
The Visual Computer (2022) 38:2303–2313
https://doi.org/10.1007/s00371-021-02112-7

ORIG INAL ART ICLE

BEACon: a boundary embedded attentional convolution network
for point cloud instance segmentation

Tianrui Liu1 · Yiyu Cai2 · Jianmin Zheng3 · Nadia Magnenat Thalmann3

Accepted: 15 March 2021 / Published online: 8 April 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
Motivated by how humans perceive geometry and color to recognize objects, we propose a boundary embedded attentional
convolution (BEACon) network for point cloud instance segmentation. At the core of BEACon, we introduce the attentional
weight in the convolution layer to adjust the neighboring features, with the weight being adapted to the relationship between
geometry and color changes. As a result, BEAConmakes use of both geometry and color information, takes instance boundary
as an important feature, and thus learns a more discriminative feature representation in the neighborhood. Experimental results
show that BEACon outperforms the state-of-the-art by a large margin. Ablation studies are also provided to prove the large
benefit of incorporating both geometry and color into attention weight for instance segmentation.

Keywords 3D point cloud · Instance segmentation · Attentional convolution network

1 Introduction

Point cloud is a collection of points with spatial coordinates
and possibly additional features such as color or intensity.
Visualizingpoint cloud in a sceneprovides intuitive and accu-
rate information of 3D space. Modern technologies such as
3D imaging, photogrammetry, and SLAM can produce col-
ored point cloud. The applications of point cloud cover a
large variety of fields, from augmented reality, autonomous
navigation, to Scan-to-BIM in construction.
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One basic task in point cloud processing is segmentation
that partitions the point cloud into groups, each of which
exhibits certain homogeneous characteristics. In particular,
semantic segmentation groups the points with similar seman-
tics, and instance segmentation further divides the points into
object instances. For either segmentation task, the key to
the problem is feature learning. On the one hand, extract-
ing the discriminative features from point cloud is vital to
the following clustering and segmentation processes. While
searching-based algorithm [1] showed good performance on
clustering data with distinctive features, 3D point cloud in
its original space is not so easily separable. For low dimen-
sion and structured data such as 2D image, the convolutional
network is well known for its ability to extract features for
various tasks [2]. This trend is extending to the 3D field
as many recent semantic segmentation works [3–7] have
shown promising results using the concept of convolution
on an unordered point set. On the other hand, not all fea-
tures are useful for segmentation, and feature selection is
a well-studied topic [8]. In convolution networks, feature
selection is accomplished by the attentional layer, which is
used inmultiple recent literature [9–11] to tackle the isotropic
nature of convolutional kernels. However, the effectiveness
of attentional convolution on instance segmentation remains
unexplored. In addition, the weight matrix in previous works
only depends on spatial or propagated feature difference.
Although this may seem sufficient for semantic task, the rela-
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tionship between color and geometry ismore importantwhen
delineating an instance boundary.

Intuitively, people delineate the instance boundary by
paying more attention to geometry or color in different cir-
cumstances, e.g. , we distinguish two instances ofwalls based
on verticality, and a white board from the wall mainly based
on color of the frame. To model the attention mechanism
that is adaptive to the instance boundary, we propose BEA-
Con network. We first define a generalized version of point
set convolution and demonstrate how the design choice of
BEAConfits into those definitions. For each layer, the bound-
ary is represented as differences in multiple feature spaces
including geometry and color spaces, and the attentional
weight is generated by feeding boundary information to a set
of multilayer perceptron (MLP). After the instance embed-
ding is obtained, we use the Cut-Pursuit algorithm [12] for
clustering and further design a vicinity merging algorithm
specifically for the large indoor spaces dataset. Experiments
on S3DIS [13] dataset show a significant improvement on
instance tasks among the most recent works. We also test
BEACon on PartNet [14] dataset to demonstrate its effec-
tiveness on part instance segmentation. To summarize, our
main contributions are as follows:

• Wepropose a network that incorporates boundary embed-
ded attention mechanism for instance segmentation.

• We explicitly model the influence of both geometry and
color changes on attentional weight. Experiment results
prove its benefit, especially for instance segmentation.

2 Related work

This section briefly reviews the prior arts on semantic and
instance segmentation of point clouds. As more related to
our work, we will focus on deep learning approaches that
directly process unordered point set. Other methods include
volumetric approach [15–18] which requires voxelization of
the input data, and multi-view approach [19].

2.1 Semantic segmentation

PointNet [20] pioneers direct MLP on unordered point set.
However, it does not take into consideration the spatial con-
text around the vicinity. To capture a larger spatial context,
the related approaches can be divided into 3 categories: point-
based, graph-based and CNN-based.

2.1.1 Point-based approach

Several methods use neighborhood context, recurrent neural
network (RNN) or kernel to aggregate local information. Ye
et al. [21] develop pointwise pyramid pooling to capture the

spatial context at different scales, and the across-block rela-
tionship is explored with RNN. ShapeContextNet [22] uses
kernels to extract the local features and train the shape con-
text using the self-attention network. EdgeConv is proposed
in DGCNN [23] for feature propagation. The graph in each
layer is constructed dynamically in feature space, allowing
point clouds being grouped even over long distances. How-
ever, the above-mentioned methods aggregate information
on all the input points through each layer. Much information
is overlapping, and the network becomes unnecessarily huge.

