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Abstract
Multi-view face generation from a single image is an essential and challenging problem. Most of the existing methods need
to use paired images when training models. However, collecting and labeling large-scale paired face images could lead to
high labor and time cost. In order to address this problem, multi-view face generation via unpaired images is proposed in
this paper. To avoid using paired data, the encoder and discriminator are trained, so that the high-level abstract features of
the identity and view of the input image are learned by the encoder, and then, these low-dimensional data are input into the
generator, so that the realistic face image can be reconstructed by the training generator and discriminator. During testing,
multiple one-hot vectors representing the view are imposed to the identity representation and the generator is employed tomap
them to high-dimensional data, respectively, which can generate multi-view images while preserving the identity features.
Furthermore, to reduce the number of used labels, semi-supervised learning is used in the model. The experimental results
show that our method can produce photo-realistic multi-view face images with a small number of view labels, and makes a
useful exploration for the synthesis of face images via unpaired data and very few labels.

Keywords Multi-view face generation · Generative adversarial net · Adversarial autoencoder · Semi-supervised learning

1 Introduction

Multi-view face image synthesis, which generates images
from different views for a given face image, is an interest-
ing but challenging question. It has been widely applied in
various domains such as unconstrained face recognition and
computer graphics. Two conditions need to be satisfied for a
single view generating multi-view face images. The first is
that the generated images should be the same identity as the
input image. The second is that the same view of different
identities should be consistent.

In order to satisfy these conditions, a number of approaches
are presented by researchers. These methods are roughly
classified into two categories: 3D face model-based methods
[1–7] and deep learning methods [8,9]. The method based
on 3D face model synthesizes face images with new angles
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by establishing 3D face model as a reference and fitting
model. For example,Blanz et al. [1] proposed a representative
method which first employed a face database to construct an
average face deformation model; then, the model is matched
with the given new face image; finally, the images of new
angles are fitted by continuouslymodifying the parameters of
model. Hang et al. [4] proposed a novel unsupervised frame-
work, which rotated faces in the 3D space back and forth,
re-rendered them to the 2D plane in a strong self-supervision
manner, and generated the final image by Pix2Pix [7]. RigNet
[5] provided a face rig-like control over a pretrained and fixed
StyleGAN via a 3DMM. The network is trained in a self-
supervisedmanner, without the need for manual annotations.
Although these methods based on 3D model are effective,
their synthesis results are not realistic. The method based on
deep learning makes the model learn the abstract representa-
tions of the identity and view of the input image by training
neural network, and then get the multi-view images by using
feature fusion. For example, Ghodrati et al. [8] input a pair
of face images with the same identity but different views and
view labels into the network. Then, images of different views
are obtained by image coding, attribute vector coding, feature
map fusion and image decoding. Finally, a clearer picture is
obtained by image generation refinement. Zhu et al. [9] pro-
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posed multi-view perceptron to disentangle the identity and
view representations of the input images. The identity fea-
tures and the view representation are learned by determining
the deterministic hidden neurons and randomhidden neurons
from perceptron. Images from different views are generated
by fusing different view representations and identity charac-
teristics. Fu et al. [10] first predict the boundary image of
the target face in a semi-supervised way, modeling pose and
expression jointly, and then utilize the predicted boundary to
perform refined face synthesis. Their method has achieved
good effect, but it is necessary to input a pair of images dur-
ing training. Furthermore, the fine details are often missed
from faces which are synthesized from methods based on
convolutional neural network and deep neural network men-
tioned above.

In generative adversarial network (GAN) [11], clear and
authentic samples can be produced by simulating data distri-
bution according to decision theory and game theory, which
also make it an impressive achievement in multi-view gen-
eration. These GAN-based methods [12–21] usually resort
to images from different views of the same identity (xi , x j )
during training. The identity and view representations are
first disentangled in the latent space; then, identity repre-
sentation is input into the generator under the constraint of
another view label v j to generate image x̃ j of the same iden-
tify but different view, and then, the discriminator is trained
to distinguish x̃ j from real image x j . Not only view labels
but identity labels are used in these models during training.
In addition, TP-GAN [14] and LB-GAN [15] also need to
label the eyes and mouth of the face image to get specific
local texture information. Hu et al. [16] propose CAPG-
GAN to generate both neutral and profile head pose face
images. The head pose information is encoded by facial
landmark heatmaps. A couple-agent discriminator is intro-
duced to reinforce on the realism of synthetic arbitrary view
faces. Besides the generator and conditional adversarial loss,
CAPG-GAN further employs identity preserving loss and
total variation regularization to preserve identity informa-
tion and refine local textures, respectively. Sanchez et al. [17]
propose a “recurrent cycle consistency loss” which for dif-
ferent sequences of target attributes minimizes the distance
between the output images, independent of any intermedi-
ate step. However, this approach requires the use of paired
images and facial landmark annotations to train the model.
Studies [18–21] are able to learn meaningful latent spaces,
explaining generative factors of variation in the data. How-
ever, to the best of our knowledge, there has been no work
explicitly disentangling the latent space for object geom-
etry of GANs. These methods based on GAN have high
demand on the collection and labeling of data sets and
takes a lot of manpower and time. For example, in refer-
ence [22], in order to collect the Multi-PIE, 337 subjects
were recorded using a hardware synchronization network

