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Abstract
This article mainly focuses on the most common types of high-speed railways malfunctions in overhead contact systems, 
namely, unstressed droppers, foreign-body invasions, and pole number-plate malfunctions, to establish a deep-network detec-
tion model. By fusing the feature maps of the shallow and deep layers in the pretraining network, global and local features 
of the malfunction area are combined to enhance the network’s ability of identifying small objects. Further, in order to share 
the fully connected layers of the pretraining network and reduce the complexity of the model, Tucker tensor decomposition 
is used to extract features from the fused-feature map. The operation greatly reduces training time. Through the detection of 
images collected on the Lanxin railway line, experiments result show that the proposed multiview Faster R-CNN based on 
tensor decomposition had lower miss probability and higher detection accuracy for the three types faults. Compared with 
object-detection methods YOLOv3, SSD, and the original Faster R-CNN, the average miss probability of the improved Faster 
R-CNN model in this paper is decreased by 37.83%, 51.27%, and 43.79%, respectively, and average detection accuracy is 
increased by 3.6%, 9.75%, and 5.9%, respectively.
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1  Introduction

The railway is the most critical part of basic transportation 
facilities. As a key of people’s livelihood, it has an important 
influence on Chinese economy [1]. In recent years, China’s 
high-speed railway construction has rapidly developed. This 
puts forward higher requirements on the safety and reliabil-
ity of the power-supply equipment of high-speed railways.

Overhead contact systems (OCSs) are important devices 
for electrified railways that are mainly used to provide elec-
trical support to electric locomotives. They are laid over 
a high-speed railway line and are mainly composed of 
contact-suspension devices, support devices, positioning 
devices, pillars, and other devices [2]. Because the OCSs 
receive wind and sun in the external environment, and 
there is no backup system, this becomes a weak link in the 

railway-traction power-supply system. Malfunctions of each 
component in each device of the OCSs are likely to occur. 
The three types of malfunctions, namely, unstressed drop-
pers, foreign-body invasions, and pole number-plate mal-
functions, are the most common.

For these three types of malfunctions, there are already 
some image monitoring methods. Karakose et al. [3] pro-
posed a new approach using image processing-based track-
ing to diagnose faults in the pantograph-catenary system. 
Liu et al. [4] proposed a unified deep learning architecture 
for the detection of all catenary support components. Qu 
et al. [5] used a genetic optimization method based on a 
deep neural network to predict pantograph and catenary 
comprehensive monitor status. Zhong et al. [6] introduced a 
CNN-based defect inspection method to detect catenary split 
pins in high-speed railways. For foreign bodies with irreg-
ular-edge shapes, such as bird’s nests, plastic bags and tree 
branches, Scholars have put forward some detection methods 
of railway foreign-body intrusion. Yang Pei [3] used dual 
discriminators to generate a generative adversarial network 
(GAN) to locate and identify bird’s nest in railway OCSs. 
First, the position of the bird’s nest in the image was located 
by fast region CNN, and then the GAN was used to classify 
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the objects in the location area, so as to judge whether the 
bird’s nest exists or not. Petitjean et al. [4] proposed a top-
down dropper detection method. First, they used a priori 
knowledge to extract the reliable position of the dropper, 
and then used MLP to classify dropper-malfunction. The 
above research was applied in an ideal scenario or experi-
ment environment with good results. It cannot deal with the 
task of dropper-malfunction detection in actual situations, 
and it is hard to efficiently and accurately locate and identify 
the dropper. The use of traditional image methods for OCSs 
defect identification has certain limitations. In recent years, 
some studies showed that deep learning methods can achieve 
better results. This is mainly because a convolutional neural 
network can mine deeper features of the image, and has bet-
ter effects of malfunction detection. It has become a trend to 
replace traditional methods with deep learning techniques. 
For example, Jiang et al. [5] proposed a method for detecting 
bird’s nests and foreign bodies on the high-speed railway 
catenary. The candidate regions were extracted by a line-
detection method, and bird’s nest detection was performed 
by deep-network object-detection algorithm YOLOv3 [6] 
with good results. The literature [8] used deep learning 
and traditional image methods for the detection of dropper 
defects. First, a Faster R-CNN was used to detect the posi-
tioning clamp of the dropper; then, the position of the drop-
per was divided by the clamp; lastly, the Canny edge was 
used to identify defects of the extracted droppers. Wu et al., 
on the basis of semi-supervised learning, first used Lenet-5 
to learn and extract deep features of the image [7]; then, they 
trained the extracted image features from the CNN through 
the support-vector-data-description (SVDD) algorithm; 
lastly, they identify whether rods in the image were abnor-
mal. Guo et al. [9] proposed an improved Faster R-CNN 
algorithm that can accurately identify and locate droppers. 
The method consisted of two parts. First, a balanced atten-
tion feature pyramid network (BA-FPN) was used to predict 
the detection anchor. Based on the attention mechanism, BA-
FPN performs feature fusion on feature maps of different 
levels of the feature pyramid network to balance the original 
features of each layer. After that, a center-point rectangle 
loss (CR Loss) is designed as the bounding box regression 
loss function of Faster R-CNN. Through a center-point rec-
tangle penalty term, the anchor box quickly moves closer to 
the ground-truth box during the training process.