2.1.2 Graph-based approach

This approach incorporates the graph convolutional neural
network into proposed network structures. The superpoint
graph [24] first partitions the whole scene into small patches
based on geometric features and then applies graph convo-
lutional neural network to predict the semantic label of each
patch. In its following work [25], the manually selected geo-
metric features are replaced by a lightweight network called
local point embedder. PGCNet [26] takes a similar approach
by partitioning the scene into planar surfaces, followed by
patch graph construction to produce semantic output. Wang
et al. [27] transfer the local neighborhood point set into the
spectral domain, and the structural information is encoded in
the graph topology.

2.1.3 CNN-based approach

Different from the 2D image, 3D data do not have a regu-
lar grid-like partition scheme, and different design choices
can be made for kernel weight and kernel shape. On the one
hand, kernel function can be regarded as a weight matrix,
and the weight is defined based on features in the neighbor-
hood. Liu et al. [9] propose relation shape convolution, in
which the kernel function is mapped with an MLP based on
surrounding spatial features. PointWeb [11] adds an adaptive
feature adjustment (AFA) module on top of PointNet++ [4]
to adjust the learning based on feature difference.Wang et al.
introduce GACNet [10], and the kernel function is obtained
with MLP on the difference between spatial and propagated
features. Li et al. [28] use distance norm as kernel function
and propose adversarial network as a guide to refine the seg-
mentation result.

On the other hand, the kernel can be modeled with loca-
tions, and its location can be fixed in place or trainable. Lei et
al. [29] adopt a fixed spherical bin kernel to extract the local
features.Komarichev et al. [30] transfer the 3Dkernel into 2D
by projecting the points onto an annular ring which is normal
to local geometry. While the point locations of all the above
kernels are pre-defined, KPConv [31] generalizes the idea of
point convolution and models the kernel point with trainable
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locations. It also emphasizes the radius neighborhood rather
than the kNN.

2.2 Instance segmentation

SGPN [32] is the first proposed framework to solve this prob-
lem with a similarity matrix and a confidence map. ASIS
[33] explores the mutual aid between the semantic-instance
tasks and proposes semantic-aware instance segmentation
and instance-fused semantic segmentation. JSIS3D [34] also
emphasizes the joint relationship that is modeled by multi-
value conditional random fields. 3D-SIS [35] and 3D-BoNet
[36] take a different approach by predicting bounding box of
each instance and subsequently predict point mask to obtain
the segmentation result. MTML [37] applies a multi-task
learning strategy, predicting both instance embedding and
point offset in 3D space.

Our BEACon network is inspired by the recent success of
the attentional convolution for semantic segmentation. How-
ever, we realize the relationship between geometry and color
plays a more important role when delineating an instance
boundary. Thus, we aim to improve the instance segmenta-
tion by designing the attentional weight with the embedded
boundary information.

3 Ourmethod

This section presents the methods to construct the BEACon
network. Section 3.1 generalizes the idea of point set convo-
lution, which provides a guideline of designing B-Conv layer
in Sect. 3.2. Section 3.3 details the network structure and
the loss function. Section 3.4 explains the necessity behind
the vicinity merging algorithm, which is designed for large
indoor spaces datasets such as S3DIS.

3.1 Generalization of point set convolution

Given a point cloud with point sets P ∈ R
N×3 and cor-

responding feature sets F ∈ R
N×C , the general point

convolution of F by a kernel g at a point x ∈ R
3 is defined

in KPConv [31] as:

(F ∗ g)(x) =
∑

xi∈Nx , fi∈N f

g(xi − x) fi (1)

whereNx ∈ P (N f ∈ F) is the neighboringpoint set (feature
set) defined around the query point x . However, the kernel
function can be generalized to take the difference between
features as well. In addition, the input feature for a particular

layer can be processed by feature mapping function before
the convolution operation, denoted as M(·).

(F ∗ g)(x) =
∑

xi∈Nx , fi∈N f

g(xi − x, fi − f ) · M( fi ) (2)

Note that the aggregation function for convolution is a
summation. This aggregation function can be more general
and replaced by other functions such as max pooling. In
image processing, the imagewill have fewer feature elements
because of stride operation. In point set convolution, a sim-
ilar approach is accomplished by sampling query points Pq

from the point set P . Common sampling methods include
inverse density sampling [38], furthest point sampling [3,4],
and grid down-sampling [31,39].

Pq = S(P) (3)

(F ∗ g)(x) = A(
g(xi − x, fi − f ) · M( fi )

)
(4)

The generalized point set convolution can be represented
as in Eqs. 3 and 4, where S(·) is the sampling function,A(·)
denotes the aggregation function, xi ∈ Nx , fi ∈ N f , and
x ∈ Pq .

The novelty of our proposed BEACon network is based on
the above generalization. We interpret the kernel g as atten-
tional layer, which fuses both local geometry (xi − x) and
color ( fi − f ) information, and the convolution operation is
achieved by furthest point sampling as our sampling function
S(·).

3.2 B-Conv layer

Embedding boundary information into an attentional matrix
is the core operation in BEACon layers, termed B-Conv
layer. This information can guide the network to learn more
discriminative local features in the neighborhood, as we
experimentally verify this claim in Sect. 4.4. In classic image
processing, an edge is commonly computed on the basis of
gradient of the nearby pixels. Multiple criteria can be used to
produce the binary label [40]. However, for point cloud the
gradient of either geometry or color alone cannot guarantee
the boundary of the desired instance. Rather, the relative rela-
tionship between geometry and color difference describes the
instance boundary and can provide more clues to the atten-
tional matrix.

