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Abstract
We propose a novel method of abnormal crowd behavior detection in surveillance videos. Mainly, our work focuses on 
detecting crowd divergence behavior that can lead to serious disasters like a stampede. We introduce a notion of physically 
capturing motion in the form of images and classify crowd behavior using a convolution neural network (CNN) trained on 
motion-shape images (MSIs). First, the optical flow (OPF) is computed, and finite-time Lyapunov exponent (FTLE) field is 
obtained by integrating OPF. Lagrangian coherent structure (LCS) in the FTLE field represents crowd-dominant motion. A 
ridge extraction scheme is proposed for the conversion of LCS-to-grayscale MSIs. Lastly, a supervised training approach is 
utilized with CNN to predict normal or divergence behavior for any unknown image. We test our method on six real-world 
low- as well as high-density crowd datasets and compare performance with state-of-the-art methods. Experimental results 
show that our method is not only robust for any type of scene but also outperform existing state-of-the-art methods in terms 
of accuracy. We also propose a divergence localization method that not only identifies divergence starting (source) points but 
also comes with a new feature of generating a ‘localization mask’ around the diverging crowd showing the size of divergence. 
Finally, we also introduce two new datasets containing videos of crowd normal and divergence behaviors at the high density.
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1 Introduction

Human lives are always at stake during mass crowd gather-
ing if any undesired event happens, e.g., stampede conges-
tion or bottleneck [1–3]. Studies [4, 5] show that dangerous 
events at high-density crowds do not occur at once; instead, 
there is a progression of smaller abnormal pre-events that 
lead to larger disasters. A few examples of abnormal pre-
event include abnormal crowd density increase, panicking 
or life-threatening overcrowding, jamming (person falling 
creates a hurdle for others to move), distress due to reduced 
inter-person distance, people escaping from normal crowd 
motion path, etc. The most dominant crowd motion observe 

in the said abnormal situations is ‘escape’ or ‘divergence’ 
of the crowd [6].

There have been several attempts in the past for crowd 
divergence or escape behavior detection [7, 8]. However, 
in the literature, the description of divergence for a high-
density crowd is unclear. In this work, we provide a precise 
definition of divergence, i.e., ‘the escape behavior of the 
crowd from a predetermined motion/walking route/path in 
which high-density crowd is approaching a common desti-
nation.’ In the above definition of divergence anomaly for 
high-/very-high-density crowd, two terms are important 
and require further elaboration. The first term is ‘predeter-
mined motion/walking path/route’ and second is ‘common 
destination.’ The reason why we call here motion/walking 
path/route as ‘predetermined’ is that in the majority of 
real-life scenarios, there is a certain event/happening at 
some ‘common destination’ that the crowd wants to see or 
participate in. Therefore, to reach that event/happening at 
a common destination, the crowd starts walking with the 
same goal of reaching a common destination. This results 
in having the same walking goal for the whole crowd and 
thus determines in advance where the crowd is heading 
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to. To elaborating more on the predetermined path or the 
normal motion path, there can be different types of crowd 
motion paths in real life. Existing art does not mention the 
type of normal motion patterns from which divergence can 
occur. We introduce two types of normal motion patterns 
for divergence: straight and circular motions. If the crowd 
moves away from straight or circular walking paths, it is 
considered as crowd divergence. We illustrate the above 
definition with the help of two examples below. The first 
example of crowd divergence from a straight walking path 
can be found in the videos of the Loveparade dataset [4] 
shown in Fig. 1.

Under normal conditions, the crowd is walking 
‘straight’ from the tunnel exit (left side) toward the musi-
cal event stage (right side) shown in Fig. 1a. Crowd normal 
‘walking paths’ to reach the musical stage are indicated by 
N1 and N2 (Fig. 1b). Circular regions in Fig. 1b are the 
green grassy areas that should not be used for walking. 
However, as the crowd density increases tremendously 
between the ramp and the musical stage (indicated with a 
red box in Fig. 1c), crowd starts diverging left and right 
through green areas, hence leaving the normal straight 
path. Paths D1 and D2 in Fig. 1d show crowd divergence 
from normal walking paths N1 and N2.

Similarly, another example of crowd divergence from 
the circular path is shown in Fig. 2. Under the normal 
conditions, the crowd follows semicircular path N. During 
the stampede, the crowd was forced to leave path N due to 
congestion and diverge through D1 and D2 paths.

In this work, we propose a novel concept of capturing 
motion shape information in the form of an image and use 
the images with a CNN classifier for divergence behavior 
detection. Figure 3 provides a complete pipeline for diver-
gence behavior detection.

There are two key stages of the proposed pipeline: 
low-level MSI extraction and the CNN-based classifica-
tion. Crowd motion is estimated by employing the FTLE 
method. One of the key advantages of FTLE is that it pro-
vides clean ridges at the crowd boundaries (also known as 
Lagrangian coherent structures). LCS ridges are extracted 
from the FTLE field using a shape extraction scheme known 

Fig. 1  Demonstration of crowd 
divergence from the straight 
walking pattern at Loveparade 
2010: a crowd walking under 
normal conditions with low 
density, b crowd walking paths 
N1, N2 under normal condi-
tions, c high-density crowd 
within the same region, d crowd 
diverging through paths D1 
and D2

Fig. 2  Example of high-density crowd circular motion (N) with diver-
gence paths (D1 and D2) at the stampede event of the Hindu festival 
in south India 2015 [9]
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as FTLE field-strength adaptive thresholding (FFSAT), and 
grayscale MSI is produced at each FTLE integration time 
instant. A supervised learning approach is used to train CNN 
with MSIs to predict the normal or divergent class for an 
unknown incoming image.

We also propose a divergence localization method that 
not only indicates divergence starting points but also pro-
vides a ‘growing’ divergence mask around the crowd at each 
video frame. Divergence mask provides divergence size 
information, and a large size divergence mask can indicate 
the severity of the crowd situation.

Lastly, we produce two new datasets containing diver-
gence behavior from the straight and circular path at low and 
high density. The two datasets are synthetic (SYN) and real 
(PILGRIM and CONCERT) datasets. The SYN dataset is 
generated using MassMotion crowd simulation software [10] 
and is a collection of a large number of videos of long dura-
tions. The second dataset contains real videos of the high-
density crowd normal and divergence behaviors recorded 
at a CONCERT in Milan, Italy, and PILGRIMS walking 
in Makkah, Saudi Arabia. To the best of our knowledge, 
currently, there are no real videos of high-density crowd 
available with both normal and divergent scenes.

The main contributions of this paper are summarized 
below: (1) we introduce a notion of physically capturing 
crowd ‘motion shape’ in the form of grayscale images. 
Unlike existing arts producing numerical values for low-
level features, our method produces MSIs. One of the key 
advantages of this hybrid approach is that it can be used 
as plug and play with CNN-based classification, i.e., in the 
future, any new motion estimation method can be replaced 
with FTLE, generates MSIs and train CNN for behavior 
classification. (2) A divergence localization scheme is intro-
duced that not only identifies divergence starting (source) 
points but also comes with a new feature of generating a 
‘localization mask’ around the diverging crowd that varies 
size each frame according to crowd size. (3) Two new high-
density datasets are generated containing scenes of both 
normal and divergent crowd behaviors. A big SYN dataset 

contains high-quality long-duration videos and two real 
high-density crowd videos capture at different locations. The 
remainder of this paper is organized as follows: In Sect. 2, 
relevant works on crowd ME and abnormal behavior detec-
tion are provided. In Sect. 3, we discuss our methodology of 
crowd divergence behavior detection with MSI’s generation 
from FTLE- and CNN-based classification for divergence 
behavior. In Sect. 4, experimentation results of divergence 
detection and localization are provided, and comparisons are 
made with state-of-the-art existing divergence detection and 
localization methods on real benchmark datasets. Finally, 
Sect. 5 concludes our work with a discussion on the limita-
tions of our proposed method with future improvements and 
research opportunities in this area.