consisting of 15 high-quality cameras and 18 flashes, and
then, all images were labeled with their identity, illumina-
tion, pose and expression. CycleGAN [23] aims to solve the
problem of the need to use paired images in the training of
traditional image style migration networks. However, on the
fine-grained task of human face, the details of facial features
will bring great challenges to the generation task. Without
optimizing pixel-level loss, it is easy to cause face image
distortion.

To reduce labor and time costs, paired images using is
avoided and the dependence on labels are reduced in this
paper. The encoder and discriminator were trained so that
the encoder can learn the identity and view representations
of the input image in the manifold space, and then, these
low-dimensional codes were input into the generator to get
high-dimensional data. At last, by training the generator and
discriminator, a realistic face image can be reconstructed
from the generator. In order to produce realistic faces with
different viewsmeanwhile preserve the identity features, two
adversarial networks are applied to the encoder and gener-
ator, respectively. To further reduce the dependency on the
view labels, another discriminator is imposed on the encoder,
which force its output to follow the categorical distribution.
Overview of our proposed method is shown in Fig. 1. Dur-
ing training, encoder E maps the input image to identity
representation z and view representation ṽ, respectively. Dis-
criminator Dz forces z to follow the uniform distribution.
Discriminator Dv forces ṽ to follow the categorical dis-
tribution, and make the view representation more accurate
by minimizing the cross-entropy of the fake view label and
the real view label. The generator G reconstructs the image
using ṽ and z, the reconstructed result and the real image
are, respectively, connected with ṽ and then input into the
discriminator Dimg for similarity judgment. During the test,
multiple one-hot vectors were imposed on the identity rep-
resentation in the latent space, and the vectors representing
the views were connected with the identity representation,
respectively; then, they were input into generator to synthe-
sizemulti-view imageswhile preserving the identity features.

In summary, we have following contributions:

(1) Ourmethod does not resort to paired images during train-
ing and does not depend on the identity information of
face images.

(2) Semi-supervised learning is used to further reduce the
number of used labels. Only a small number of view
labels are required for training.

(3) Experimental results show that our network effectively
disentangles the identity and view representations, and
generatesmultiple-view face imageswhile preserving the
identity features.
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Fig. 1 Overview of our method

2 Related work

2.1 Generative adversarial networks

Generative adversarial network has achieved great success
in image generation and has received extensive attention. It
samples from the complexprobability distributionby training
the discriminator and the generator in turn to compete against
each other. However, GAN generates an image from random
noise and cannot control the output image. In recent years,
GAN’s architecture has been continuously improved. CGAN
[24] attempted to add additional conditional information to
the generator and discriminator to guide the training of the
two models of GAN. CC-GAN [25] used semi-supervised
learning to repair missing parts of the image. Each image
generated by the generator of AC-GAN [26] has a cate-
gory label, and the discriminator also gives two probability
distributions for the source and category labels. InfoGAN
[27] obtained decomposable feature representations through
unsupervised learning. GAN can generate clear images, but

only in fairly small resolutions and with somewhat limited
variation. The samples generated by variational autoencoder
(VAE) [28] are very close to the original image, but usually
blurred. CVAE-GAN [29] combined the advantages of both
to produce realistic and diverse samples. Backpropagation is
performed in VAE using KL divergence, so the exact func-
tional form of the prior distribution is required. Adversarial
autoencoder (AAE) [30] only needs to sample from the prior
distribution, and then make the prior distribution fit the real
distribution through adversarial training. To avoid using KL
divergence, AAE is used in our method.

2.2 Face frontalization

Face frontalization is a technique for synthesizing frontal
images using face images from other angles, which is very
helpful for improving face recognition rate, and has been
extensively studied. The existing face frontalization methods
can be classified into three categories: 3D-based meth-
ods [31–34], statistical methods [35,36] and deep learning
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methods [37–40]. Zhu et al. [32] established corresponding
relation between 2D face and 3D model at different angles
according to the key point matching rule, and then, the 3D
model is established to eliminate the effects of angles and
generate frontal images. Sagonas et al. [36] consider that
frontal image has the smallest rank in all the different poses,
they obtained frontal images by minimizing nuclear norm
and the matrix L1 norm accounting. Yin et al. [39] proposed
a method which combined 3D morphable model (3DMM)
[41] and GAN. In their works, 3D model is first used to get
general information, and then, 3DMM coefficients and orig-
inal image are input into GAN to generate detailed frontal
face images. Compared with methods mentioned above, our
method uses two discriminators to ensure the accuracy of
identity and view.