With these considerations, we formally define the instance
boundary as differences in four spaces: 3D space, color space,
geo-feature space and propagated feature space. The differ-
ence in 3D space transforms the neighborhood area into a
local coordinate system around the query point, while the dif-
ferences in color space and geo-feature space provide other
similarity measures between neighboring points, as shown
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Fig. 1 Visualization of the query point (red dot at the origin) and
�XY Z ,�RGB,�Fgeo in 3D, color and geo-feature spaces (scattering
is omitted). It can be observed that a picture on the wall can only be

separated in color space. To some extent, BEACon learns the “shapes”
in all of those spaces and generates the attentional weight by exploring
their inter-relationship

in Fig. 1. Since the propagated feature has a better describa-
bility of a larger spatial context, a fourth propagated feature
space is added if the layer is not an input layer. Intuitively,
more attention should be given to nearer points in 3D space,
but the network can also adjust its attention based on feature
distribution in all the other three spaces.

The design of the B-Conv layer can be explained with the
generalized point set convolution, as illustrated in Fig. 2.
More specifically, S(·) is furthest point sampling, which
is applied to extract the query points with shape Nq × 3
from pool points with shape N × 3. We adopt kNN to
search a fixed number of neighbors near query points with a
pre-defined dilation rate D. The layer departs from here to
generate attentional weight and propagated feature. To cal-
culate the differences, the query point feature is subtracted
from neighboring features in four spaces. The kernel func-
tion g(·) embeds the instance boundary in two steps. The first
step uses 4 MLPs and extracts high level features unique to 4
difference spaces, respectively. After concatenation, the sec-
ond step uses another MLP to explore the inter-relationship
between those features and generate the attentional weight
with dimension Np × K × C ′. To generate the propagated
feature, we simply feed the gathered neighborhood feature
to an MLP, as M(·) = MLP(·).

The attentional weight ismultiplied element-wisewith the
propagated feature. Although aggregation function is defined

as summation in convolution operation, we experimentally
show that A(·) as max pooling function can learn more dis-
criminative features in the neighborhood.

Relationship to Prior Works As attentional convolution net-
work, BEACon shares similar traits with recent works and is
inspiredmainly fromGACNet [10] andPointWeb [11].How-
ever, there are key differences: (1) BEACon only processes
downsampled query points, while graph pooling happens
at the end of layer operation in GACNet. (2) During kNN
search, BEACon applies the dilation rate to increase the layer
receptive field. (3) GACNet learns aweighted average to sum
up neighboring features, PointWeb learns a bias to adjust the
neighboring features, while BEACon learns a weight matrix
to scale the neighboring features. (4) Both GACNet and
PointWeb use feature difference as input to attention matrix,
while BEACon decouples the difference into separate feature
spaces and explicitly models the influence of geometry and
color on attentional weight.

3.3 BEACon network

The BEACon network consists of two parallel networks
for semantic and instance segmentation (Fig. 3). Semantic
branch and instance branch share the same encoder but have
different decoders. At the end of the network, the semantic
branch generates the semantic probability and the instance
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Fig. 2 The architecture of B-Conv layer, illustrated in terms of generalized point set convolution

Fig. 3 The architecture of BEACon network for semantic segmentation (top) and instance segmentation (bottom). The number on the encoder
layer indicates the size of the output matrix, e.g. , 128 points with 256 features after the third layer

branch generates the embedding of the input point clouds.
The initial input feature for a point is composed of XYZ,
RGB and geo-features including linearity, planarity, scatter-
ing, and verticality. To preserve the finer-scale features, we
add skip-links between corresponding layers of the encoder
and the decoder.

3.3.1 Interpolation layer

Decoder starts with interpolation layers to restore the scale
of the original point cloud. We still use kNN to search for
the neighboring points, but in this case, the number of query
points is larger than the number of pool points. The interpo-
lated point feature is a linear combination of nearest points,
and the weight is calculated as the inverse of point distance.

3.3.2 Inverse B-Conv layer

The inverse B-Conv layer is an interpolation layer followed
by the B-Conv layer. The skip-linked feature is concatenated
with the interpolated feature as input to the B-Conv layer, and

a new neighborhood searching is conducted before the stan-
dard operation of the B-Conv layer. To keep the model small
and adjust the feature in the neighborhood at the finest scale,
we only apply inverse B-Conv layer at the last convolution
layer.

3.3.3 Loss functions

The output layer is defined with a simple classifier in mind,
with several fully connected layers and dropout layers. Dur-
ing training, the losses are defined separately for the semantic
and instance branch, and their sum is used to update thewhole
neural network.