2  Related work

Anomaly detection is a blend of two main phases: ME and 
feature classification. In this work, we mainly concentrate on 
anomaly detection at the high-density crowd and reviewed 
the literature in this context. Mainly two types of ME meth-
ods are covered in this section for anomaly detection, i.e., 
OPF and fluid dynamics-based ME methods.

OPF is considered to be one of the most fundamental 
motion flow models [11–14] that has been widely employed 
for ME [15–17], crowd flow segmentation [18], behavior 
understanding [19–21], and tracking in the crowd [22]. 
Kratz and Nishino [23, 24] model motion in the high-density 
crowded scene through 3D Gaussian distribution of spati-
otemporal gradients (applied on each pixel’s intensity func-
tion) that obtained local spatiotemporal motion patterns. 
Temporal motion is obtained through distribution-based 
HMM and spatial motion through coupled HMM. Steady-
state motion patterns are captured through spatiotemporal 
relationships of obtained temporal/spatial motion patterns 
and anomaly in the crowd (pedestrian moving in an irregu-
lar direction, individuals obstructing others in indoor sub-
way scene, etc.) is detected as a large statistical deviation 

Fig. 3  Pipeline of divergence detection using MSI obtained from FTLE and trained with CNN classification network
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from steady state. This method relies on appearance-based 
events in the scene for abnormality detection that acts as 
an outlier for normal scene motion patterns. Unfortunately, 
results shown are for an indoor crowd, and appearance-based 
anomalous patterns are not easy to detect in open location 
high-density crowd scenes, e.g., the high-density crowd at 
Hajj, etc. Many researchers cluster OPF to obtain motion 
patterns and anomaly detection. Min Hu et al. [19] group 
motion vector obtained from OPF neighborhood graphs, 
and typical motion patterns in crowded scenes are detected 
by employing a hierarchical agglomerative clustering algo-
rithm. Unfortunately, no results are reported for abnormal 
behavior detection. Chen and Huang [21] apply adjacency-
matrix-based clustering (AMC) extracting orientation and 
position features and detect anomaly based on the new ori-
entation of crowd appearance. Cong et al. [6, 25] obtain a 
motion and appearance descriptor from OPF for each patch 
of the image. For motion descriptors, they employ a mul-
tilayer histogram of optical flow (MHOF), and for appear-
ance descriptor, edge orientation histogram (EOH) is used. 
To obtain motion patterns, they propose a method called 
dynamic patch grouping (DPG) that adaptively clusters simi-
lar image patches into one group based on spatiotemporal 
information obtained from MHOF and EOH descriptors. 
Abnormal event detection is performed by measuring the 
spatiotemporal similarity between a query image and a train-
ing dataset using a compact projection method. Wu et al. 
[26] perform density-based clustering on OPF to obtain local 
and global coherent motions having arbitrary shapes and 
varying densities. The approach is named collective density 
clustering (CDC). Collective density is obtained through 
the estimation of position and orientation in the coherent 
motions. These motion features are extracted using the KLT 
tracker. For local coherent motion detection, collective clus-
tering is performed on collective density estimates. And, for 
global coherent motion detections, collective merging pro-
cess is used. However, the method is not tested for anomaly 
detection in human crowded scenes and is available for traf-
fic flow only (where density cannot exceed certain limits). 
Majority of OPF ME methods discussed above are efficient 
for abnormal behavior detection at low- to medium-density 
crowded scenes, whereas for real-world high-/very-high-
density crowd scenes, OPF suffers from various problems 
like motion discontinuities, lack of spatial and temporal 
motion representation, variations in illumination conditions, 
severe clutter and occlusion, etc.

To overcome problems of OPF ME, researchers employ 
particle advection concepts from fluid dynamics into 
the computer vision domain [27] and obtain long-term 
‘motion trajectories’ under the influence of the OPF field. 
Particle advection ME methods are termed as Lagrangian 
or particle flow methods. Lagrangian motion trajectories 
are proven to be valuable in determining the ‘global’ 

dynamic structure of the crowd at different temporal 
scales [28] ignoring pedestrian-level details in the image. 
Wu et al. [29] employ chaotic invariants on Lagrangian 
trajectories to characterize crowd motion and extract two 
chaotic invariant features, maximum Lyapunov exponent 
and correlation dimension, which measure the extent of 
particle separation over time and attractor size, respec-
tively. A Gaussian mixture model was used to model 
chaotic invariant distributions for normal crowd scene, 
and based on trajectories likelihood, it was determined 
that either behavior of the crowd is normal or not. They 
also perform localization of anomaly by determining the 
source and size of the anomaly. Unfortunately, no results 
were reported for the high-density crowd. Similarly, Ali 
et al. [27] obtain Lagrangian coherent structures (LCS) 
from particle trajectories by integrating trajectories over 
a finite interval of time termed as finite-time Lyapunov 
exponent (FTLE). LCS appears as ridges and valleys in 
the FTLE field at the locations where different segments 
of the crowd behave differently. Authors perform crowd 
segmentation and instability detection in the high-density 
crowd using LCS in FTLE; however, actual anomalies 
of the high-density crowd like crowd divergence, escape 
behavior detection, etc., are not performed. Similarly, 
authors in [30, 31] obtain particle trajectories using 
high-accuracy variational model for crowd flow and per-
form crowd segmentation only. Mehran et al. [32] obtain 
streak flow by spatial integration of streaklines that are 
extracted from particle trajectories. For anomaly detec-
tion, they decompose streak flow field into curl-free and 
divergence-free components using Helmholtz decompo-
sition theorem and observe variations in potential and 
streak functions used with SVM to detect anomalies like 
crowd divergence/convergence, escape behavior, etc. 
However, results are reported for anomaly detection and 
segmentation at low-density crowd, and efficacy is still 
questionable for anomalies at the high-density crowd. 
Pereira et al. [33] obtain long-range motion trajectories 
by using the farthest point seeding method called stream-
line diffusion on streamlines instead of spatial integra-
tion. Behavior analysis is performed by linking short 
streamlines using Markov random field (MRF). However, 
only normal behavior detection and crowd segmentation 
results are reported. Although particle flow methods 
discussed are considered good candidates for ME of the 
high-density crowd, they are rarely employed for abnor-
mal behavior detection at high-density crowded scenes. 
Other approaches perform patch grouping-based image 
denoising to obtain better semantic information [34–37]. 
However, these methods apply to the low-density crowd 
scene where background covers a larger area of image 
and object(s) have less area, and background noise effects 
are more prominent. At high crowd density, the majority 
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of the image area is covered by the crowd and the back-
ground is almost invisible. Motion estimation methods 
discussed above obtain motion through OPF. The OPF 
applies a smoothing process that will filter out noise at 
high-density crowd and object(s) motion information is 
easily captured among two frames.