In the above-mentioned methods, the parts that may 
have been faulty in the image were located through the deep 
learning method, divided into separate pictures; then, the 
malfunction detection was performed on the divided images. 
Separating the positioning and detection process increases 
training and testing time. In addition, as the number of con-
volutional-network layers increases, the pixels of the feature 
map gradually decrease. When the size of the malfunction 
area in the map is small, the deep-feature map of the output 

cannot retain malfunction details. Deepening the network 
layer increases the receptive field, so the malfunction area 
extracted by the pretraining network in the deep layer is 
mapped to a wider area in the input image. This also con-
tains information about the natural environment and build-
ings around the object. It is easier to cause interference to 
the fault location and detection, and missed detection occurs. 
Inspired by Sparse PARAFAC2 decomposition of literature 
[16], this paper takes the fusion of shallow- and deep-feature 
maps in the Faster R-CNN network to retain more detailed 
information of the malfunction area, and then, reduces the 
dimension of the fusion feature map to improve training 
efficiency. Experiments showed that this method greatly 
reduced the miss probability of the model.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the idea of multiview feature fusion and 
Tucker tensor decomposition, and describes our proposed 
multiview Faster R-CNN based on tensor decomposition. 
Section 3 applies the method into the dropper detection, and 
shows the effect of our method compared with YOLO v3, 
SSD and Faster R-CNN in training time, miss-probability, 
and detection accuracy. The relevant conclusions are given 
in Sect. 4.

2 � Multiview faster R‑CNN based on tensor 
decomposition

2.1 � Multiview feature fusion

The Faster R-CNN method usually achieves higher recogni-
tion accuracy for object-detection on natural image datasets. 
Objects in such natural images generally occupy a larger area 
of the image. However, video images acquired by the 2C 
detection system of the high-speed railway have relatively 
low resolution, and the target objects (droppers, pole number 
plates, foreign objects) in the image are usually small, so it 
is difficult to identify them directly with Faster R-CNN. This 
is because the deep convolutional layer of the pretraining 
network in the standard Faster R-CNN has a larger receptive 
field. The most common pretraining network, VGG16, the 
structure of which is shown in Fig. 1, contains 5 convolution 
modules: conv1, conv2, conv3, conv4, and conv5. In order to 
reduce the number of parameters in the model, the maximal 

Fig.1   VGG16 network architecture
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pooling layer is used to reduce the feature map of each mod-
ule after the convolution operation. Multiple convolution 
pooling operations result in one pixel on the feature map 
corresponding to multiple pixels in the input image, and the 
receptive field refers to the size of this corresponding area. 
The deep-feature map in the network had a larger recep-
tive field and lower resolution, and the contained features 
were also more abstract, while the shallow feature map had 
a higher resolution and a smaller receptive field, which could 
retain more details of the image and local features.