The semantic branch is supervised by the classical cross-
entropy loss. The instance branch, however, does not have
a fixed number of labels during the runtime and is adopted
with a class-agnostic instance embedding learning, similar
to the one in [41]. The loss function can be formulated as
follows:

L ins = Lvar + Ldist + η · L reg (5)
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Fig. 4 The effect of vicinity merging. Generally, the connected
instances are merged together if they belong to the same category

where Lvar aims to pull the instance embedding toward its
instance center, Ldist encourages separation between instance
clusters, and L reg is the regularization term. Each term can
be further defined as follows:

Lvar = 1

I

I∑

i=1

1

Ni

Ni∑

j=1

[‖μi − ei‖1 − δv]2+ (6)

Ldist = 1

I (I − 1)

I∑

i A=1,

I∑

iB=1
i A �=iB

[2δd − ‖μi A − μiB‖1]2+ (7)

L reg = 1

I

I∑

i=1

‖μi‖1 (8)

where I is the number of ground-truth instances, Ni is the
number of points in instance i , μi is the mean embedding of
instance i , ‖ · ‖1 is the l1 distance, e j is the instance embed-
ding of an input point, δv and δd are margins that define the
attractive force and repulsive force, and [x]+ = max(0, x).

During the test time, we use the Cut-Pursuit algorithm
[12] to cluster instance embedding for the entire room. The
category of the instance is determined by the mode of the
semantic label for that instance.

3.4 Vicinity merging

For a dataset consists of large indoor spaces, it is common to
separate the space into smaller volumes. However, this intro-
duces problems—an instance may be divided into multiple
parts, and because of the separated geometry, the embedding
becomes different even for the same instance. For example,
the handle of the chair may be separated from thewhole chair
structure and can be classified as clutter. To navigate through
this problem, we concatenate the predicted semantic label at
the end of instance embedding before feeding into the Cut-
Pursuit algorithm, making the embedding more consistent if
they belong to the same category.

In addition, we propose a vicinity merging process specif-
ically for large indoor spaces dataset. The effect of vicinity
merging is shown in Fig. 4. The vicinity merging algorithm
is based on a simple rule—if two instances are from the
same semantic category and directly connect, they should
be merged into one instance. For other special categories, we

also use commonknowledge to addmore rules to themerging
criteria. Planarity, for example, is an additional condition for
merging wall instances. Note the proposed vicinity merging
process is universal to a similar dataset and can be extended
to other datasets in which the object instance is connected
within itself and separable from others, like common daily
objects. In other special cases, hand-crafted rules are needed
to achieve better merging performance.

4 Experiments

4.1 Datasets

S3DIS [13] is the primary training source for our BEACon
network. It contains 6 areas and 270 rooms, most of which
are office room settings. Totally, 13 classes are introduced in
this dataset. Each point has both semantic and instance anno-
tations. To make the network less sensitive to scan noise, we
first grid downsample the room point cloudwith 0.02m.Geo-
features are calculated based on the 20-nn search in the entire
room. The room is then divided into 1.2m × 1.2m blocks
with two strategies. For semantic branch, each block has an
overlap of 0.8m, so each point is predicted three times and
the predicted probabilities are averaged. For instance, branch
the blocks are sampled in a non-overlapping fashion, so the
entire room is predicted exactly once for instance embedding.
Each block is further divided into batches with maximum
points of 4096.After prediction, the per-point labels are back-
projected to the full point set for evaluation purpose.

PartNet [14] consists of 573,585 part instances over
26,671 3D models covering 24 object categories. Semantic
and instance annotations can be prepared for each category.
The number of part instance per-object ranges from 2 to 220
with an average of 18, and each object consists of 10000
points. Similar to S3DIS, we calculate the geo-feature based
on all the points in one object and randomly sample the points
into 4 batches with 2500 points.

4.2 Implementation Details of BEACon Network

For the S3DIS dataset, each point is represented with a 10-
dim feature vector, including 3D coordinates (XYZ), color
(RGB) and geo-features. We define δv = 0.5, δd = 1.5 and
η = 0.001 for loss function. To augment the dataset, a pertur-
bation of π/32 on the z-axis and 0.001 scale variance in all
directions are used. Adam optimizer is selected for the train-
ing with a base learning rate of 0.001 and a decay rate of 0.8
for every 5000 steps. The minimum learning rate is capped at
10−6. The embedding dimension for instance segmentation
is set to 5, and regularization strength for Cut-Pursuit is set
to 3 with a 5-nn graph. During training, we randomly sample
2048 points from each batch and trained for 60 epochs with
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Table 1 Semantic segmentation
results on S3DIS, 6 is for sixfold
cross-validation

Method oAcc mAcc mIoU oAcc6 mAcc6 mIoU6

ASIS [33] 86.90 60.90 53.40 86.20 70.10 59.30

PointWeb [11] 86.97 66.64 60.28 87.31 76.19 66.73

HPEI [42] 87.18 68.30 61.85 88.20 76.26 67.83

GACNet [10] 87.79 – 62.85 – – –

SSP+SPG [25] 87.90 68.20 61.70 87.90 78.30 68.40

KPConv [31] – 72.80 67.10 – 79.10 70.60

BEACon 88.71 68.65 62.66 88.58 75.88 66.89

The highest score in the category is indicated in bold

Table 2 Instance segmentation
results on S3DIS, 6 is for sixfold
cross-validation

Method mCov mWCov mPrec mRec mCov6 mWCov6 mPrec6 mRec6

SGPN [32] 32.7 35.5 36.0 28.7 37.9 40.8 38.2 31.2

ASIS [33] 44.6 47.8 55.3 42.4 51.2 55.1 63.6 47.5

3D-BoNet [36] – – 57.5 40.2 – – 65.6 47.6

BEACon 60.94 62.97 60.06 56.73 64.03 66.38 61.51 62.38

The highest score in the category is indicated in bold

batch size 4. During testing, we use all the available points
in the block as input. For the PartNet dataset, we keep all the
settings similar to S3DIS’s.