In this work, we propose to estimate motion directly 
from the crowd motion pattern using the FTLE method 
and save the crowd motion in the form of MSIs. Figure 4 
shows the motion shape obtained by various state-of-the-
art ME methods and our approach to motion shape. ME 
methods used for motion shape at high density include 
multiple object tracking (MOT) using Histogram of Ori-
ented Gradient (HOG) for object detection and Kalman 
filtering for tracking [38]; background subtraction algo-
rithm Vibe [39]; OPF method from [11] Social Force 
Model (SFM) [40]; Streakflow representation of flow 
(STF) [32] and finite-time Lyapunov exponent (FTLE) 
[27]. Motion patterns obtained from the above methods 
are plotted by using respective features and overlaying 
on the image in Fig. 4: MOT: bounding box is shown as 
object detected and tracked; Vibe, object mask detected 
after background subtraction; SFM: the jet colormap is 
used to overlay detected interaction force (Fint) over the 
image; STF: use a grid of color where Hue indicates the 
streak flow direction, and saturation indicates streak flow 
magnitude; FTLE: use jet map to display LCS in (FTLE) 
field. It is clear from Fig. 4 that MOT, Vibe, STF, and 
SFM features are unable to produce clear motion shapes, 
whereas LCS ridges in the FTLE field provide a clean 
motion shape at crowd boundaries (both at low- and high-
density scenarios columns left to right). Therefore, in this 
work, we utilize the FTLE method to obtain crowd motion 
shape and translate motion shape into a single-channel 
grayscale image (Fig. 4 second row last image).

3  Motion‑shape‑based divergence 
detection using CNN

3.1  Low‑level FTLE features

Motion shape is extracted from the FTLE field obtained at 
the crowd boundaries. FTLE computation (performed in 
the forward and backward time directions) is a three-step 
process: (1) obtaining flow maps from OPF; (2) calculat-
ing Cauchy green tensor (CGT) or spatial gradients of flow 
maps; (3) performing eigenvalue analysis on CGT to obtain 
LCS in the FTLE field [27, 41]. The FTLE pipeline is shown 
in Fig. 5.

Initially, flow maps (also known as Lagrangian trajec-
tories) are obtained by placing a rectangular grid of parti-
cles and performing advection by integrating a system of a 
differential Eq. (1) subject to initial conditions (x0, y0) with 
integration interval T.

where u(x, y, t) represents optical flow horizontal veloc-
ity computed at grid locations (x, y) and at time instant t. 
v(x, y, t) represents optical flow vertical velocity computed 
at grid locations (x, y) and at time instant t. dx

dt
 represents the 

change in particle position in the x-direction obtained at time 
instant t. dy

dt
 represents the change in particle position in the 

y-direction obtained at time instant t.
The position of particles obtained over time interval T after 

the integration Eq. (1) is called a flow map represented by (
�x,�y

)
 . For a given integration interval T, the flow map is 

computed in the forward or backward directions. The forward 
flow map represented by 

(
�x,�y

)
f
 and backward flow map (

�x,�y

)
b
 is obtained by integrating (1) in the forward direction 

(1)dx

dt
= u(x, y, t),

dy

dt
= v(x, y, t)

Fig. 4  Motion shape at high-
density crowds by state-of-the-
art ME methods and proposed 
approach
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from t0 to T and in the backward direction from T to t0 , respec-
tively. In this work, the integration interval T = 25.

The next step is to compute CGT obtained by computing 
spatial gradients of flow maps, i.e.,d�x

dx
 , d�x

dy
 , d�x

dy
 , d�y

dy
 in both for-

ward and backward directions. Finally, eigenvalues analysis is 
performed on spatial gradients and maximum eigenvalues �max 
of gradients are plugged into Eq. (2) to obtain the FTLE field 
(both in the forward and in the backward directions).

(2)FTLE =
1

�T�
ln
√
�max(Δ)

where Δ represents spatial gradients of flow maps ( d�x

dx
 , d�x

dy
 , 

d�x

dy
 , d�y

dy
 ). �max represents the maximum value in spatial gra-

dients Δ.
The FTLE field is obtained by adding forward FTLE 

field ( FTLEf  ) and backward FTLE field ( FTLEb ). LCS 
ridges appear in the FTLE field in the regions where two 
neighboring particles behave differently over the length of 
integration time T.

Fig. 5  FTLE pipeline
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3.2  Motion‑shape extraction

Motion shape is produced at every integration step of the dif-
ferential Eq. (1) as shown in Fig. 6. Crowd motion shape is 
obtained by extracting LCS ridges from the FTLE field and 
converted into a grayscale image. Various methods exist in 
literature for LCS extraction [42, 43]. In this work, a simple 
FTLE field-strength adaptive thresholding (FFSAT) scheme 
is developed for LCS ridge extract. At every integration step, 

maximum Eulerian distance (dmax) is calculated between 
LCS absolute peak value and average FTLE field strength, 
and a threshold (ffsat_thr) is set for dmax. LCS values cross-
ing ffsat_thr are extracted and converted into a single-chan-
nel grayscale image. FFSAT algorithm ensures only strong 
magnitude LCS values from the FTLE field are extracted 
and noise is filtered out. Figure 7 shows two examples of 
crowd motion shapes for synthetic Loveparade and Kabbah 
scenarios.

Fig. 6  MSI generation at every 
integration step of Eq. (1)

Fig. 7  Examples of MSIs obtained for synthetic datasets of Loveparade and Tawaf around Kabbah
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3.3  Divergence detection using CNN

It is observed that motion shapes of normal and divergent 
crowd behaviors are mostly identical and differ mainly at 
crowd divergence regions. Hence, the relationship among 
normal and divergent motion shapes can be best described 
through the ‘convolution process,’ i.e., positive peaks of 
convolution field indicate the regions where both normal 
and divergent MSIs overlap or are the same, whereas the 
negative peak of convolution field will indicate the regions 
where only divergence shape exists. Analysis of motion 
shape through convolution is achieved by implementing a 
convolution neural network (CNN), shown in Fig. 8, using a 
single convolution layer. The MSI is rescaled to 50 × 50 pix-
els at network input. Convolution layer uses convolution fil-
ters (24 filters) with rectified linear unit (ReLU) activations.

The purpose of using many convolution filters is to ensure 
all important receptive fields of CNN are excited about a 
given motion shape. ReLU is adopted as the activation func-
tion because of its good performance for CNNs [44], and 

Max pooling is used for each 2 × 2 region. Complete con-
figuration of the proposed network with activation shape and 
learnable parameters is provided in Table 1. Representative 
layers’ activation plots are shown in Fig. 9, where the top 
row of Fig. 9 shows a feature map of the convolution layer 
(24 filters outputs), the middle layer shows 24 ReLU activa-
tions output, and the last row is a feature map obtained from 
max pool outputs.

3.4  Divergence localization

The block diagram of the divergence localization framework 
is shown in Fig. 10. Our divergence localization scheme is 
simple; it takes the difference of incoming MSI from a refer-
ence motion shape. The reference motion shape is obtained 
by saving the incoming motion shape at the time instant the 
divergence detection is indicated by the CNN network, as 
shown in Fig. 10.

However, motion shapes obtained at every integra-
tion step are not similar and exhibit both local and global 

Fig. 8  CNN architecture for normal and divergence detection from motion images

Table 1  Divergence behavior detection of CNN configurations

No. Name Activations Learnable Total learn-
able param-
eters

1 Image input 50 × 50x1 images with ‘zero-center’ normalization 50 × 50 × 1 – 0
2 Conv 24 3 × 3 × 1 convolutions with stride [1 1] and pooling [1 1 1 1] 50 × 50 × 24 Weights 3 × 3 × 1 × 24 240

Bias 1 × 1 × 24
3 Batchnorm batch normalization with 24 channels 50 × 50 × 24 Offset 1 × 1 × 24 48

Scale 1 × 1 × 24
4 ReLu 50 × 50 × 24 – 0
5 Maxpool 2 × 2 maxpool with stride [2 2] and padding [0 0 0 0] 25 × 25 × 24 – 0
6 Fc 2 fully connected layers 1 × 1 × 2 Weights 2 × 15,000 30,002

Bias 2 × 1
7 Softmax 1 × 1 × 2 0
8 Classout Crossentropyex with classes ‘normal’ and ‘divergence’ – – 0
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Fig. 9  First row: convolution layer activation map, second row: ReLU activation map, third row: max pool activation map