Figure 2 shows the five feature maps in VGG16. The size 
of the input image was 512 × 512 pixels. The size of the fea-
ture map became increasingly smaller as the number of net-
work layers increased. Lastly, the feature map output by the 
conv5 module was only 32 × 32 pixels. In the shallow fea-
tures of the network, more details of the input image could 
be retained, and the contour of the fault area could also be 
seen from the conv2 layer. In the process of gradually deep-
ening the number of network layers, the receptive field also 
increased, the resolution of the feature map became increas-
ingly smaller, the extracted feature semantic-discrimination 
ability became stronger and more abstract, and the fault 
area, as a small object, had almost no response in the deep-
feature map. If the size of a dropper in an original image 
is 64 × 64 pixels, its output in the last convolutional layer 
conv5 becomes 4 × 4 pixels, making it difficult to extract 
effective information features from 4 × 4 pixels. In addition, 
as the deep receptive field increases, each corresponding 
pixel in the feature map contains more convolution informa-
tion outside the region-of-interest (RoI). Therefore, if the 
RoI is small, then the proportion of information outside it 
contained in the corresponding feature map is higher, which 
interferes with detection. On the basis of the two problems 
above, the feature map output by the last convolutional layer 
was less representative of the fault area than it was of the 
small area.

Although the shallow feature map in the pretraining net-
work contained more noise, it also retained more detailed 
information such as position, shape, and texture in the fault 
area, and had higher resolution. Although deep-feature 
maps have stronger semantic discrimination than that of 
shallow feature maps, features obtained by the image after 

layer-by-layer convolution are more abstract, resolution is 
lower, and detailed information of the fault area is ignored. 
If deep and shallow features can be effectively combined in 
the model’s pretraining network, combined with global and 
local features, that is, multiview feature fusion can enhance 
global and local more details and local information of the 
fault region contained in the shallow layer of the network, 
which can help the model to better detect a fault area.

In order to improve network performance, one can con-
sider fusing the first few layers of feature maps of the shal-
low pretraining network and the last layer of conv5 feature 
maps, and then putting them into the RoI pooling layer. In 
the experiment stage, this paper used the concat method to 
fuse features of different fields of view. As shown in Fig. 3, 
concat means to directly fuse the feature map along the 
dimension of the number of channels. This fusion method 
can add feature maps that describe the details of the fault 
area. During the experiment, the best combination was found 
by comparison: conv3 + conv4 + conv5.

2.2 � Tucker tensor decomposition

Compared with the feature map output by the conv5 layer, 
the number of channels in the feature map after fusion 
increased. In order to share the fully connected layer of the 
pretraining network to reduce model complexity, the number 
of channels in the feature map should be reduced to be the 
same as that before fusion. The method in this paper added 
a convolutional layer after fusion to reduce the number of 
channels in the feature map. However, because this layer is 
new, there are no pretraining parameters to initialize. If the 
parameters of this convolutional layer are initialized in a 
random way, the instability of the network may increase, and 
subsequent parameter updates in training require more time. 
Therefore, in this paper, we directly decomposed the feature 
tensor after fusion to reduce the dimension.

At present, there are two mainstream tensor decompo-
sition models, namely, the CANDECOMP/ PARAFAC 
model (CP decomposition) [9, 10] and the Tucker model 
[11, 12]. The result of CP decomposition is to decom-
pose an N-order tensor into the sum of R tensors of rank 
1, and determine the size of R according to the needs of 
the decomposition. Tucker tensor decomposition decom-
poses an N-order tensor into a product of a kernel tensor 
and N-factor matrices, where the kernel tensor represents 

Fig.2   Feature maps of different layers in VGG16

Fig.3   Concat fusion
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the main features of the original tensor, and the factor 
matrices represent the importance of each feature in the 
kernel tensor. From this perspective, CP decomposition 
and Tucker tensor decomposition can be regarded as the 
higher-order expansion of matrix singular-value decom-
position (SVD) and principal-component analysis (PCA) 
[13]. In this paper, we used the Tucker model for dimen-
sionality reduction of image-fusion features, performed 
Tucker decomposition on the fusion feature map tensor, 
and took the obtained kernel tensor as the input in the next 
stage. Moreover, the decomposition process showed that 
Tucker-1 decomposition used in this study was equivalent 
to 1 × 1 convolution, so the number of network parameters 
could be reduced on the basis of precise feature extraction.