4.2.1 Evaluation metrics

For evaluation of semantic prediction, the accuracy and IoU
across all the categories are obtained, and mean accuracy
(mAcc) and mean IoU are calculated by averaging the per-
class accuracy and IoU. In addition, the overall accuracy
(oAcc) is also calculated for all the predicted points.

For instance segmentation, the coverage and weighted
coverage are evaluated, along with the precision and recall.
Coverage is the average instance-wise IoU of prediction
matched with ground-truth. The weighted coverage can be
calculated by multiplying the ratio of current ground truth
instance points and all the ground truth instances points. The
precision and recall are defined with the threshold 0.5, and
mean precision (mPrec) andmean recall (mRec) are obtained
by averaging the per-category results.

4.2.2 Vicinity merging details

As mentioned in Sect. 3.4, only dataset such as S3DIS
requires vicinity merging. For each category, we iterate
through all the instances and merge the ones that are directly
connected. We repeat this procedure until no instance can
be merged anymore. For ceiling and floor, we merge all the
instances unselectively. For walls, we first filter out the small
instances and then useRANSAC to fit planes to the instances.
The instances will only be merged if they belong to the same
plane and directly connected. For chairs, instances that are

directly connected or have intersections when projected to a
horizontal plane will be merged.

4.3 S3DIS results

The evaluation metrics for S3DIS follow the fifthfold vali-
dation and sixfold cross-validation. We report our semantic
results in Table 1. Although not specifically designed for
semantic segmentation, our BEACon network has the com-
petitive performance among the most recent works. We
observe that by incorporating both geometry and color infor-
mation into the attentional layer, the network can have a
clearer boundary between object instance, which in turn bet-
ter delineate the boundary between semantic classes as well.
Instance results are shown in Table 2. BEACon network out-
performs state-of-the-artmethods by a largemargin in all four
metrics. Compared with ASIS, we achieved more than 15%
improvement on mCov and mWConv, with 4.09% improve-
ment on mean precision and 14.56% on mean recall.

We provide some qualitative results of our prediction as
shown in Fig. 5. For semantic results, different colors are
corresponding to different categories. For instance results,
we randomly assign each instance with a color. The color
does not have a meaning but as an indication of different
instances. Most of the instances can be correctly recalled.
However, one drawback of the vicinity merging algorithm
is that it makes some classes indistinguishable between two
objects which are directly connected.

Computational TimeTheBEAConnetwork has 2.5Mparam-
eters, which is 56% more parameters than ASIS (1.6 M).
However, the Cut-Pursuit algorithm is much faster and pro-
cesses the whole room point cloud at once. For input with
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Fig. 5 Qualitative results on S3DIS dataset (Area 5)

Table 3 Computational time
analysis run on RTX2080Ti to
process point cloud with 4096
points

Method Parameters Network (ms) Grouping (ms) Merging (ms) Total (ms)

ASIS [32] 1599090 55 187 11 253

BEACon 2516066 103 – 133 236

geometry only 2321650 100 – 133 233

color only 2321650 100 – 133 233

geo feature only 2321954 101 – 133 234

4096 points in office-39 (last row in Fig. 5), although the
BEACon network inference time is 103ms (55ms for ASIS),
the overall processing time is 236 ms, which is faster than
ASIS (253ms) as shown in Table 3.We also research the time
complexity for making use of both geometry and color infor-
mation. BEACon network inference time is about 3 ms more
than the partial attention variant. However, the instance seg-
mentation performance is significantly higher as discussed
in Sect. 4.4.1. The network takes about 3–4 h to converge on
a single RTX2080Ti.

4.4 Ablation study

We evaluate our design choices by removing or replacing
certain components. The results are collectively reported
in Table 4. Experiment 6© is equivalent to our BEACon
approach.

4.4.1 Effect of attention mechanism

To show the effectiveness of our proposed attention mecha-
nism, we specifically designed a baseline network without
attention kernel, denoted as 1© in Table 4. The attention
module is removed, and the input of each layer is con-
catenated with �XY Z to provide localized information. In
experiment 2© to 4©, we conduct studies on partial atten-
tion by only inputting single feature difference to generate
attentional weight. Experiment 2© resembles the attention

mechanism commonly used in semantic segmentation, with
spatial difference concatenated with propagated feature dif-
ference as input of the attentional weight. By embedding
color and geometry difference as boundary information,
BEACon (experiment 6©) has an improvement of +1.04
mIoU over experiment 2© and has a large performance gain
onmPrec (+4.07) andmRec (+1.61). The results indicate that
the geometry-color-based attention performs on par with its
spatial-only counterpart for semantic segmentation, but can
largely benefit the instance segmentation. We also test the
weighted sum attention mechanism as in GACNet [10] in
experiment 5©. The weight matrix is normalized across the
neighborhood, and the adjusted features are summed up. The
results show that max-pooling performs best as the aggrega-
tion function.