2.3 Representation learning

Effective representation of learning samples can simplify the
difficulty of data processing.Autoencoder obtained the effec-
tive representation of the learning sample by minimizing the
reconstruction error, which compresses the input data into a
latent representation and then reconstructs the output through
the characterization, and usually used for data denoising and
visual dimension reduction. Adversarial autoencoder [30]
employed an adversarial strategy based on autoencoder, and
training a discriminator to distinguish whether the sample
is from the latent code of autoencoder or the user-defined
prior distribution. Eduardo et al. [42] showed that models
with adversarial network can improve the quality of repre-
sentation learning. Jirui et al. [43] proposed a multi-view
predictive latent space learning model, which learns a latent
representation by maximizing the correlation between the
feature space where all the feature vectors exist and latent
space where latent vectors exist. Lample et al. [44] presented
a new approach to generate variations of images by chang-
ing attribute values, which generates realistic images of high
resolution without needing to apply a GAN to the decoder
output. Tang et al. [45] proposed amethod for expressive style
transfer. Liu et al. [46] applied GAN to video-to-video trans-
lation. Huang et al. [47] proposed a method of learning the
pooling scheme to learn high-level features of face images.
Zhu et al. [9] proposed multi-view perceptron (MVP) to
disentangle the identity and view representations. The deter-
ministic hidden neurons and the random hidden neurons are
used to learn the identity features and capture the view rep-
resentation, respectively. DR-GAN [12] used an adversarial
strategy based on MVP, which made the model have better
representation ability and obtained high-quality face synthe-
sis images. Tian et al. [13] proposed CR-GAN, which used a
two-pathway learning scheme to learn complete representa-
tions. Our approach is most relevant to references [9,12], but
different. The method proposed in the literature [12] cannot

learn the conditional representation of the input images. In
the literature [9], the identity and view representations are
solved using different neurons, while we used adversarial
training to make the learned data representation more accu-
rate, this is because in the process of adversarial learning, the
training sample is no longer the original sample, but the orig-
inal sample and counter sample. This is equivalent to adding
the generated confrontation samples into the training set as
new training samples and treating them equally. Then, with
more and more training of the model, the accuracy of the
learned data representation will increase, and the robustness
of the model to the adversarial examples will also increase.

3 Proposedmethod

In this section, we first introduce our network structure,
which consists of an encoder, a generator and three dis-
criminators. In Sect. 3.2, objective function we used is
described. Section 3.3 introduces our semi-supervised learn-
ing approach and shows the training details.

3.1 Model structure

3.1.1 Encoder

In the process of generating multi-view face images, it is
difficult to directly manipulate the face images in high-
dimensional space, and such high-dimensional data are not
required to reflect the identity and view information of the
face; therefore, it is necessary to map the high-dimensional
data of the face image to the low-dimensional latent vector
in the latent space.

The encoder is used to learn the features of face images. It
uses a convolutional neural network to encode a face image,
and outputs latent variables that represent facial features. In
order to obtain a useful feature representation, the model
proposed in this paper uses an encoder based on a convo-
lutional neural network. The specific structure is shown in
Table 1, which is mainly composed of 5 convolutional layers
and 2 fully connected layers. In order to reduce the amount
of calculation and increase the training speed, the image size
is scaled to 128 × 128, and the identity representation and
view representation of the facial image identity features are
obtained through the convolutional layers and the fully con-
nected layers.

In the process of generating multi-view face images, how
to change the view while retaining identity features is very
critical. According to the theory of manifold learning, the
datawe observe are actuallymapped from a low-dimensional
manifold to a high-dimensional space. Assuming that the
input face image is located on a low-dimensional mani-
fold, moving the sample along the manifold can realize the
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Table 1 Structure of the encoder

Layer Filter/stride Output size

conv1 5 × 5/2 64 × 64 × 64

conv2 5 × 5/2 32 × 32 × 128

conv3 5 × 5/2 16 × 16 × 256

conv4 5 × 5/2 8 × 8 × 512

conv5 5 × 5/2 4 × 4 × 1024

fc1 - 50

fc2 - 13/9

angle of view conversion. The model proposed in this paper
converts the face image into two latent spaces through two
fully connected layers of the encoder, so as to obtain a low-
dimensional representation of the identity and view of the
face image, which can reduce the accumulated error of the
reconstructed image; this is because the model proposed in
this paper transforms the feature into a hidden space. Specif-
ically, this is achieved by having a full connection layer
with bias, thereby reducing errors accumulated by rebuild-
ing the view. The weight of the full connection layer can
be expressed asW=[w1,w2,...wv], and v represents the view
label, and each view corresponds to a weight. Therefore, the
process of view conversion from a to b can be expressed
as eab=[e1ab, e2ab, ...evab]T , and then, the process of angle
conversion can be expressed as zb=za+Wzab. In this paper,
considering the image reconstruction effect and computa-
tional cost, the sampling parameters were selected for the
subsequent experiments, and finally, the dimension of facial
identity representation was set to 50. In addition, in order to
keep the dimension consistent with the view label vector, the
dimension represented by the view is set to 13 or 9 (13 or 9
multi-view images are output). The pixels of the input image
are normalized to (-1, 1), the activation function of convolu-
tional layers is ReLU, and the activation functions of the two
fully connected layers are tanh and softmax, respectively.