The process of Tucker decomposition is shown in 
Fig. 4.

X ∈ ℝ
H×W×S represents a third-order tensor of size 

H × W × S. The result of the Tucker decomposition of X is:

where K represents the third-order kernel tensor of R1 × R2 
× R3. Similar to the principal-component factor in principal-
component analysis (PCA), it actually represents the main 
feature of original tensors A, B, and C, respectively, repre-
senting factor matrices of size H × R1, W × R2, and S × R3. 
Factor matrices are usually orthogonal, indicating the impor-
tance degree of each feature in the kernel tensor. When R1, 
R2, and R3 values are less than H, W, and S values, the kernel 
tensor can be used as the result of the compression of origi-
nal tensor X. The × n symbol in Formula (2) means matrix-
ing and multiplying on the n-th dimension of the tensor:

where X(n) means matrixing the tensor in the n-th dimension. 
Matrixing refers to the process of rearranging the elements 
of a tensor to obtain a matrix. For third-order tensor X, it 
is matrixed at the third-order to obtain matrix X(3), and the 
expansion process is shown in the following Fig. 5.

(1)X = K×1A×2B×3C

(2)X
h,w,s =

R1
∑

r1=1

R2
∑

r2=1

R3
∑

r3=1

K
r1,r2,r3

A
h,r1

B
w,r2

C
s,r3

(3)X×
n
U ⟺ UX(n)

The most common method for solving the third-order 
Tucker decomposition is the higher-order SVD (HOSVD) 
method [14]. This method first needs to matrix the tensor in 
each dimension; then, for each matrix X(n), it performs SVD 
decomposition, and the left singular value matrix is the cor-
responding factor matrix in this dimension. After the factor 
matrix is obtained, the kernel matrix can be determined by 
calculating K = X ×1 A

T ×2 B
T ×3 C

T . However, the HOSVD 
method generally cannot obtain a good approximate result, so 
the result is usually used as the initial value of the high-order 
orthogonal iteration (HOOI) [15]. Then, we used the HOOI 
method to solve it.

In Tucker decomposition, not every dimension must be 
decomposed, and it is possible to determine which dimen-
sions are decomposed according to needs. For example, for 
the feature map after fusion, both H and W are related to the 
spatial dimension, indicating the length and width, and usually 
have a small value, so there is no need to decompose these 
two dimensions. S represents the number of channels. Taking 
pretraining network VGG16 as an example, if output feature 
maps of the last three convolution modules are selected for 
fusion, the number of channels of resulting fusion feature map 
X is 1280, and it needs to be reduced to 512 channels. Then, 
only the third dimension needs to be decomposed:

This variant of Tucker decomposition is called Tucker-1 
decomposition. Kernel tensor K here is a tensor of size 
H × W × R3, which is feature map of the next stage of the net-
work that we want to get. When solving, some constraints are 
usually added to ensure a unique solution. The most common 
one is to add unit orthogonal constraint to the factor matrix. 
Therefore, solved factor matrix C is an orthogonal matrix, and 
the above formula can be transformed into:

(4)X = K×3C

(5)X
h,w,s =

R3
∑

r3=1

K
h,w,r3

C
s,r3

(6)K
h,w,r3

=

R3
∑

r3=1

C
T

s,r3
X
h,w,s

Fig.4   Tucker tensor decomposition
Fig. 5   Tensor matrixed in third-order
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The above formula shows that the process of obtaining 
output feature map K from input fusion feature map X is 
completely consistent with the principle of 1 × 1 convolu-
tion, which is essentially pixel-level linear reorganization 
of the input map. However, in contrast, 1 × 1 convolution 
can only reduce dimensionality, does not have the function 
of feature selection, and Tucker decomposition has more 
feature-extraction functions than 1 × 1 convolution does.