We further visualize the effect of attention by comparing
neighboring point attention around carefully selected query
points in experiment 1© and 6©, as shown in Fig. 6. The atten-
tion is calculated as the histogram of neighborhood index
after the max-pooling operation. In other words, a neighbor-
ing point with maximum attention would have most of its
features remained after the aggregation function. We extract
the result from layer 3, where each query point has 32 neigh-
bors with a dilation rate D = 2. Compared to the network
without attention, BEACon has a smaller attention spread
when the query point is near the edge of the picture and has
a larger spread at the center of the picture. While BEACon
puts maximum attention on the points that have similar color
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Table 4 Ablation studies on
S3DIS dataset (Area 5)

id g(·) A(·) Clustering Merging mIoU mPrec mRec

�XY Z �RGB �Fgeo Sum Max MS CP BM VM

1 � � 45.59 43.36 40.74

2 � � � � 61.62 55.99 55.12

3 � � � � 56.27 51.18 49.93

4 � � � � 54.93 58.04 50.11

5 � � � � � � 60.30 59.14 49.53

6 � � � � � � 62.66 60.06 56.73

7 � � � � � � – 57.44 49.24

8 � � � � � � – 57.98 45.69

The highest score in the category is indicated in bold

Fig. 6 Comparison between experiment 1© (top) and experiment 6©
on neighboring point attention. The point receiving most attention is
colored yellow

and geometry as query point, 1© tends to divert the attention
randomly. When the query point is on the chair, BEACon
puts most of the attention on the structure of the chair, while
1© spreads its attention to the wall, causing the wrong feature
being aggregated down the line.

4.4.2 Effect of clustering andmerging algorithm

We compare our selected clustering algorithm Cut-Pursuit
(CP) to another commonly used algorithm MeanShift (MS).
One simple strategy is to directly replace Cut-Pursuit with
MeanShift in our design. However, the computation com-
plexity of MeanShift increase quadratically as the number of
input points goes up. It is unpractical to processing the entire
room at once using MeanShift. We therefore use MeanShift
only inside each batch. It takes 55minutes to test and evaluate
the entire Area 5, which is 5 minutes longer than BEACon.
We also tested theMeanShift with BlockMerging (BM) strat-
egy that is used in [33]. BlockMerging requires the blocks
to have overlap. Unlike Cut-Pursuit with vicinity merging
(VM), we have to predict instance embedding 3 times in this
case. The entire evaluation of Area 5 takes 110 minutes.

The advantage of Cut-Pursuit lies in its effect and speed.
Compared toMeanShift which solves the clustering problem
with a pure density-based approach, Cut-Pursuit models it as
a global optimization of a graph-cut and has a smoother seg-
mentation result. In addition, it can process the entire room at
once in a short time. Thus, theCut-Pursuit is chosen to cluster
instance embedding in this research. For merging algorithm,
one drawback of BlockMerging is that it requires an over-
lapped area between processing block and processed blocks.
Vicinity merging does not have such a limitation.

4.5 PartNet results

We show the effectiveness of the BEACon network for part
instance segmentation using the four largest categories in the
PartNet dataset, following the evaluation protocol in GSPN
[43] where the third level is used. Note the RGB value pro-
vided by PartNet is misleading, so we omit the color as input
and embed the boundary information without color informa-
tion. In fact, the point cloud of the shape is randomly sampled
on the CAD model surface. On many models, outer surface
and inner surface belong to the same category but have dif-
ferent color. We report our experiment results in Table 5. In
PartNet [14],multiple network architectures are tested for the
semantic task, and we report the highest score in the paper
regardless of the methods used. For a network that simulta-
neously processes both tasks, BEACon has a close semantic
score to the network that specifically designed for seman-
tic segmentation. Our instance segmentation outperforms the
best method in PartNet, with a maximum 25.02% improve-
ment on the chair category. We also provide the qualitative
results as shown in Fig. 7. With geometry embedded bound-
ary information, BEACon can distinguish the instance based
on small geometric differences, like the horizontal support
under the table.
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Table 5 Segmentation results on PartNet dataset

Method Chair Lamp Storage Table

mIoU PartNet [14] 43.9 25.3 49.4 33.9

BEACon 41.97 25.04 48.15 32.69

mAP SGPN [32] 19.4 14.6 14.4 21.5

GSPN [43] 26.8 21.9 18.3 26.7

PartNet [14] 29.0 18.7 27.5 23.9

BEACon 54.02 36.37 47.55 38.32

The highest score in the category is indicated in bold

Fig. 7 Qualitative results on PartNet dataset

5 Conclusion

We have presented BEACon, a boundary embedded atten-
tional convolution network for point cloud instance seg-
mentation. We draw inspiration from human perception and
model the attentional weight that adapts itself to the relation-
ship between geometry and color difference. Experimental
results show that our network can learn amore discriminative
feature around the neighborhood and achieve better perfor-
mance than the state-of-the-art on several benchmarks.

Acknowledgements This research is supportedby theNationalResearch
Foundation, Singapore, under its International Research Centres in Sin-
gapore Funding Initiative. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the author(s)
and do not reflect the views of National Research Foundation, Singa-
pore.