Fig. 10  Framework for diver-
gence localization Reference Shape

Time: t

Baseline 
blob 
extraction

Baseline 
blob 
extraction

Divergence 
source 

FTLE Optical 

Divergence 
class from 

CNN

Divergence 
point(s)

Reference 
shape

Motion 

Divergence 
Region(s)

Fig. 11  Top row: undesired 
motion-shape variations due to 
crowd oscillatory motion; bot-
tom row: real-shape change due 
to divergence
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shape variations. Figure 11 showing samples of shape vari-
ations for normal (top row) and divergence (bottom row) 
behaviors for the crowd at Loveparade scenario (crowd on 
the ramp entering from left and right tunnels and heading 
toward ramp top for exiting). Regions marked with squares 
in Fig. 11 (upper row) are motion-shape variations experi-
enced during normal behavior frames. Simply differencing 
normal and divergence motion shapes (in the presence of 
shape variations) produces many undesired blobs that are 
not actual divergence sources and can lead to false diver-
gence-source detections. As mentioned above, shape varia-
tions occur locally and globally at the high-density crowd. 
Local motion shape variations are due to to-and-fro motion 
[45], and global crowd motion-shape changes are due to 
the segment(s) of the crowd that become ‘stationary’ and 
result in no FTLE field. For the former problem, the crowd 
naturally starts oscillating left and right at their central axis, 
generating crowd waves. As the waves reach boundaries, the 
crowd naturally expands and shrink. As a result, the FTLE 
field at crowd boundary also expands/shrinks causing local 
(minor) motion-shape variations.

Global motion-shape variation occurs when a certain 
crowd segment stops motion and crowd velocities reduce to 
zero; results are zero OPF/ FTLE field in that region. Thus, 
LCS ridges in the FTLE field disappear from stationary seg-
ments and appear at other moving segments, causing global 
motion shape variation. We address the shape variation 
problems discussed above by implementing a blob preproc-
essing pipeline (Fig. 12) before differencing motion shapes.

Pipeline in Fig. 12 extracts ‘baseline blob’ for normal 
and divergent behaviors. Subtraction of divergent baseline 
blob from reference (normal) baseline blob not only gener-
ates blob(s) representing actual divergence region(s) but also 
smaller residual blocks act as noise and require filtering to 
avoid false divergence source detections. Residuals are fil-
tered out by applying temporal and spatial filtering on OPF 
and FTLE fields on current and past Nfilter frames. Blob(s) 
obtained after the filtering process is(are) marked as diver-
gence source region(s).

Divergence source points are also extracted from the 
divergence region detected. The contour of the divergence 
region is obtained, and pixels distance from contour to base-
line motion shape blob is computed. The distance of pixels 
less than a threshold is marked as divergence source points. 
Hence, our algorithm not only identifies divergence source 

points but also divergence region masks representing the 
size of divergence. It is important to mention here that exist-
ing state-of-the-art divergence localization algorithms [7, 8, 
46] only identify divergence source points or starting points, 
and later in the video there is no update on localization infor-
mation, i.e., where divergence leads to over the time and how 
big is the divergence size, whereas our divergence localiza-
tion algorithm not only identifies divergence source points 
but also masks region of divergence that evolves temporar-
ily in the video. Divergence mask provides useful informa-
tion about the severity of divergence, i.e., the smaller mask 
would mean less or low-density crowd divergence, whereas a 
larger divergence mask would represent high-density crowd 
diverging. Another difference with the state-of-the-art diver-
gence method is that there is no divergence direction infor-
mation in the existing art as they only provide divergence 
starting point information, whereas our method shows the 
direction divergence is progressing. Divergence direction 
information can help to deploy rescue efforts at the right 
locations of disaster.

3.5  Crowd datasets

3.5.1  Previous datasets

In this section, a review of benchmark crowd anomaly data-
sets is provided containing crowd divergence sequences. 
UCF dataset [47] contains a zebra crossing video where the 
crowd going through zebra crossing with the expected nor-
mal behavior of the crowd remains over the zebra crossing 
area. However, near the ending of the video, a group of peo-
ple start walking off the zebra crossing creating a divergence 
pattern. Overall crowd density in the video is low. UMN 
dataset [48] consists of three sequences (two recorded out-
door and one indoor) with a total of 11 different activities. 
Initially, the crowd moves randomly within a certain region 
and then suddenly disperses in all directions. In this case, 
crowd dispersion is taken as divergence behavior. These 
scenes also consist of low crowd density. In PETS2009 [49] 
dataset, sequence 2 contains crowd divergence scenes where 
a group starts walking left off the normal straight walking 
path on the road. Videos are recorded with four different 
camera views. Crowd density in the PETS dataset ranges 
from low to medium. NGSIM dataset [50] consists of real 
CCTV surveillance videos monitoring traffic mounted at a 

Fig. 12  Baseline blob extraction pipeline for normal and divergence behaviors
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pole with top view. Various car divergences are available in 
different directions; however, the number of cars on road 
constitutes medium density. Overall, the existing video data-
set contains crowd divergence at low- to medium-density 
crowd (objects) and the duration of video clips is relatively 
short. Existing video datasets limitations compel us to gen-
erate a new rich dataset containing divergence scenes at the 
(very) high-density crowd. Details of our new dataset are 
discussed in the next subsection. Table 2 provides a com-
parison and properties of existing video datasets and the 
last column showing crowd normal walking pattern, i.e., 
straight or circular, as our focus is on divergence detection 
from these two types of crowd motions.

3.5.2  Our dataset

A new large-scale dataset is developed to evaluate our 
method under realistic high-density crowd divergence sce-
narios. Mainly we construct three datasets: (1) synthetic 
(SYN) dataset, (2) MELAN CONCERT dataset and (3) 
PILGRIMS dataset. SYN dataset is generated using Mass-
Motion crowd simulation software [10], and videos of the 
low- and high-density crowd are produced with normal and 
divergent behaviors. Low-density synthetic videos contain 
the same behaviors of real datasets such as PETS2009, 

UMN, UCF, and NGSIM. The length of each rendered video 
is 20 min. For high density, we design locations of Holly 
mosque of Masjid Al-Haram (Kabbah) and Loveparade in 
Massmotion. In the Kabbah scenario, agents performing 
Tawaf around Kabbah are considered normal behavior, and 
the agents leaving Tawaf after completing seven laps are 
considered diverging from the normal walking crowd. Since 
Tawaf is circular walking behavior and theoretically diver-
gence can happen at any angle in 360 degrees, we generate 
25 different videos with crowd diverging every 14 degrees 
on the circular path. Each video length is 20 min, and the 
number of agents varies from 10 K (starting) to 50 K (dur-
ing divergence). Samples of the Kabbah dataset and FTLE 
images with divergence from different locations are shown 
in Fig. 13, where a rectangular area appearing at the circle 
edge presents a crowd divergence region.