Generally, 3 × 3 convolution is used in a pretraining net-
work, and the RPN network in the whole network. If 3 × 3 
convolution is also used here, the number of parameters is 
greatly increased, and the efficiency of network training is 
reduced. Using Tucker decomposition also reduces the num-
ber of parameters and of channels in the input layer. Taking 
pretraining network VGG16 as an example, the size of the 
feature map obtained after using three-layer feature fusion 
was 1280 × H × W, namely, 1280 channels. The feature map 
had to be reduced to 512 channels to be consistent with the 
original conv5 feature map. Using Tucker tensor decompo-
sition, the number of parameters was only 1280 × 512. If a 
3 × 3 convolution operation is used, the number of involved 
parameters is (1280 × 3 × 3 + 1) × 512, which is 9 times 
the number of tensor decomposition parameters. Tucker 
tensor decomposition can not only extract tensor features 
and reduce dimensionality, but also reduce the number of 
calculated parameters, which can improve the efficiency of 
network training. Subsequent experiments also showed the 
advantages of this method. In the actual calculation process, 
factor matrix C on the dimension is solved by SVD for the 
third dimension of feature map X; then, the projection of the 
feature map tensor on the dimension was calculated, which 
was kernel tensor K. In order to ensure the uniformity of the 
network and consistency of the parameter update, convolu-
tion layer 1 × 1 was still set in the actual operation; then, the 
value of the obtained kernel tensor was used as the param-
eter to initialize the newly added convolutional layer, which 
greatly reduced training time.

2.3 � Multiview faster R‑CNN based on tensor 
decomposition

In summary, in view of the fact that some of the three types 
of faults occupy a relatively small area, and it is not easy to 
capture the detailed information of the deep field of view of 
the pretraining network, this paper enhanced global and local 
information by fusing deep- and shallow feature maps in the 
pretraining network, and then, using Tucker decomposition 
to extract the fusion feature map and the core features into 
the subsequent ROI pooling layer. The method is called the 
multiview Faster R-CNN based on Tensor decomposition 
(MV-FRCNN-TD).

The structure of the pretraining network in this method 
is shown in Fig. 6. For the five shared modules included in 

pretraining network VGG16, outputs of three convolution 
modules conv3, conv4, and conv5 were combined. Since the 
conv3 module’s output feature map was larger, a pooling layer 
needed to be added to ensure that the size of feature map was 
consistent with conv5-3. After that, L2 normalization was car-
ried out for the output feature map of each layer; then, normal-
ized results were connected together to obtain the fused-feature 
map.

In order to share the fully connected layer of VGG16, the 
feature map after fusion needed to be restored to the number of 
channels consistent with conv5. In the model, a convolutional 
layer is added after the pretraining network. The Tucker-1 
decomposition of Formula (4) was solved by the HOOI 
method to realize feature extraction of the fusion feature map. 
The obtained factor matrix was used to initialize the weight of 
the convolutional layer, and the kernel tensor obtained was the 
feature map after dimension reduction. The flowchart of this 
model is shown in Fig. 7.

The RPN network that is part of this method was consist-
ent with the RPN part of Faster R-CNN, mainly to improve 
the fast R-CNN part to detect smaller objects. After feature 
fusion, Tucker decomposition, and dimensionality reduction, 
the feature map was used as input to the RoI pooling layer 
and the RPN network. The RPN network determines whether 
the candidate region was the background or foreground, and 
performed preliminary regression on the border of the candi-
date region. Then, the feature map connected the last two fully 
connected layers, and lastly connected the layer used for object 
classification to output the probability that the candidate region 
belongs to each category, and the regression layer used for the 
fine positioning of the object’s bounding box.

3 � Numerical experiments

3.1 � Data introduction

The images used in this article were collected by the 2C sys-
tem on the section of Lanxin railway from January 2017 to 

Fig. 6   VGG16 structure diagram of feature fusion
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December 2018. According to MS COCO,1 type criteria for 
small objects in OCSs malfunction-detection image dataset 
are as follows Table 1.