References

1. Haoran, L., Fazhi, H., Yilin, C.: Learning dynamic simultaneous
clustering and classification via automatic differential evolution
and firework algorithm. Appl. Soft Comput. J. 96, 106593 (2020)

2. Zhang, S., He, F.: DRCDN: learning deep residual convolutional
dehazing networks. Vis. Comput. 36, 1797–1808 (2020)

3. Li, Y., Bu, R., Sun, M., Chen, B.: PointCNN: Convolution On
X-Transformed Points. In: Advances in Neural Information Pro-
cessing Systems (2018)

4. Qi,C.R.,Yi, L., Su,H.,Guibas, L.J.: PointNet++:Deephierarchical
feature learning on point sets in a metric space. In: Advances in
Neural Information Processing Systems (2017)

5. Rethage, D., Wald, J., Sturm, J, Navab, N., Tombari, F.: Fully-
convolutional point networks for large-scale point clouds. In:
ECCV (2018)

6. Wu,W., Qi, Z., Fuxin, L.: PointConv:Deep convolutional networks
on 3D point clouds. In: CVPR (2019)

7. Xu, Y., Fan, T., Xu, M., Zeng, L., Qiao, Y.: SpiderCNN: Deep
learning on point sets with parameterized convolutional filters. In:
ECCV (2018)

8. Li, H., He, F., Liang, Y., Quan, Q.: A dividing-based many-
objective evolutionary algorithm for large-scale feature selection.
Soft Comput. 24, 6851–6870 (2020)

9. Liu, Y., Fan, B., Xiang, S., Pan, C.: Relation-shape convolutional
neural network for point cloud analysis. In: CVPR (2019)

10. Wang, L., Huang, Y., Hou, Y., Zhang, S., Shan, J.: Graph atten-
tion convolution for point cloud semantic segmentation. In: CVPR
(2019)

11. Zhao, H., Jiang, L., Fu, C.-W., Jia, J.: PointWeb: Enhancing local
neighborhood features for point cloud processing. In:CVPR (2019)

12. Landrieu, L., Obozinski, G.: Cut Pursuit: fast algorithms to learn
piecewise constant functions on general weighted graphs. SIAM J.
Imaging Sci. Soc. Ind. Appl. Math. 10(4), 1724–1766 (2017)

13. Armeni, I., Sener, O., Zamir, A.R., Jiang, H., Brilakis, I., Fischer,
M., Savarese, S.: 3D semantic parsing of large-scale indoor spaces.
In: CVPR, pp. 1534–1543 (2016)

14. Mo, K., Zhu, S., Chang, A.X., Yi, L., Tripathi, S., Guibas, L.J., Su,
H.: PartNet: A large-scale Benchmark for fine-grained and hierar-
chical part-level 3d object understanding. In: CVPR (2019)

15. Maturana,D., Scherer, S.: “VoxNet: A 3D convolutional neural net-
work for real-time object recognition. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems (2015)

16. Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao,
J.: 3D ShapeNets: A deep representation for volumetric shapes. In:
CVPR, vol. 07-12-June, pp. 1912–1920 (2015)

17. Graham, B., Engelcke, M., Van Der Maaten, L.: 3D semantic seg-
mentation with submanifold sparse convolutional networks. In:
CVPR (2018)

18. Choy, C., Gwak, J., Savarese, S.: 4D Spatio-temporal ConvNets:
Minkowski convolutional neural networks. In: CVPR (2019)

19. Boulch, A., Guerry, J., Le Saux, B., Audebert, N.: SnapNet: 3D
point cloud semantic labelingwith 2Ddeep segmentationnetworks.
Comput. Gr. 71, 189–198 (2018)

20. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: Deep learning on
point sets for 3d classification and segmentation. In: CVPR, pp.
601–610 (2017)

21. Ye, X., Li, J., Huang, H., Du, L., Zhang, X.: 3D Recurrent neural
networks with context fusion for point cloud semantic segmenta-
tion. In: ECCV, pp. 403–417 (2018)

22. Liu, S., Xie, S., Chen, Z., Tu, Z.: Attentional ShapeContextNet for
point cloud recognition. In: CVPR, pp. 4606–4615 (2018)

23. Wang,Y., Bronstein,M.M., Solomon, J.M., Sun,Y., Liu, Z., Sarma,
S.E.: Dynamic graph CNN for learning on point clouds. In: ACM
Trans. Graph. 1, 1, Article, vol. 1, No. 1, p. 13 (2019)

24. Landrieu, L., Simonovsky, M.: Large-scale point cloud semantic
segmentation with superpoint graphs. In: CVPR (2018)

25. Landrieu, L., Boussaha, M.: Point cloud oversegmentation with
graph-structured deep metric learning. In: CVPR (2019)

26. Sun, Y., Miao, Y., Chen, J., Pajarola, R.: PGCNet: patch graph con-
volutional network for point cloud segmentation of indoor scenes.
Vis. Comput. 36, 2407–2418 (2020)

27. Wang, C., Samari, B., Siddiqi, K.: Local spectral graph convolution
for point set feature learning. In: ECCV (2018)

28. Li, H., Sun, Z.: A structural-constraint 3D point clouds segmenta-
tion adversarial method. Vis. Comput. 37, 325 (2020)

123



BEACon: a boundary embedded attentional convolution network for point cloud instance segmentation 2313

29. Lei, H., Akhtar, N., Mian, A.: Octree guided CNN with Spherical
Kernels for 3D Point Clouds. In: CVPR (2019)

30. Komarichev, A., Zhong, Z., Hua, J.: A-CNN: Annularly convolu-
tional neural networks on point clouds. In: CVPR (2019)