Synthetic Loveparade scenario videos consist of real 
stampede disaster events. Just before the stampede occurred, 
crowd conditions at ramp top were very critical, crowd 
motion was stopped due to congestion and there was no more 
space for the new incoming crowd at the musical band’s 
performance area. To avoid congestion, the new entering 
crowd starts diverging left and right off the ramp toward safe 
areas. We model similar conditions and crowd divergence 
off the ramp in Massmotion. In the real scenario, various 

Table 2  Video datasets comparison (existing benchmark and ours)

*Number of frames averaged for the respective number of scenes (normal or abnormal)

Dataset No. of frames No. of scenes Resolution Frame rate Density level Type (Real/syn-
thetic)

Normal motion type

Normal Abnormal

UCF 110 140 1 480 × 360 25 Low Real-ped Straight
UMN 500* 100* 11 320 × 240 30 Low Real-ped Circular
PETS2009 52* 50* 8 768 × 576 7 Low/medium Real-ped Straight
NGSIM 250* 241* 8 640 × 480 10 Low Real-traffic Straight
OUR-SYN 10,000* 10,000* 100 1280 × 720 24 High Syn-ped Straight/circular
OUR—MELAN 

CONCERT
553* 553* 4 1920 × 1080 50 High Real-ped Straight

OUR—PILGRIM 1500* 1500* 3 1280 × 720 25 High Real-ped Straight

Fig. 13  Synthetic Kabbah data-
set: top row—normal (circular) 
and divergent behavior sample 
scenes; bottom row—samples 
of FTLE images with crowd 
diverging from different loca-
tions of the circular motion
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CCTV cameras were installed at different locations cover-
ing the same crowd motions with different camera angles. 
We mimic similar camera arrangements in MassMotion 
and generate crowd videos views and angles. Examples of 
different camera view videos rendered in MassMotion are 
shown in Fig. 14 together with corresponding FTLE shape 
images. Also, for dataset diversity, agents in the software 
are made to diverge from different ramp locations (15 diver-
gence locations) and 15 divergence videos are generated. 
Agents’ density is varied from ~ 15 K (under normal condi-
tions) to ~ 65 K (during divergence). The average length of 
each video is 20 min.

MELAN CONCERT dataset is captured with a fixed 
camera mounted at a height (with a top view). The high-den-
sity crowd coming from the concert area is exiting through 
two gates. Here, crowd exiting through gates is consid-
ered divergence behavior. Video length is one minute. We 
generate three divergence videos out of the single video. 
Normal crowd behavior video is generated by blurring exit 
gate areas. For crowd right divergence, the left exit gate is 
blurred, and for left crowd divergence, the right-side exit 
gate is blurred. Finally, the crowd exiting from both gates is 
considered a dual divergence simultaneously. Samples of the 
MELAN dataset with FTLE shapes superimposed on actual 
images are shown in Fig. 15.

PILGRIMS dataset shows pilgrims walking in a Y-shape 
path (Fig. 16). Video is recorded from the Makkah TV chan-
nel live broadcast for one minute and then the camera moves 
to another scene. We generate three different behavior videos 
from a single video. The crowd toward the left direction is 
blurred and the only crowd walking right side is considered 
as normal crowd behavior. Similarly, a crowd walking right 
is blurred and the crowd flowing left side crowd is taken 
as normal behavior. For both normal behaviors, the actual 
video serves as a divergence scenario. The summary of our 
large-scale crowd dataset is provided in Table 2.

4  Experimentation

4.1  Divergence detection

4.1.1  Experimentation setup

We compute the dense OPF using the Brox method [12]. 
Integration time T in the forward /backward FTLE com-
putation is set to 25. ffsat_thr in the FFSAT scheme is set 
to 65% of dmax for motion shape extraction. The extracted 
motion shape is resized to 50 × 50 pixels and saved for 
model training. Our model training is not performed on a 
raw image dataset, instead of on small size (50 × 50) MSIs 
(hence reduced 4 GB raw image dataset to ~ 500 MB). 
Data is divided into 70–10–20 configurations where 70% 
of random data is used for training, 10% for validation, and 
20% for testing. We train the CNN model on a core i5 pro-
cessor with 8 GB system memory. With a small yet diverse 

Fig. 14  Loveparade synthetic 
video dataset: 1st column—top 
view normal behavior (straight 
motion); 2nd col. Top view 
divergence left (L) and Right 
(R); 3rd col. K13 view LR 
divergence; 4th col. K5 view 
LR divergence; 5th col. K12 
view LR divergence from 
straight crowd motions

Fig. 15  MELAN Concert dataset samples: in the first image, both 
gates are blurred and crowd normal behavior is straight motion pat-
tern with crowd exiting from the stadium and approaching exit gates 
(crowd normal motion shape is superimposed on the image); in the 
second image, crowd diverge from both gates, crowd divergence 
motion shape is superimposed on the image



1565Motion‑shape‑based deep learning approach for divergence behavior detection in high‑density…

1 3

image dataset of motion shapes, we were able to complete 
model training in less than 1.5-h on a normal CPU with-
out GPU support. Other training settings include no. of 
epochs = 150 and 100 batches in each epoch. We apply 
stochastic gradient descent with momentum (SGDM) opti-
mizer with a learning rate of 0.01. Model output scores 
for normal and divergent classes with values lie between 
0 and 1.

We compare our divergence detection method with 
state-of-the-art divergence detection methods including 
a Bayesian Model (BM) for escape behavior detection 
[7], the method based on chaotic invariants (CI) [46], the 
method using curl and divergence of motion trajectories 
(CDT) [51] and streak flow (STF) method [32]. Experi-
ments are run at five datasets discussed in Sect. 3.5.2. We 
perform both qualitative and quantitative evaluations in 
this section following the protocol shown in Table 3.

4.1.2  Qualitative evaluation

In qualitative evaluation, we determine how discriminat-
ing a method’s feature is for normal and divergent crowd 
behaviors. It is well known that a classifier performance 
heavily reliant on the input features and robust features (that 
are strongly discriminative) ensures efficient classification 
results.

We extract low-level features mentioned in Table 3 at two 
crowd density levels (medium and high) for both normal and 
divergent crowd behaviors. Figure 17 shows the features of 
each method plotted for normal and divergent behaviors at 
a medium-density crowd scene taken from the PETS2009 
dataset. It is obvious from Fig. 17 that existing art and our 
method perform well on a medium-density divergence sce-
nario. Velocity magnitude features of the BM method are 
different in this scenario for normal and divergent behav-
iors. The concentration of velocity magnitude is more at the 
center in the normal scenario, whereas velocity magnitude is 
scattered in divergence behavior and concentration is more 
at outer locations of the scene (Fig. 17 second row). The 
representative trajectories of the CI method are quite appar-
ent in the divergent scenario and can be easily differentiated 
from normal behavior where representative trajectories are 
not significant. The CDT method can efficiently represent 
no/less divergent regions at the crowd normal behavior and 
capture most possible divergent regions at the abnormal 
behavior. Similarly, STF methods’ velocity potential can 
also efficiently capture divergent regions of abnormal behav-
ior with minor detections of the divergent region at normal 
behavior. Finally, our motion shape for normal and divergent 
behaviors is significantly different and can be easily inter-
preted by the classifier as a normal or divergent scene.

Low-level features’ comparison for high-density crowd 
scenario is shown in Fig. 18. It is important to notice that 
existing methods rely on inter-person distance for their 
motion features to be strongly discriminative. For exam-
ple, the distribution of velocity magnitude in the BM 
method creates the difference between normal and diver-
gent behaviors. This distribution requires inter-person dis-
tance to increase so that velocity magnitude is uniformly 
distributed over the scene. But at the high-density sce-
nario, where crowd density remains the same for normal 

Fig. 16  PILGRIM dataset: the first image crowd left normal (straight 
walking pattern); the second image right normal (also straight walk-
ing pattern); the third image is the divergence for both left and right 
normal behaviors. Corresponding crowd motion shapes superimposed 
on images

Table 3  Divergence behavior 
detection experimentation 
protocol

Method Features (quantitative evaluation) Classifier (qualitative evaluation)

Bayesian model (BM) Mean optical flow velocity magnitude Bayesian classifier
Chaotic invariants (CI) Representative trajectories Gaussian mixture model (GMM)
Curl and divergence of 

motion trajectories (CDT)
Divergence descriptor Support vector machine (SVM)

Streak flow Velocity potential function Support vector machine (SVM)
Ours Motion shape CNN
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and divergence behaviors or even increase in case of diver-
gence, the method performance degrades significantly as 
the velocity features are no longer discriminative. The 
situation is shown in Fig. 18 second row, where the dis-
tribution of velocity magnitude is almost similar in both 
normal and divergent scenarios as crowd density remains 
high in both cases. Similarly, representative trajectories of 
the CI method are not significant in divergence scenarios 
and are like the normal scenario (Fig. 18 third row). Both 
CDT and STF also suffer from the same problem and could 
partially perform divergence behavior detection by locat-
ing the divergence regions at the crowded places contain-
ing gaps. However, if similar gaps are present in normal 

behavior regions, then these methods could easily lead to 
false detection. Finally, the motion shape features from 
our method are significantly discriminative for normal and 
divergence behaviors compared to the existing art and can 
easily detect crowd divergence behavior. Since our motion 
shape is extracted from LCSs in the FTLE field and the 
FTLE method cleanly generates LCS ridges at the crowd 
boundaries, in turn, motion shapes are significantly differ-
ent for normal and divergence scenarios. This also shows 
that most existing methods that were efficient in ME at 
low/medium density degrade their performance signifi-
cantly for the ME at the high-density crowd.