In accordance with the above standards, the statistical 
results are shown in Fig. 8. A total of 245 malfunction 
images were in the pole number plates in the dataset, includ-
ing mall objects and only 12 large objects. For foreign-body 
invasions, there were 629 malfunction objects, includ-
ing 63 large objects and 377 small objects, accounting for 

59.94% of the total. For unstressed droppers, the total num-
ber of objects is 1894, of which small and medium objects 
accounted for 77.72%. Overall, the number of large objects 
in the three types of failures was relatively less, while 
small and medium objects accounted for a relatively high 
proportion.

Due to the small amount of data, images were randomly 
flipped, translated, and randomly cropped to expand the 
data set. During training, 70% of the images were randomly 
selected from the labeled dataset as training data. The train-
ing images of unstressed droppers, foreign-body invasions, 
and malfunction of the pole number plate were 2056, 848, 
and 338, respectively. The remaining images were used as 
test data, and the number of images included in the test set 
were 441, 183, and 73, respectively.

3.2 � Evaluation of model detection effect

In the experiment, the configuration of the computer we used 
is: CPU main frequency, 3.0 GHz; The memory, 128 GB; 
GPU, NVIDIA Tesla P100 with 16 GB display memory. 
When training, we take batch size = 20, LR = 0.003. And the 
used epochs were 3370, 20,560, 4160 for the three malfunc-
tions of pole number-plate malfunctions, unstressed drop-
pers, and foreign-body invasions, respectively.

3.2.1 � Training time comparison

Figure 9 compares the training times of using Tucker decom-
position and 3 × 3 convolution to reduce the fusion feature 
dimension. On the right side of the figure, we can see that 
training time was 817.6, 4791.1, and 1907.3 s by using 3 × 3 
convolution for the three malfunctions of pole number-plate 

Fig. 7   Multiview Faster R-CNN model based on tensor decomposition

Table 1   Type criteria of small, medium, and large objects

Type Minimal area Maximal area

Small object 0 96 × 96
Medium object 97 × 97 192 × 192
Large object 193 × 193 –

Fig. 8   Comparison of the number of three malfunction images

1  http://cocod​atase​t.org/

http://cocodataset.org/


1463Multiview deep learning based on tensor decomposition and its application in fault detection…

1 3

malfunctions, unstressed droppers, and foreign-body inva-
sions, respectively. On the left side, we can see that.

Training time was 760, 4564.3, and 1779.8 s by using 
Tucker decomposition for the three malfunctions, respec-
tively. Obviously, the reduced training times of the latter 
method were 7.04%, 4.73%, and 6.68% less than the for-
mer method, respectively. This was mainly because that the 
numbers of parameters of Tucker vector decomposition and 
using a 3 × 3 convolution operation were 1280 × 512 and 
(1280 × 3 × 3 + 1) × 512. The latter was 9 times as much as 
the former. Tucker decomposition performed dimensional-
ity reduction on the fusion feature map that was equivalent 
to a 1 × 1 convolution operation. The resulting factor matrix 
was ​​used to initialize the parameters of the convolution layer. 
This could make network converge faster than with random 
initialization. Therefore, training efficiency of using Tucker 
decomposition was improved.

3.2.2 � Miss probability comparison

In order to verify the effectiveness of the proposed method 
in the experiment of the same training set and test set, 
YOLO v3, SSD, Faster R-CNN (FRCNN) and multiview 
Faster R-CNN method based on tensor decomposition (MV-
FRCNN-TD) in the study were compared.

