skating1, many trackers suffer from short-term
occlusion in 	173; however, ourmethod andGIOU can effec-
tively deal with the non-overlap case and reposition target
in 	200. Moreover, our approach can identify the target in
obvious illumination change.When IV (illumination change)
and SV (scale variation) occur in skiing and liquor simulta-
neously, �1-smooth [29], IOU [31], GIOU [32] and DIOU
[33] are seriously affected by the susceptibility of scale, and
leading to tracking failed. But our method has a good track-

ing effect in these cases and maintain long-term tracking. In
general, the results clearly show that using our method as the
bounding box regression loss performs consistently better in
videos, while some failure cases occurred in �1-smooth loss,
IOU loss, GIOU loss and DIOU loss.
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Fig. 7 Qualitative results of the
proposed method (red),
�1-smooth loss (blue), IOU loss
(cyan), GIOU loss (green) and
DIOU loss (yellow) (football,
subway, surfer, Skating1, skiing,
liquor) on OTB2015

5 Conclusion and future work

SiamPRN tracking algorithm has real-time and excellent
tracking performance, but it is prone to drift in the case
of occlusion and non-overlapping, which is due to the �1-
smooth [29] loss of its bounding box regression branch.
Therefore, this paper analyzes the tracking effects of IOU
[31], DIOU and CIOU [33] regression loss functions in
the SiamRPN framework, and proposes a multivariate inter-
section over union (MIOU) regression loss measurement
method. MIOU uses the overlap area ratio, the center dis-
tance ratio and the aspect ratio of the boundary box, which
has scale invariance and speeds up the convergence speed in
the training process. On the other hand, we improve the def-
inition of aspect ratio factor to adjust the scale alignment of
the bounding box. Therefore, MIOU loss solves the problem
of �1-smooth loss localization failure in the case of non-
overlapping, and can maintain long-term tracking. On the
OTB2015 dataset and VOT2016 benchmark, experimental
results show that the MIOU loss has better target location
regression than other loss functions, especially for the chal-
lenges of occlusion, illumination change and fast motion.

Wewill further study this work. Firstly, similar objects are
more sensitive to the interference of targets. We plan to com-
bine the structural information of the target to improve the
ability to identify distracters. Secondly, we find that the shape
of RPN anchor has a great influence on the effectiveness of
the model, so we will introduce adaptive feature fusion to
refine the features based on the underlying anchor shapes.
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