3.1.2 Generator

The input of the generator is the latent variable representing
the face features and the one-hot encoding representing the
view label. Through the deconvolution process, the multi-
view face images are output, and the identity of the face
is maintained while converting the perspective of the face.
Specifically, the latent variables and one-hot encoding are
connected to input generator, so that the generator can gen-
erate images according to certain rules. The generator used
in this paper consists of 1 fully connected layer and 7 decon-
volution layers, whose structure is shown in Table 2.

Table 2 Structure of the generator

Layer Filter/stride Output size

fc – 16384

deconv1 5 × 5/2 8 × 8 × 512

deconv2 5 × 5/2 16 × 16 × 256

deconv3 5 × 5/2 32 × 32 × 128

deconv4 5 × 5/2 64 × 64 × 64

deconv5 5 × 5/2 128 × 128 × 32

deconv6 5 × 5/1 128 × 128 × 16

deconv7 5 × 5/1 128 × 128 × 3

Table 3 Structure of Dz and Dv

Layer Filter/stride Output size

fc1 – 64

fc2 – 32

fc3 – 16

fc4 – 1

Table 4 Structure of Dimg

Layer Filter/stride Output size

conv1 5 × 5/2 64 × 64 × 16

conv2 5 × 5/2 32 × 32 × 32

conv3 5 × 5/2 16 × 16 × 64

conv4 5 × 5/2 8 × 8 × 128

fc1 – 1024

fc2 – 1

3.1.3 Discriminator

The purpose of the discriminator Dz is to force the output of
the encoder to follow a priori distribution. In order to achieve
this, Dz is trained to discriminate the output z of the encoder
and the sampling of the prior distribution, and the encoder is
trained to generate the latent variable z that can deceive Dz .
The prior distribution used here is uniform distributed.

The discriminator Dv alsomakes the output of the encoder
obey the category distribution through the same confronta-
tion process. Since unlabeled samples and labeled samples
are independently sampled from the same data with the same
distribution, the information about the data distribution con-
tained in the unlabeled samples is beneficial to modeling.
In order to make full use of unlabeled data and reduce the
model’s dependence on labels, this paper uses an additional
discriminator Dv in the model to make it a semi-supervised
model.

The discriminator Dimg forces the face image generated
by the generator to be more realistic, and when training, the
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view label is applied to Dimg , which can ensure the con-
sistency of the perspective of the image generated by the
generator. Although the identity of the face image can be
ensured by minimizing the distance between the input and
output images, there is no guarantee that the images in the test
set can also achieve good results on the model, because the
images in the test set are not used during training. Therefore,
the loss in pixels during reconstruction can only be generated
by interpolation to the image closest to the image in the train-
ing set, and the discriminator Dimg can avoid this situation,
making the model perform well on the test set.

The structures of discriminators Dz , Dv and Dimg are
shown in Tables 3 and 4, respectively. The output layers
of Dz and Dv use sigmoid as the activation function. The
activation functions of the remaining layers are LeakyReLu,
the activation function of the first fully connected layer (fc1)
of Dimg is LeakyReLu, and the activation function of the
second fully connected layer (fc2) is sigmoid.

3.1.4 Compared with the structure of DR-GAN and CR-GAN

Figure 2 shows DR-GAN [12], CR-GAN [13] and the
network structure mentioned in this article. The network
structure of this article is different from DR-GAN in three
points:

(1) DR-GAN uses view coding as a priori condition to guide
the generation of face images, adds noise data to the hid-
den layer after the generator and encoder and expands
the discriminator used to judge the true and false images
to the classifier for image classification, pose estimation
and face recognition tasks. Although face image classi-
fication, pose estimation and face recognition are three
very related tasks, due to the different degrees of diffi-

culty of these three tasks, simply using a discriminant
network cannot well balance the three, increasing the
complexity of themodel. Therefore, in the network struc-
ture used in this paper, the view classification network
and the encoder are in the same structure. In this way,
the view classification network and the face generation
network can be mutually restricted and promoted, and
the synthesis rate can be improved while improving the
view recognition rate;

(2) In this paper, the discriminator Dz is applied to the
encoder to ensure a smooth transition in the latent space,
and DR-GAN does not use this confrontation strategy;

(3) The DR-GAN discriminator inputs images of two dif-
ferent views that need the same identity. (One is a real
image and the other is a reconstructed image.) Tags and
the network in this article only need one kind of view
label. Through training, the encoder can untie the iden-
tity representation and view representation, so that the
generator can reconstruct a realistic image.