For the method proposed, the feature-fusion method was 
conv3 + conv4 + conv5, and other comparison methods were 
set with reference to the optimal parameters given by the 
author. The comparison results of the missed detection rate 
(MDR) are shown in Table 2. The average miss detection 
rate of the three types of malfunctions using YOLOv3, SSD, 
and FRCNN methods was 8.3%, 10.59% and 9.18%, respec-
tively. The average missed detection rate of this model was 
5.16%. In comparison, there was a significant decrease of 
37.83%, 51.27%, and 43.79%, respectively. For pole number-
plate malfunctions, the MV-FRCNN-TD model had a missed 
detection rate of only 2.74%. Of the 73 pole number-plate 
failures in the test set, only 2 were not detected, compared 
with 6 for YOLOv3, 8 for SSD, and 6 for FRCNN. The 
missed detection rate of the model dropped by 66.67%, 75%, 
and 66.67%, respectively. For the malfunction of unstressed 
droppers, the number of missed detections of this model in 
555 unstressed droppers was 38, and miss probability was 
6.85%, which was higher than that of the three other types of 
models on dropper-malfunction. Rates dropped by 25.46%, 
41.5%, and 9.51%, respectively. The miss probability of 
foreign-body-invasion malfunctions obviously dropped. The 
miss probability of the model was 5.88%, compared with 
the miss probability of 7.49%, 9.09%, and 11.76% of the 
YOLOv3, SSD, and FRCNN models, a decrease of 21.50%, 
35.31%, and 50%, respectively. In the malfunctions of 187 
foreign-body invasions in the test set, only 11 of them were 
not identified. This was slightly different from the dropper 
and pole number plates. Malfunctions such as foreign-object 
invasions are part of the normal size and small objects on 
the image, and the feature map after MV-FRCNN-TD mul-
tiview feature fusion had more detailed features. This part of 
the foreign-body with a smaller area was identified, so miss 
probability was significantly reduced.

3.2.3 � Detection accuracy comparison

The accuracy P-R(precision-recall) curves in Fig. 10, 11, 12 
show that the MV-FRCNN-TD method in this paper is much 
better than YOLOv3, SSD, and FRCNN. For three types of 
malfunctions, the method proposed has a higher recall rate.

Fig. 9   Comparison of training time using Tucker decomposition and 
3 × 3 convolution

Table 2   Miss-probability 
comparison

TP True positive; FN False negative

Method Pole number-plate mal-
functions

Unstressed droppers Foreign-body invasions

TP FN MDR TP FN MDR TP FN MDR

YOLOv3 67 6 8.22% 504 51 9.19% 173 14 7.49%
SSD 65 8 10.96% 490 65 11.71% 170 17 9.09%
FRCNN 67 6 8.22% 513 42 7.57% 165 22 11.76%
MV-FRCNN-TD 71 2 2.74% 517 38 6.85% 176 11 5.88%
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In general, the P–R curve of the unstressed dropper is 
smoother than the ones of the other two types of malfunc-
tions. As shown in Fig. 10, the most obvious contrast is at 
the beginning. This model did not have jagged jitter like 

the other three types of methods. In addition, in the P–R 
curve of pole number-plate malfunction and foreign-body 
invasion, the three remaining types of models contain more 
jagged turns than this model does. This is because there 
are fewer training and test samples for these two types of 
malfunctions. When drawing curves to set different thresh-
old points, the number of malfunctions correctly identified 
by the model and the number of malfunctions identified as 
background malfunctions increase at the same time, result-
ing in a decrease in accuracy and an increase in recall rate; 
fewer test samples make the trend change of the P–R curve 
more obviously. On the other hand, these show that the per-
formance of the model is more stable. The model in this 
paper can better cope with challenging conditions such as 
the low resolution and complex background of the object, 
and can find more malfunctions thanks to the Tucker tensor 
decomposition into volumes. The build-up layer provided 
initial parameters that enable the model to achieve a faster 
performance. Therefore, the MV-FRCNN-TD model used in 
this study has a higher recall value.

The comparisons of mean average precision (mAP) and 
F1 Score also show that the MV-FRCNN-TD method has 
significant performance improvement. As shown in Table 3, 
The mAP and F1 score of our model on the test set are 
89.61% and 93.76%, repectively. Compared with YOLOv3, 
SSD, and FRCNN, the former is improved by 3.6%, 9.75%, 
and 5.9%, respectively, and the later is increased by 4.33%, 
7.29%, 4.41%, respectively.

Obviously, MV-FRCNN-TD is more suitable for datasets 
with many small objects in the malfunction area.

The original FRCNN is better at capturing the global 
features of large and medium objects in this situation, and 
features in the deep-network are more abstract, and thus 
ignoring detailed features of small objects. MV-FRCNN-
TD enhance pixels through the multiview feature-fusion 
strategy, so that the local features of small objects extracted 
by the shallow network can be retained, and the core part of 
the fusion feature is retained by Tucker decomposition. This 
is more in line with actual application scenarios. In reality, 
due to different shooting angles and different distances, the 
size of the malfunctions in the images is different, and the 
multiview feature-fusion model can flexibly detect malfunc-
tions of various sizes.