Fig. 17  Qualitative comparison 
of low-level features for normal 
and divergence behavior at 
medium-density crowd. Row 
1 first image is a sample of 
normal behavior and the second 
image is a sample of divergence 
behavior from the UMN dataset. 
Second row is the respective 
velocity magnitude maps by 
BM method; the circular area 
in the first image shows that 
velocity magnitude distribution 
is concentrated at the center for 
normal behavior and the second 
image shows that velocity is 
distributed across the scene for 
divergence behavior with more 
concentration toward corners. 
Third row shows representative 
trajectories from the CI method 
with the first image contain less 
significant representative trajec-
tories in normal scene, whereas 
significant trajectories in diver-
gence scene. Fourth row is the 
divergence descriptor map from 
the CDT method where low 
values (in blue) represent diver-
gence areas and high values of 
the descriptor (in red) represent 
convergence areas. Fifth row is 
the velocity potential map from 
the STF method. High values 
of the potential function (red) 
represent convergence regions, 
and low values of velocity 
potential (yellow) represent 
divergence regions. Sixth row is 
the motion shape from our pro-
posed method with clear shape 
difference between normal and 
divergence behaviors
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4.1.3  Quantitative evaluation

4.1.3.1 Evaluation metrics In quantitative evaluation, we 
test how well a classifier performs using discriminative fea-
tures discussed in the previous subsection. We treat diver-
gence behavior detection as a binary classification problem 
and accuracy (ACC); the basic evaluation metric is used to 

evaluate the classification performance. However, ACC is 
measured at a single cutoff (threshold) of class output prob-
abilities. In our case, there are cases where divergence-like 
shape also appears in normal crowd behavior, and it would 
be important to investigate whether the model classifies test 
normal image as normal or divergent behavior. Therefore, 
we sweep the full probability range [0, 1] by setting differ-

Fig. 18  Qualitative comparison 
of low-level features for normal 
and divergence behavior at the 
high-density crowd. Row 1 first 
image is a sample of normal 
behavior and the second image 
is a sample of divergence 
behavior from our PILGRIM 
dataset. Second-row first image 
shows velocity magnitude is 
uniform across the scene on a 
crowded area and the second 
image shows for the divergence 
scenario, the magnitude map 
is also uniformly distributed 
across the crowded region, and 
there is no significant difference 
among magnitude maps for both 
behaviors. Third row shows 
representative trajectories by the 
CI method are not significant 
for both normal and divergence 
crowd behaviors. The fourth-
row second image shows partial 
divergence behavior detec-
tions by the CDT method by 
locating divergence regions at 
the gaps in high-density crowd 
and similar behavior is shown 
by the STF method in the 5th-
row second image. Sixth row 
shows motion-shape features 
by our method are significantly 
discriminative for normal and 
divergence behaviors at the 
high-density crowd



1568 M. U. Farooq et al.

1 3

ent thresholds and obtain receiver operating curves (ROCs). 
ROC is computed from true-positive rate (TPR) and false-
positive rate (FPR). TPR corresponds to the proportion of 
divergent image samples correctly classified as divergent 
w.r.t all divergent image samples (TPR = TP/FN + TP). FPR 
corresponds to the proportion of normal behavior image 
samples that are mistakenly considered as divergent w.r.t 
all normal behavior image samples (FPR = FP/TN + FP). 
Finally, a classifier with the highest area under ROC (AUC) 
value most efficiently predicts the divergent class.

High ACC and AUC scores may be misleading for 
imbalanced datasets, unfortunately, that is the case with 
the majority of real benchmark videos. A large portion of 
videos contains normal behavior images, whereas anomaly 
(divergence) exists only for a short duration. It is clear 
from Table 2 benchmark datasets (UCF, UMN, PETS2009, 
and NGSIM) are skewed toward crowd normal behavior 
and are imbalanced. For classifier evaluation on imbal-
anced datasets, we compute precision (P) and recall (R) 
and obtain PR curves and corresponding area under the 
PR curve (AP). Precision and recall are defined in Eqs. (3) 
and (4), respectively.

Precision is a good measure to determine when the cost 
of normal samples incorrectly identified as divergent is 
high. Similarly, recall is a good measure to determine, 
when the high cost is associated with divergence image 
samples that are incorrectly identified as normal. Preci-
sion and recall have an inverse relationship, and to find the 
optimal balance among the two, we compute the F1 score 
(that is the harmonic mean of PR) as given in Eq. (5).

where the F1 score of 1 indicates the best optimal balance 
between P and R and 0 indicates no balance. Also, F1 score 
provides a better measure of incorrectly classified cases 
(false positive—normal classified as divergent and false 
negative—normal classified as divergent) compared to ACC 
that only focuses on true positives and true negatives.

4.1.3.2 Comparison with state‑of‑the‑art methods In this 
experimentation, we train all methods on our large syn-
thetic dataset containing scenes of divergence at low- as 

(3)Precision =
(div. sample correctly identified)

(div. sample correctly identified + normal sample incorrectly identified as divergent)

(4)Recall =
(div. sample correctly identified)

(div. sample correctly identified + divergence sample incorrectly identified as normal)

(5)F1 = 2 ×
(precision × recall)

precision + recall

well as high-density crowds, and evaluation is performed 
on real and synthetic datasets.

Figure 19 compares the accuracy on various datasets, 
where SYN-KAB stands for synthetic Kabbah and SYN-
LVP stands for synthetic Loveparade datasets. It is clear 
from the bar chart that for low-density crowd datasets (UCF, 
UMN, PETS, and NGSIM), our method performs well com-
pared to existing art, while our method also outperforms 
others in divergence detection at high-density crowd datasets 
(MELAN, PILGRIM, and synthetic).

ROC comparison of methods at selected datasets is shown 
in Fig. 20. It can be seen that from ROC plots and AUC 
score in Fig. 21, our method outperforms existing art in pre-
dicting divergent class not only at the low-density crowd but 
also divergence at the high-density crowd. Noticeably for 
high-density datasets (synthetic, MELAN, and PILGRIM), 
other methods lost the capability of separating divergent and 
normal classes, whereas in our methods ROC curve is still 
in the upper region close to the top left corner and shows it 
can efficiently separate divergent and normal classes. The 
fact is also evident from the high AUC score of our method 
compared to existing art in Fig. 21.

PR curves comparison is shown in Fig.  22, and the 
corresponding area under the PR curve (AP) bar chart is 
shown in Fig. 23. PR curves show that our model behaves 
reasonably well at low-density imbalanced datasets (UCF, 
UMN, PETS, and NGSIM) specifically on the UMN dataset 
where few existing art methods’ performances are dropped 
significantly.