CR-GAN adds a path to DR-GAN to ensure that the net-
work learns a complete representation. In addition to the
above three points, the network structure of this paper is also
different from CR-GAN: CR-GAN uses dual paths to ensure
that the network can also generate good results in the test
set, and this paper achieves the same purpose by training the
discriminator Dimg .

3.2 Objective function

In general, the generated images need to meet three require-
ments: (1) The input face and the output face should keep
the identity characteristics unchanged. (2) The same view of

Fig. 2 Comparsion of DR-GAN(a), CR-GAN(b) and our method(c)
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different identity faces should be consistent. (3) The output
face should be realistic.

To obtain the face’s identity representation, the input face
image x is mapped to be the feature vector z by the encoder
E . Then, the feature vector z and the sample obtained from
the prior distribution are input into the discriminator Dz , the
encoder E and Dz are trained by the min–max game, which
force z to gradually close to the prior distribution:

min
E

max
Dz

V (E, Dz) = Ez′∼pz(z)[log Dz(z
′)]

+ Ex∼pdata(x)[log (1 − Dz(E(x)))]
(1)

where pz(z) denotes the prior distribution, pdata(x) denotes
the data distribution of the real input image, E(x) = z ∈ R

n ,
and n denotes the dimension of the face feature.

Similarly, to get a view representation of the face, encoder
E map the face image x to be the view vector ṽ, we input
the ṽ and the sample obtained from the prior distribution into
the discriminator Dv , and train E and Dv by the min–max
game:

min
E

max
Dv

V (E, Dv) = Ev′∼pv(v)[log Dv(v
′)]

+ Ex∼pdata(x)[log (1 − Dv(E(x)))]
(2)

where pv(v) denotes the prior distribution, E(x) = ṽ ∈ R
n ,n

denotes the number of views.Unlabeled data and labeled data
are alternately input into the encoder until all the labeled data
are used. The cross-entropy of the output ṽ of the encoder E
and the real label v is calculated by

H(v, ṽ) = −[v log ṽ + (1 − v)log(1 − ṽ)] (3)

We optimize E by minimizing cross-entropy to reduce clas-
sification error. Note that the very low classification error has
slight effect on the generated results due to the large number
of training samples.

To make the reconstructed image more realistic, we input
the feature vector z and the corresponding view vector ṽ into
G to generate x̃ ; then, (x̃, ṽ) and (x, ṽ) are input into the
discriminator Dimg , and the role of ṽ is the same as that of
the label in supervised learning. G and Dimg can be trained
by

min
G

max
Dimg

V (G, Dimg) = Ex,ṽ∼pdata(x,ṽ)[log Dimg(x, ṽ)]
+ Ex,ṽ∼pdata(x,ṽ)[log 1 − Dimg(G((z, ṽ), ṽ)))]

(4)

In order to ensure that after the encoder and the generator,
the output face image x̃ is located in the face manifold space;
during training, the output face image x̃ and the input face
image x share the identity characteristics of the face and view

information; therefore, to ensure that x and x̃ are similar, you
also need to calculate:

min
E,G

L(x,G(E(x), ṽ)) (5)

where L represents the L2 norm; it is defined as follows:

‖ x, x̃ ‖=
√

√

√

√

n
∑

i=1

(xi−x̃i )
2 (6)

3.3 Semi-supervised learning

With the development of data collection and storage tech-
nologies, it is convenient to collect large amounts of data,
but only a small percentage of the data can be correctly
labeled. To further reduce the number of labels used, semi-
supervised learning is used in our model. Firstly, the output
of the encoder ṽ and the random sampling of the category
distribution are input discriminator Dv . The encoder E can
generate view labels, and the Dv can distinguish between real
label and forecast label. Dv and E are updated by Formula
(2) in this process. Secondly, in order to reduce classifica-
tion error, E is updated by Formula (3) when labeled data is
inputted. The training details is shown in Algorithm 1, we
take advantage of unlabeled data by this strategy. E will be
a good view estimator after several iterations. Unlike most
of existing semi-supervised generative adversarial networks
[25,26,48–50], our discriminators only judge true or false
and do not output categories.