31. Thomas, H., Qi, C.R., Deschaud, J.-E., Marcotegui, B., Goulette,
F., Guibas, L.J.: “KPConv: flexible and deformable convolution for
point clouds. In: ICCV (2019)

32. Wang, W., Yu, R., Huang, Q., Neumann, U.: SGPN: Similarity
group proposal network for 3D point cloud instance segmentation.
In: CVPR (2018)

33. Wang, X., Liu, S., Shen, X., Shen, C., Jia, J.: Associatively seg-
menting instances and semantics in point clouds. In: CVPR (2019)

34. Pham, Q.-H., Thanh Nguyen, D., Hua Gemma Roig, B.-S., Yeung,
S.-K.: JSIS3D: Joint semantic-instance segmentation of 3D point
clouds with multi-task pointwise networks and multi-value condi-
tional random fields. In: CVPR (2019)

35. Hou, J., Dai, A., Nießner, M.: 3D-SIS: 3D semantic instance seg-
mentation of RGB-D scans. In: CVPR (2019)

36. Yang, B., Wang, J., Clark, R., Hu, Q., Wang, S., Markham, A.,
Trigoni, N.: Learning object bounding boxes for 3D instance seg-
mentation on point clouds. In: NeurIPS (2019)

37. Lahoud, J., Ghanem, B., Pollefeys, M., Zurich, E., Oswald, M.R.:
3D instance segmentation via multi-task metric learning. In: ICCV
(2019)

38. Groh, Fabian, Wieschollek, Patrick, Lensch, Hendrik P.A.: Flex-
convolution million-scale point-cloud learning beyond grid-
worlds. In: ACCV (2018)

39. Thomas, H., Deschaud, J.-E., Marcotegui, B., Goulette, F., Le
Gall, Y.: Semantic classification of 3D point clouds with multi-
scale spherical neighborhoods. In: International Conference on 3D
Vision (3DV), pp. 390–398 (2018)

40. Canny, J.: A computational approach to edge detection. IEEE
Trans. Pattern Anal. Mach. Intell. PAMI–8(6), 679–698 (1986)

41. De Brabandere, B., Neven, D., Gool, L.V.: Semantic instance seg-
mentation with a discriminative loss function. In: CVPRWorkshop
(2017)

42. Jiang, L., Zhao, H., Liu, S., Shen, X., Fu, C.-W., Jia, J.: Hierarchical
point-edge interaction network for point cloud semantic segmen-
tation. In: ICCV (2019)

43. Li, Y., Zhao, W., Wang, H., Sung, M., Guibas, L.: GSPN: genera-
tive shape proposal network for 3D instance segmentation in point
cloud. In: CVPR (2019)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Tianrui Liu is currently pursu-
ing his Ph.D. degree at Nanyang
Technological University. He
received the B.Eng degree in
Aerospace Engineering from
Nanyang Technological University,
Singapore, in 2018. His research
interests include computer graph-
ics and computer vision, espe-
cially in point cloud processing
and augmented reality.

Dr Yiyu Cai is from the School
of Mechanical & Aerospace Engi-
neering at Nanyang Technolog-
ical University, Singapore. His
research interests include virtual
and augmented reality, robotiza-
tion, and artificial intelligence and
their applications in medicine, con-
struction, and education.

Dr Jianmin Zheng is an associate
professor at the School of Com-
puter Science and Engineering at
Nanyang Technological University,
Singapore. He received his B.S.
and Ph.D. degrees from Zhejiang
University, China. His recent rese-
arch focuses on T-spline technolo-
gies, intelligent geometric process-
ing, AI for part design and 3D
printing, reality computing, and
visualization.

Professor Nadia Magnenat Thal-
mann is presently the director
of the Institute for Media Inno-
vation in NTU, Singapore, and
the research director of MIRALab
at the University of Geneva in
Switzerland. She is also the CTO
at Dex-Lab Pte Ltd in Singapore
which focuses on artificial intelli-
gence and robotics. She has pio-
neered research in virtual human
technology as well as in early
social robotics. With her team, she
has published more than 700 sci-
entific papers in top journals and

conferences, mainly in Computer Graphics and human Face and Body
Simulation. She has received several prestigious awards as the Hum-
boldt Research Award and the Eurographics Career Award. She is a
life member of the Swiss Academy of Engineering Sciences.

123


	BEACon: a boundary embedded attentional convolution network  for point cloud instance segmentation
	Abstract
	1 Introduction
	2 Related work
	2.1 Semantic segmentation
	2.1.1 Point-based approach
	2.1.2 Graph-based approach
	2.1.3 CNN-based approach

	2.2 Instance segmentation

	3 Our method
	3.1 Generalization of point set convolution
	3.2 B-Conv layer
	3.3 BEACon network
	3.3.1 Interpolation layer
	3.3.2 Inverse B-Conv layer
	3.3.3 Loss functions

	3.4 Vicinity merging

	4 Experiments
	4.1 Datasets
	4.2 Implementation Details of BEACon Network
	4.2.1 Evaluation metrics
	4.2.2 Vicinity merging details

	4.3 S3DIS results
	4.4 Ablation study
	4.4.1 Effect of attention mechanism
	4.4.2 Effect of clustering and merging algorithm

	4.5 PartNet results

	5 Conclusion
	Acknowledgements
	References