Lastly, a comparison of the F1 score is provided in 
Fig. 24. It is clear from the figure that our method achieves 
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Fig. 19  Accuracy comparison for divergence detection on selected 
datasets
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high F1 scores at all datasets compared to existing art meth-
ods. It shows that our method achieves the best optimal 
balance between precision and recall. It is also clear from 
Fig. 24 that our method better able to classify normal and 
divergent classes even at imbalanced (and skewed) datasets.

4.1.3.3 Classifier performance evaluation In this section, 
we thoroughly test our CNN-based classifier for model 
inference and generalization. Initially, we perform a quan-
titative test for model inference by training the classifier 
on one crowd dataset and evaluate on remaining datasets. 
Table 4 shows a confusion matrix with ACC values, where 
our model is trained on a dataset in a row and evaluate on all 
datasets in the columns.

The confusion matrix shows that our method is efficient 
in inferring divergence behavior learn from one video and 
can predict divergence in unseen videos. However, there is 
a slight degradation in ACC when our method is trained on 
a high-density crowd dataset and evaluated on low-density 
crowd datasets. At high-density crowd, mostly single (or 
few) global crowd shape(s) is obtained (as the whole crowd 
is acting as a single segment), whereas at low density, usu-
ally, inter-person distance is greater that divides the crowd 
into smaller crowd segments. Multiple crowd segments 
result in multiple crowd shapes within the same image (e.g., 
in the case of UMN, PETS, and NGSIM datasets). Multiple 
motion shapes in an image can confuse classifier to classify 
normal scene as divergent or vice versa.

We also perform a qualitative test for model inference by 
plotting the CNN output probability score of every video 
frame.

Figure 25 shows four samples of class probability scores 
plotted against the number of images in a video. Figure 25a 
is the PETS2009 divergence behavior scenario for sequence 
2 view 1. After image 50, the crowd starts diverging left, 
and the corresponding divergence score increases. From 
frame 85 to frame 110, crowd divergence is visible and after, 
frame number 110, people disappear from the scene and the 
divergence score reduced to zero at the end of the video. A 
similar divergence scenario is shown in Fig. 25b with a traf-
fic dataset. Normally traffic flowing from east to west and 
under divergent scenario traffic start flowing south at frame 
190, predicted by an increase in divergent class probability 

Fig. 20  ROC curves for divergence behavior comparing with state-of-the-art methods on low- and high-density crowd datasets: a UCF, b UMN, 
c PETS2009, d NGSIM, e synthetic—kabbah, f synthetic Loveparade, g MELAN concert, h PILGRIM
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Fig. 21  AUC score comparison—higher the AUC score, the better 
the method performs in divergence detection
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score. However, the assumption of multiple crowd segments 
at low density is not always true as is the case with the UCF 
scenario where the crowd is coherent over the zebra crossing 

and ACC achieved is high compared to ACC at other low-
density crowd datasets. Figure 25c, d demonstrates two 
examples of divergent class probability scores obtained at 
high-density crowd scenes (PILGRIM and MELAN data-
sets). However, there are also cases where our classifier con-
fused due to multiple motion shapes within a single image, 
and in some cases, our classifier also fails due to motion 
shape mimicking divergence shape. Examples of these two 
scenarios are depicted in Fig. 26. Figure 26a demonstrates an 
escape activity in the UMN dataset of sequence 2. Under the 
normal scenario, people walk inside a square tile floor area; 
however, during frame 5710–5850, a person walk of the tile 
area for a short duration and then return inside. Although 
these frames are marked as normal in the ground truth, due 
to motion-shape change, our classifier misclassifies it as 
divergent due to a high divergence score. A similar event 
again happens between frames 6090–6150, and the diver-
gence score goes high. Actual divergence occurs at frame 
6196 where the divergence probability score is maximum.

Figure 26b demonstrates another example of a partial 
false positive that affects divergence score but still the clas-
sifier manages to predict correct classes. In this example, 
probability scores of both normal (magnetic color) and 
divergence (blue color) classes are plotted against each 
frame. It can be noticed that between frames 50–150, there 
is a small segment of the crowd walking off zebra crossing 
creating false positive and results in increasing divergence 
class score as well. However, the change is not that signifi-
cant that it can reverse class scores, and thus, model is still 

Fig. 22  PR curve comparison a UCF, b UMN, c PETS2009, d NGSIM, e synthetic—kabbah, f SYNTHETIC Loveparade, g MELAN concert, h 
PILGRIM
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Fig. 23  Area under PR curve (AP) comparison—higher the AP value, 
better the method in predicting divergence class at imbalanced data-
sets
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Fig. 24  F1 score comparison: high F1 score of our method shows it 
is better able to classify normal as well as divergent classes for imbal-
anced datasets (UCF, UMN, PETS, and NGSIM)
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able to predict images as normal behavior in this time dura-
tion. After frame 180, the crowd starts walking off the zebra 
crossing toward the top right side that is real divergence, 
and motion-shape change is significant from normal motion 

shape. At this time duration, the normal class score is close 
to zero and the divergence class score is close to one as 
expected.

Table 4  Confusion matrix 
of our CNN-based classifier 
performance evaluation by 
training on a dataset in a row 
and evaluate on datasets in 
columns

The percentages shown are the ACC measure of each evaluation

Training Testing

Low-density crowd datasets High-density crowd datasets

UCF (%) PETS 
2009 (%)

UMN (%) NGSIM (%) SYN (%) PILGRIM (%) CON-
CERT 
(%)

UCF 90 80 85 75 80 85 73
PETS2009 80 92 83 72 82 79 71
UMN 82 95 97 78 87 75 68
NGSIM 90 88 83 98 88 80 75
SYN 85 62 61 65 99 90 89
PILGRIM 87 59 63.2 67 92 98.5 90
CONCERT 81 63 60.5 61 93 98 99

Fig. 25  Qualitative results of our method on testing videos. Green 
colored windows show ground-truth divergence region, and our pre-
dicted divergence score falls within ground-truth windows. a and b 

are samples of divergence detection at the low-density crowd; c and d 
are samples of divergence detection at the high-density crowd
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4.1.4  Comparison with CNN‑based anomaly detection 
methods

The effectiveness of our method is compared with state-of-
the-art CNN-based anomaly detection methods for diver-
gence behavior detection. Selected methods include Motion 
information Image with CNN (MII-CNN) [52], Generative 
Adversarial Nets (GAN) [53], and temporal CNN pattern 
(TCP) [54]. We measure the accuracy of the methods, which 
is the percentage of correctly classified frames in compari-
son with the ground truth. Comparisons are performed on 
low-density crowd datasets (UMN and PETS2009) and high-
density crowd datasets (PILGRIM and CONCERT). Table 5 

provides the ACC measurement of four methods on low-
density crowd datasets. At low crowd density, our method 
performs comparably to existing state-of-the-art methods. 
However, there is a slight degradation by our method at the 
UMN dataset as the motion-shape difference among normal 
and divergent behaviors is less significant; hence, the clas-
sification accuracy is dropped.

Next, a comparison is performed for divergence detection 
at a high-density crowd. Table 6 provides the ACC measure-
ment of four methods on high-density crowd datasets.

At high density, our method outperforms existing CNN-
based anomaly detection methods. Selected methods pri-
marily use OPF information to generate images for CNN 
to train. At high density, global motion information is not 
captured well by OPF due to noise issues, and performance 
is significantly degraded for existing art methods, whereas 
FTLE provides clean motion shape at high crowd density 
and our CNN classification performs efficiently.

4.1.5  Divergence localization evaluation

4.1.5.1 Parameter settings Divergence class score value 
from CNN lies between 0 and 1, and the threshold at the 
class score is set to 0.65 (65%) to trigger the localization 
detection process. Residual blobs are filtered out through 
temporal averaging filtering and spatially through con-
nected neighbors filtering. The number of images for tem-
poral averaging Nfilter is set to 10 i.e., averaging previous 10 
frames OPF and FTLE fields. Spatial filtering is applied by 
performing an 8-connected neighbor on residual blob(s).