When training the model proposed in this paper, the
labeled data are trainedfirstwith supervised learningmethod.
Then the initial classifier obtained by training is used to pre-
dict the unlabeled data, and the data with high confidence
and its annotation are added to the labeled data to retrain the
classifier. Through the method introduced in Sect. 3.2, in the
process of training, the discriminator Dz and Dv guide the
latent variables z and the label variables ṽ approaching the
uniform distribution and category distribution, respectively.
In other words, the two discriminators guide the output from
the neural network before the full connection layer of the
encoder to two different distributions. Therefore, the two dis-
tributions will weaken each other’s regularization ability and
then affect the convergence rate of the model. In order to
reduce this effect, when the cross-entropy of the real label
and the predicted label are reduced to a certain degree, the
encoder parameters are no longer updated by Formula (3).
Through this strategy, the unlabeled data are fully utilized.
After several iterations, the encoder gradually acquires the
ability of view estimation.
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Algorithm 1 Semi-supervised training with unpaired data
Input: Training set of size N , where the number of labeled images is

M , the number of iterations T , and batch size m;
Output: Trained network E , Dz , Dv , G and Dimg ;
1: for t = 1 to T do
2: for j = 1 to N/m do
3: Take m samples from the training set{xi }mi=1;
4: Sampling m samples from the prior distribution of latent

variables{z pi }mi=1;
5: Sampling m samples from the prior distribution of label

variables{vpi }mi=1;
6: if j < M/m then
7: Get the real sample label;
8: Update parameters of the encoder E by minimize the For-

mula (3);
9: end if
10: Input {xi }mi=1 into the encoder to generate latent variable

{zi }mi=1 and label variable {ṽi }mi=1
11: Update parameters of Dz , Dv and E by the Formula (1) and

Formula (2);
12: Input {zi }mi=1 and {ṽi }mi=1 into generator G, and output gen-

erated sample {x̃ i }mi=1
13: Update parameters of Dimg and G by the Formula (4);
14: end for
15: end for

4 Experiments

In this section, we first introduce the data sets we use and
the experimental details. Then, to demonstrate the effective-
ness of our method, DR-GAN [12] and CR-GAN [13] are
compared with our method.

4.1 Experimental data and parameter settings

Multi-PIE [22] is a face data set established by Carnegie
Mellon University in the USA, where “PIE” refers to the
abbreviation of pose, illumination and expression.Developed
on the basis of. Multi-PIE was collected in a restricted envi-
ronment. The camera collected face images of 337 volunteers
under 43 different lighting and 13 different shooting angles.
Each face image contains at least 4 different expressions.
Each volunteer’s head image contains 13 yaw angles within
±90◦ (15◦ for every two attitudes).

300W-LP [51] is a 3DMM [41] label obtained by the
3DDFA team based on the existing AFW, IBUG,HEPEP and
FLWP and other 2D face alignment data sets through 3DMM
fitting. A large pose 3D face alignment data set obtained by
mirroring.

In this paper, the face images of 249 volunteers (a total
of 129480 images) of session1 in the Multi-PIE database are
used for the experiment, of which 103584 images are used
for training, and the remaining images are used for testing.
Only the labels of 3000 images are used for training. In this
paper, 122450 images in the 300W-LP data set are used for
the experiment, of which 97960 images are used to train the
model, and the remaining images are used as the test set.
Only 2500 images are labeled during training. In order to
compare with the experimental results of CR-GAN, only the
images with yaw angle within±60◦ in the 300W-LP data set
are used, and they are dispersed into 9 intervals. The usage of
the two data sets is shown in Table 5. It should be noted that
DR-GANandCR-GANneed to divide the training set test set
according to identity. For example, in Multi-PIE, CR-GAN
uses 200 identities for training, and the remaining identities
are used for testing. The method proposed in this paper does
not require identity tags during training, so there is no identity
requirement for the training set images.

The preprocessing in this experiment includes face detec-
tion and image normalization. Since the research and appli-
cation of face area detection has been very mature and is
not the focus of this article, this paper uses reference [52]
to detect and crop face images, and normalize the images
to 128 × 128. The preprocessed images of Multi-PIE and
300W-LP are shown in Figs. 3 and 4, respectively.

Multi-PIE and 300W-LP preprocessed training set images
were, respectively, input into the model for training. The
hyperparameters are set as follows: batch size = 100, using
Adam optimizer [53] as the optimizer algorithm, learning
rate = 0.0002, momentum = [0.5,0.999]. The GPU used in
the experiment was Nvidia Quadro P4000 with 8GB mem-
ory.

4.2 Comparison results

We have made qualitative and quantitative evaluations of
our methods; three aspects are considered: the visual qual-
ity, the identity preserving property and the view preserving
property. In addition, we give some synthesis results under
different illuminations. Furthermore,we showhow themodel
behaves with a varying number of unlabeled data.