In general, the multiview feature-fusion model proposed 
in this paper shows a good detection effect. The improve-
ment in network resolution brought by feature fusion has 
greatly improved detector performance, especially in the 
detection of small objects. Figure 13 shows the detection 
effect of the MV-FRCNN-TD method. The green box in the 
figure is the model detection result, and the red box is the 
manual annotation result. Compared with unstressed drop-
pers and pole number-plate malfunctions, the model has the 
most obvious improvement in the average detection accuracy 

Fig. 10   Accuracy rate–recall rate (P–R) curve of pole number-plate 
malfunctions

Fig. 11   P–R curve of unstressed droppers

Fig. 12   P–R curve of foreign-body invasion
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of malfunctions from foreign-body invasions. On the one 
hand, this is due to the large number of small and medium 
objects in the malfunction area invaded by foreign objects, 

accounting for 59.94%, which is the largest proportion of the 
three types of malfunctions. On the other hand, the charac-
teristics of droppers and pole number plates are relatively 

Table 3   Detection accuracy 
comparison

mAP Average detection accuracy

Method Pole number-
plate malfunc-
tions

Unstressed droppers Foreign-body invasions mAP/mean F1 score

YOLOv3 0.8757/0.9015 0.8440/0.8823 0.8752/0.9121 0.8650/0.8986
SSD 0.8072/0.8681 0.7825/0.8743 0.8599/0.8791 0.8165/0.8738
FRCNN 0.8727/0.9065 0.8622/0.9115 0.8038/0.8756 0.8462/0.8979
MV-FRCNN-TD 0.9012/0.9565 0.8862/0.9245 0.9010/0.9317 0.8961/0.9375

Fig. 13   Detection effect of MV-
FRCNN-TD model
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simple, while foreign objects have different shapes. There-
fore, the feature fusion of multiple fields of view retain more 
detailed features of the malfunction area, which play a key 
role in reducing miss probability and improving average 
detection accuracy.

4 � Conclusion

This paper focuses on the characteristics of the three faults 
of high-speed railway OCSs, namely, unstressed droppers, 
foreign-body invasions, and pole number-plate malfunc-
tions. We find that there are many abnormal images that 
occupy a relatively small area in the original image, it is 
not easy to capture their features, and using only features 
of the deep field of view is prone to missed detection. From 
the perspective of multiview feature fusion, a more accurate 
detection method of Faster R-CNN is proposed by fusing 
features extracted from the shallow and deep layers of the 
feature-extraction-network part of Faster R-CNN to enhance 
detailed features of the object. Moreover, in order to reduce 
model complexity, Tucker tensor decomposition is adopted 
to extract features of the fused-feature map, and thus reduc-
ing the training time of the model.

The most important think in system-fault detection is 
detection accuracy, and it is better to have a number of 
wrong detections rather than missing detections, especially 
for a system that threatens the national economy and peo-
ple’s livelihood once a fault occurs in the overhead contact 
system. This research is based on improving classical object-
detection algorithm Faster R-CNN. Feature fusion effectively 
retain the detailed information of the fault area in the origi-
nal image, and Tucker decomposition accurately extracts its 
core features. Experiments show that the improved method 
has a significant effect on reducing miss probability and pro-
moting detection accuracy. Compared with object-detection 
methods YOLOv3, SSD, and the original Faster R-CNN, 
the average miss probability of the improved Faster R-CNN 
model is decreased by 37.83%, 51.27%, and 43.79%, respec-
tively, and average detection accuracy is increased by 3.6%, 
9.75%, and 5.9%, respectively. In particular, in the case of 
dense droppers, the algorithm could still effectively detect 
droppers that are not stressed, and accurately detect the posi-
tions of pole number-plate malfunctions and foreign-body 
invasions, which has important reference significance for 
the detection of other types of faults in overhead contact 
systems.
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