4.1.5.2 Qualitative evaluation In qualitative evaluation, we 
compare our proposed divergence localization scheme with 
two state-of-the-art divergence localization methods [7, 8]. 
The method in [7] estimates divergent centers by placing 
potential destination points over normal image sequences. 
For the escape scene, a set of divergent points is initialized, 
and the foreground velocity patches start from the divergent 
points and reach potential destinations that are marked as 
divergent centers. The method in [8] analyzes intersections 
of foreground velocity vectors and uses distance segmenta-
tion method and knn search to locate the divergent center. 
Intersections are obtained with the assumption that there are 
three moving objects in the neighbor of the desired diver-

Fig. 26  Failure case examples for our method for divergence detec-
tion a UMN escape activity depicting two false divergence detec-
tions due to few people walking off the expected ground truth nor-
mal behavior area and create divergence-like motion shapes. b Partial 
false detection scenario, from frame 50 to frame 100, few people 
walking off ground-truth normal zebra crossing area creating an illu-
sion of divergence that causes the divergence class score to go high. 
Since the normal class score is still greater than the divergence class 
score, our model is still able to classify it as a normal class

Table 5  ACC comparison of CNN-based anomaly detection methods 
at the low-density crowd

Dataset\method Ours MSI + CNN MII + CNN GAN TCP

UMN 98.75 99.08 99 98.8
PETS2009 98 98.39 98.2 97.9

Table 6  ACC comparison of CNN-based anomaly detection methods 
at the high-density crowd

Dataset\method Ours MSI + CNN MII + CNN GAN TCP

PILGRIM 99.05 97 96.8 95
CONCERT 99 96.5 97 96
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gent center and straight lines of moving objects should inter-
sect to declare the point as the divergent center.

A qualitative comparison of three methods is shown 
in Fig. 27. Divergent centers are marked with triangles 
for three methods and ground truth. Scenarios in the first 
two rows of Fig. 27 depict divergent center detections at 
the low-density crowd. Existing state-of-the-art methods 
accurately detect divergent centers low density, whereas 
our method shows few false detections at the low crowd 
density divergence. At low density, crowd motion shape is 
broken and produces many residuals after the differencing 
from reference motion shape. The residual blobs cause 
marking of false divergent centers by our method. Also, 
since our method analyzes variations at crowd boundaries, 
the divergence points detected by our method at low crowd 
density are slightly offset from the ground truth.

The last two images in the third row of Fig. 27 show 
divergence center detections at the high-density crowd. 
Existing art failed to detect divergence sources at the 

high-density crowd. The method at [7] analyzes variations 
in foreground velocity patches from high (in non-escape) to 
low (in escape) case. However, at high density, foreground 
velocity concentration is the same in both behaviors; no 
divergence center points are reaching potential destinations.

However, the method is still able to detect divergence 
center point at crowd boundary as patches at boundaries 
experience variations in velocity. Similarly, the method in 
[8] shows poor performance at high-density divergence. 
Assumption of three moving objects and solving three 
straight lines equations is possible at low density but at the 
high-density crowd. As there can be hundreds of people in 
the neighbor of a divergent center, solving straight line equa-
tions for hundreds of moving objects is computationally very 
expensive. The method with existing model settings is una-
ble to detect actual divergent center locations at high density. 
However, the model can be improved by obtaining intersec-
tions of many neighboring moving objects with reasonable 
compute. False detections by existing art on the high-density 

Fig. 27  Divergence localization comparison with state-of-the-art 
methods. Legends: red triangle [7], green triangle [8], orange trian-
gle our method, blue triangle ground truth. The top two rows show 
divergence localization at low-density scenes. False divergent center 

detections by our method at 2nd, 3rd image at the first row and 1st 
image, second row. Existing art failed to detect divergent centers at 
high density (last two images in the third row), while our method can 
accurately detect divergent centers
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crowd can be seen in the last two images of the third row in 
Fig. 27. Our method performs well at high-density scenario 
and can identify divergence points at correct locations.

As mentioned earlier, our localization algorithm also 
identifies divergence regions (or divergence mask) evolve 
temporally. Figure 28 shows three examples of divergence 
mask detected by our algorithm. The first row is a crowd 
divergence sequence taken from the PETS2009 dataset, the 
second row shows people diverging from the normal path 
of walking over the zebra crossing, and the last row shows 
people diverging from circular Tawaf after completing 
seven laps of Tawaf. Images in columns show the tempo-
ral progression of divergence where images are taken every 
n_frames after the time instant (td) divergence is detected 
by CNN. Divergence mask size can be seen increasing over 
time indicating variations in the size of divergence and 
shows the direction in which divergence is leading.

4.1.5.3 Quantitative evaluation As mentioned earlier, our 
divergence localization algorithm not only identifies diver-

gence source points but also detects region(s) of divergence. 
To qualitatively evaluate the performance of our algorithm, 
we compute Intersection over Union (IoU) between the 
predicted divergence region and ground-truth divergence 
region. Ground-truth regions are obtained by hand-labeling 
divergence regions at each abnormal frame. IoU score is 
calculated using Eq. (6).

where Area of overlap is the overlap area between the pre-
dicted region and ground-truth region. Area of union is the 
area encompassed by both the predicted bounding box and 
ground-truth bounding box.

IoU score > 0.5 (50% overlap) is generally considered a 
good prediction by algorithm [55]. Two samples of diver-
gent regions detected overlaid with ground-truth diver-
gence region are shown in Fig. 29.

(6)IoU =
Area of Overlap

Area of Union

Fig. 28  Divergence region mask changes over time. Divergence 
regions: first row PETS2009; second-row UCF; and third-row Syn-
thetic Kabbah datasets. The first column is the region at the time of 
divergence detection (td) by CNN. The second column represents 

divergence region detection n_frames after td, the third column repre-
sents divergence region detection 2*n_frames after td, and so on. The 
value of n_frames is different for each sequence
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The IoU scores for divergent datasets used in this work 
are provided in Table 7.

Again it is clear from Table 7 that at low-density data-
sets (UMN, PETS2009, NGSIM), divergence shape is not 
smooth and is broken, resulting in low IoU score, whereas 
IoU score at high densities is better, meaning that our algo-
rithm is better able to detect divergent regions at high crowd 
densities.

5  Conclusion

In this work, we propose a novel method of divergence 
detection at the high-density crowd using MSIs combined 
with the power of CNN. Our approach estimates crowd 
motion using the FTLE method for both normal and diver-
gent scenes. MSIs are then obtained by extracting LCS from 
the FTLE field and used for CNN supervised learning for 
behavior classification. Experimental results show that our 
method outperforms both manual and CNN-based state-of-
the-art anomaly detection methods and achieve better accu-
racy. We also propose a divergence localization method with 
a new feature of producing localization mask for divergence 
size indication. Qualitative and quantitative results indicate 
that our localization method is effective in detecting diver-
gence starting or source points both at low and at high crowd 
density.

There are a few limitations to our approach. Our method 
provides anomaly information at crowd boundaries only. 
This limits our method to the global anomaly detection, 
whereas at the high-density crowd, triggering events for 
global anomaly occur at the crowd local level termed as 
crowd local anomalies. There is no local crowd anomaly 
information provided by our method. In future work, we 
shall extend this method to include crowd local behavior 
changes to detect local anomalies that lead to global anoma-
lies like divergence. One of the possible solutions for local 
anomaly detection at the high-density crowd is to perform 
head detection and then observe heads movements for nor-
mal/abnormal patterns.
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