Visual quality. Figures 5 and 6, respectively, show the
image reconstruction results of the proposed method on
two data sets. Figure 7 shows the face correction results of
DR-GAN, CR-GAN and the proposed method. The method

Table 5 Multi-PIE and
300W-LP data set usage

Data set Training set Test set Training/test Number of views Number of labels

Multi-PIE 103584 25896 1/4 13 3000

300W-LP 97960 24480 1/4 9 2500
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Fig. 3 Example images from Multi-PIE

Fig. 4 Example images from 300W-LP

Fig. 5 Reconstruction results on
Multi-PIE. The first row is the
reconstructed image, and the
second row is the image in the
data set

proposed in this paper generates a realistic face image that is
very similar to the image in the data set. CR-GAN and DR-
GAN also have good results, but these two models require
paired images and a large number of labels during training. In
addition, the method proposed in this paper also has a good
effectwhen inputting large-scale face images. Figure 8 shows
the results of the method in this paper. The generated image
is very similar to the input image, and there are continuous
angle changes. This shows that the model proposed in this
paper not only unlocks the identity representation and view
representation of face images, but also can synthesize realis-

tic face images. Figure 9 shows the results of CR-GAN and
this method on 300W-LP. The method in this paper can syn-
thesize high-quality images, but the CR-GAN-synthesized
image is far from the real image, and it is easy to produce
distortion.

Identity preserving property. To evaluate identity pre-
serving property of our model, we randomly select 10 views
for each identity on Multi-PIE session1 (249 identities), and
input all generated images of the same identity into FaceNet
[54] to calculate the L2 distance between each two images.
The L2 distance reflects the similarity of the face, the faces
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Fig. 6 Reconstruction results on
300W-LP. The first row is the
reconstructed image, and the
second row is the image in the
data set

Fig. 7 Results of face frontalization of DR-GAN(Col2), CR-GAN(Col3) and our method(Col4). The first column is the input image, and the fifth
column is the corresponding frontal face image

of different views of the same identity should have a small
L2 distance, and there should be a large L2 distance between
different identity faces. The mean and variance of the L2 dis-
tances for DR-GAN, CR-GAN and our method are shown in
Table 6. Besides, we compare Frechet Inception Distance
(FID)[55] with CR-GAN and DR-GAN. We calculate the
FID between the real faces and the synthesized faces. The
results are shown in Table 7. Tables 6 and 7 show that
our method has a small gap with DR-GAN and CR-GAN. It
should be noted that our method does not use identity labels,
and each face generates 13 images of different views, while
DR-GAN and CR-GAN only generates 9 images in the case

of using identity label; that is to say, in this statistic, the
results of our method include images of 13 views generated
from large pose face images, and large pose face images gen-
erated from other views.

View preserving property. To evaluate the view preserv-
ing property of our model, we use the A third-party head
pose estimator (THPE)1. to calculate the yaw angle of the
real images and the images generated by our model onMulti-
PIE. THPE can only calculate the yaw angle within ±45◦,

1 https://github.com/guozhongluo/head-pose-estimation-and-face-
landmark
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Fig. 8 Results of our method; the first image in each row is the input image

Fig. 9 Results of CR-GAN and our method on 300W-LP. Images synthesized by CR-GAN (Row 1) are quite different from real images and are
prone to distorted, and our method (Row 2) can synthesize high-quality images.

Table 6 Identity similarities between real and generated images

Mean Variance

CR-GAN[13] 0.871 0.057

DR-GAN[12] 0.914 0.051

Ours 0.939 0.060

so we only tested the face image in this range. Table 8 shows
the average yaw angles of real images and images gener-
ated by CR-GAN, DR-GAN and our method, respectively.
The results show that there are small mean head pose esti-
mation errors between the multi-view images generated by
our model and the real images, and the results between our
method and the CR-GAN and DR-GAN are very close. Note
that our method is based on semi-supervised learning, using
only a very small number of views labels.

Synthesis results underdifferent illuminations. In order
to compare the synthesis results of ourmethodunder different

Table 7 FID comparisons with CR-GAN [13], DR-GAN [12] and our
method on the Multi-PIE database

CR-GAN DR-GAN Ours

FID 16.93 20.54 21.19

Table 8 Mean head pose estimation (in degree) comparisons with CR-
GAN [13], DR-GAN [12] and our method on the Multi-PIE database
predicted by THPE

±45◦ ±30◦ ±15◦ 0◦

Genuine data 38.50 29.18 16.76 1.17

CR-GAN 38.94 29.07 16.82 1.40

DR-GAN 38.53 29.22 16.91 1.33

Ours 37.40 29.20 17.75 1.95

illuminations, we selected the face images of 100 identities in
the Multi-PIE data set under 5 illumination conditions (No.
00–No. 04) as the test set. Figure 10 shows the synthesis
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Fig. 10 Synthesis results under different illuminations

Table 9 FID and mean head pose estimation errors of the images gen-
erated by our method under different illuminations

00 01 02 03 04

FID 21.15 21.14 21.20 21.24 21.22

Mean head pose estimation error 0.019 0.018 0.020 0.021 0.019

results of the same identity under 5 illumination conditions
(the same identity contains two expressions under each illu-
mination). It can be seen that the our method can generate
high-visual-quality images under different illumination con-
ditions. Table 9 shows theFIDandmeanheadpose estimation
errors between the real faces and the synthesized faces under
5 lighting conditions. (Mean head pose estimation error is
the difference between the real image head pose and the gen-
erated image head pose calculated by THPE when the yaw
angle is 30◦.) The results show that the FID and mean head
pose estimation errors of the images generated by ourmethod
under different illuminations is very close.

The model behaviors with a varying number of unla-
beled data. For semi-supervised learning, the more the
labeled data, the better the performance of the model. There-
fore, in practical application, we are concerned about how to
make use of a limited amount of labeled samples to achieve
optimal model performance. In order to explore the influence
of the number of unlabeled samples on themodel accuracy in
the semi-supervised learningmethod, this experiment divides
the training set images into two parts. The first part is labeled
data, with a total of 3000 images. The second part is data

Table 11 Results in cross-database experiments

Database color FERET Pointing’04

FID 44.79 37.02

Mean head pose estimation error 0.033 0.021

without labels, with the number of images set as 0, 6000,
8000, 10000, 12000 and 15000, respectively. Six training
sets were, respectively, inputted into the model for training,
where the epoch was set as 20. The results are shown in
Table 10. It can be seen that when the number of samples
without labels increases from 0 to 6000, the cross-entropy of
the model decreases rapidly. With the increase of the number
of samples without labels, the cross-entropy of the model
decreases gradually. In addition, we input 1000 randomly
selected images from the test set into 6 models obtained by
training for testing. Experimental results show that models
trained with more unlabeled samples had smaller FID value
and mean head pose estimation error. These results indicate
that the unlabeled samples have a positive effect on the train-
ing effect of the model, and also prove the effectiveness of
the semi-supervised model designed in this paper.

Cross-database experiment. In order to verify the per-
formance of our model in cross-database experiments, we
randomly selected 500 images from color FERET [56] and
Pointing’04 [57], respectively, and input them into the model
trained byMulti-PIE data set to calculate FID andmean head
pose estimation error. The results are shown in Table 11. Fig-
ure 11 shows the multi-view face images generated by our

Table 10 Results with a varying
number of unlabeled data

Number of unlabeled data 0 6000 8000 10000 12000 15000

Cross-entropy 0.5108 0.2533 0.2139 0.1835 0.1512 0.1076

FID 66.41 51.92 49.20 38.77 35.48 31.05

Mean head pose estimation error 0.837 0.501 0.412 0.371 0.325 0.244
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Fig. 11 Results in cross-database experiments. The first image in each row is the input image. The left is the result on Pointing’04, and the right is
the result on color FERET

method in cross-database experiments. These results show
that there are smallmeanheadpose estimation errors between
multi-view images generated by our model and real images,
which indicates that ourmodel has reliable head pose estima-
tion ability. However, the face output is relatively fuzzy, and
the similarity between the synthetic face and the input face
is very different. This is because the proposed model uses
a single path, i.e., using an encoder to map the input image
to a latent space, and then reconstructs the image through a
generator. The proposed model may lack the generalization
ability because with limited number of training samples, the
output of the encoder only constitutes the subspace of the
latent variable of the face image. This may make the genera-
tor only “see” a part of the face image representation. When
the sample of other data set is inputted for testing, the latent
variable of the face image of the input encodermay be outside
the subspace, causing the generator to reconstruct different
face images.

5 Conclusions and discussion

Amethod for generating multiple views via unpaired images
is presented in this paper. Our method is based on adver-
sarial autoencoder and generative adversarial network. The
identity and the view representations are disentangled, and
the realistic face image can be reconstructed by training the
five sub-networks. During the test, multiple one-hot vectors
are imposed on the identity representation, so that the gen-
erated images not only preserve the identity characteristics,
but also have a continuous view variation. Compared with
other multi-view face generation methods, our method does
not need to use paired face images in training, does not rely

on the identity label of the data set and only needs a few view
labels.

However, our method has undoubtedly increased the com-
plexity of the model. Compared with DR-GAN [12] and
CR-GAN [13], FLOPs and parameters have increased, so
compression of the model should be considered in the future.
In addition, the method proposed in this paper focuses on
solving the problem that pairs of images and a large num-
ber of labels must be used in the traditional training models,
and does not pay attention to the generalization of the model.
Therefore, themodel proposed in this paper does not perform
well in cross-database experiments. To enhance the general-
ization of the model, we will try to add another generation
path in the future research to ensure the integrity of the latent
space. What is more, the literature [16] employs identity pre-
serving loss to preserve identity information. Specifically,
they choose a pretrained Light CNN as identity preserving
network, it makes the same subject form a compact cluster
with small intra-class distances and variances in embedding
space. In this paper, we use Formula (5) to preserve identity
information. The literature [16] uses a more sophisticated
approach to preserve identity information, and produces real-
istic images. The method proposed in this paper focuses on
solving the problem that pairs of images and a large number
of labels must be used in the traditional training model, we
will try to add an identity preserving loss as the literature
[16] in the future research to make generated images more
realistic.
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