
The Visual Computer (2022) 38:1151–1164
https://doi.org/10.1007/s00371-021-02074-w

ORIG INAL ART ICLE

Facial expression GAN for voice-driven face generation

Zheng Fang1 · Zhen Liu1 · Tingting Liu2 · Chih-Chieh Hung3 · Jiangjian Xiao4 · Guangjin Feng1

Accepted: 25 January 2021 / Published online: 22 February 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021

Abstract
Cross-modal audiovisual generation is an emerging topic in machine learning. In particular, voice-to-face is one of the
most popular research branches, which aims to generate faces from human voice clips. Most recent works in voice-to-face
generation do not take emotion information into account. However, it could be widely observed that expressions are the key
face attributes to reconstruct sharper and more discriminative faces. In this paper, we propose a novel facial expression GAN
(FE-GAN) which takes emotion and expressions into account in face generation. To achieve this goal, we use two auxiliary
classifiers to learn more emotion and identity representations between different modalities, respectively. Moreover, we design
two discriminators, each focusing on a different aspect of the faces, to measure identity and emotion semantic relevance in
generating. The triple loss is designed to make FE-GAN robust to voice variety and keep balance in two different modalities.
Extensive experiments are conducted on two real datasets to demonstrate the effectiveness of FE-GAN in both quantitative
and qualitative perspectives. The experimental results show that FE-GAN can not only outperform the previous models in
terms of FID and IS values, but also generate more realistic face images compared with previous models.

Keywords Expression reconstruction · Cross-model generation · Voice-to-face generation · Generative adversarial networks

1 Introduction

Cross-modal generation aims to generate data from one
modality conditioned on another correlated modality, which
has attracted a lot of research efforts. Early researches on
cross-model generation usually generate low-dimensional
data from high-dimensional data, such as voice-to-text [1,2]
and image-to-text [3,4]. Recently, thanks to the rapid growth
of generative adversarial networks (GANs) [5] and with
increase in multi-modal datasets [6], it is possible to generate
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complex data from low-dimensional data, such as text-to-
image [7,8] and audio-to-image [9,10]. Note that the audio
and visual information are the most important perceptual
modalities in our daily life. We believe that the research
on cross-modal audiovisual generation can endow machines
with humanized capabilities of imagination and interpre-
tation. Here, we leverage the voices to directly generate
speakers’ facial images by GANs.

Many previous works have been done in solving the
audio–image generation problem.Duarte et al. proposed con-
ditional GANs (cGANs) [11] to directly generate face from
voice [12]. Later,Wen et al. used an auxiliary classifierGANs
(AC-GANs) [15] to directly generate face [14]. Oh et al.
leveraged the encoder–decoder network to learn the cross-
modal visual-audio mutual relationship, then generated the
face based on the corresponding static face and voice [13].
However, generated faces from studies above are usuallywith
certain unsatisfactory artifacts andmissing parts. The reasons
are twofold. First, face generation in previous works usu-
ally considers identity information of target faces but leave
alone the corresponding facial expressions. It canbeobserved
that one’s expression can usually change with different emo-
tions when she/he talks to others. Emotion would be a key
to construct high-quality facial image. Second, we find that
GANs with a single discriminator are not able for learning
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the complexmapping relationships between audio and visual
modalities. That is, a constraint that only allows the generated
images to be on the onemanifold of the truth data distribution.
To improve the quality of faces generated, it is a promising
way to have multiple discriminators, rather than only one, to
help the generator learn frommore fine-grained face features
extracted from audio.

In this paper, we propose a novel model, facial expression
GANs (abbr. as FE-GAN) to generate faces by given voice
information. In a nutshell, FE-GAN considers emotion and
identity variations from face and voice simultaneously. The
existence of semantic consistency in human’s voice and face
[16,17] inspires us to adopt both identify labels and emotion
labels for model training. Specifically, more discriminators
could take the emotion and identity constraints into account
so that the generator can also retain more emotion and iden-
tity characteristics. The simplified pipeline of the proposed
method is shown in Fig. 1. The core of FE-GAN is composed
of one generator network (G-net) and two discriminator-
classifier pairs, say (C1-net, D1-net) and (C2-net, D2-net). In
the generating process, the voice encoder extracts the Fbank
features Fv from voice clip V and obtain voice embedding
Ev by V-net. Next, taking Ev as an input, generator G-net
generates the face image IG. Finally, the two discriminators
D1-net and D2-net are used to distinguish whether or not a
face image is real or fake, meanwhile, the auxiliary classi-
fier C1-net and C2-net predict its identity and emotion. This
design of FE-GAN can not only learn one-to-one mapping
between faces and voices but also capture various emotions
of the target person that are correlated with the input speech.
Our contributions can be summarized as follows:

(1) We propose an effective GAN model (FE-GAN)
for cross-modal voice-to-face generation. It explores the
emotional and identity relationship in cross-modal voice-
to-image task and generates sharper facial images with
expression. (2) We adopt two discriminators and two clas-
sifiers in GANs. They help the model generate more realistic
images, and transfer the label information to generator.
Besides, we explore the multiply discriminators and clas-
sifiers optimization problem, a triple loss is presented to
optimize theFE-GAN. (3)Weconduct qualitative andquanti-
tative experiments onRAVDESS [18] and eNTERFACE [19]
dataset, the results show that FE-GAN outperforms previous
GANsmethods [12,14] and achieves the best performance in
the series metrics with remarkable improvements. The rest
of the paper is organized as follows. Section 2 lists the pre-
vious relevant research works. Section 3 gives the technical
detail of the proposed approach FE-GAN. Section 4 reports
the experimental results. Section 5 concludes this paper.

Fig. 1 The simplified pipeline of the proposed method. Our method
has divided into two parts: voice encoder (gray dashed box) and FE-
GAN (blue dashed box). (1) Voice encoder consists of VAD (voice
activity detection) and V-net, which takes Fbank features Fv as input,
and outputs embedding features Ev. (2) FE-GAN consists of five parts:
G-net, C1-net, C2-net, D1-net and D2-net. The FE-GAN is used to
transfer embedding Ev into face image IG, then to predict its sources
(true or fake) and categories (emotion and identity)

2 Related work

2.1 Generative adversarial networks

GANs [5] is an excellent game theory architecture. It is
easily assembled with others backbone networks and mech-
anisms. A vanilla GANs [5] consists of two neural networks:
a generator and discriminator. Given a random sample with
noise, the generator attempts to generate image for fooling
the discriminator. Then, the discriminator is responsible for
distinguishing generated image and real image. In order to
address the training instability and get high-quality gener-
ated results, many variants of GAN have been developed.
For example, conditional GANs (cGANs) [11] introduces
a conditional constraint to get more attribute information,
the condition could be class labels, object attributes or fea-
ture embeddings. However, it will bring additional noise
to network and increases extra burdens to training process.
Compared to cGANs, auxiliary classifier GANs (AC-GANs)
[15] leverage an additional auxiliary classifier to assist in
supervising the learning process, which is share weights
with discriminator and can help GANS to generate sharper
images. Besides, dual discriminator GANs (D2GANs) [20]
and generative multi-adversarial networks (GMANs) [21],
which usemultiple discriminators to improve generation per-
formance, extend GANs architecture.

Recently, many cross-modal methods use GANs and their
variants to generate face from voice [12–14,22–25]. Inspired
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by the above success of GANs in cross-modal generation
task, we establish our FE-GAN model based on AC-GANs
[15] and D2GANs [20]. Different from the two GANs,
we employ two discriminator and corresponding classifiers
to guide the generator for producing photo-realistic facial
images.

2.2 Audio representations selection and extraction

In human interaction, voice contains various emotions and
identity information, which conveyed by linguistic informa-
tion (e.g., word, sentence and language meaning) [26] and
prosodic information (e.g., voice pitch, tempo, loudness and
intonation) [27]. The linguistic contents are dynamic varia-
tion and highly dependent on word dictionaries and language
model [26,28]. However, it is unreliable and difficult to infer
speaker’s emotion and identity state by linguistic features
[29]. Compared to linguistic information, the prosodic infor-
mation are global-level and they cannot describe the dynamic
variation in voice [30]. Thus, we decide to learn audio repre-
sentations from speech prosody, and transfer the emotional
and identity knowledge into face images.

The quality of audio representations influences the results
of generation methods. Most audio-related methods involve
the analysis of a speech representations using either hand-
crafted prosody features (e.g., Mel Frequency Cepstral
Coefficients (MFCCs), Perceptual Linear Prediction (PLP),
Spectrograms, Fbank and Fourier transforms), or through a
neural network which indirectly learns high-level represen-
tations. Compared to these hand-crafted methods [31,32],
the convolutional neural networks (CNNs) are enabled to
learn robust high-dimensional features, which achieve high
accuracy in emotion and identity classification [30,33,34].
Therefore, we also use CNNs as audio feature extractors (V-
net) to extract emotion and identity information fromprosody
features. Our experiments prove that CNNs are able to learn
temporal filters across features and distill an entire utterance
down into a static representation by fully connected layer to
model.

2.3 Audio-to-visual generation

Many methods have been proposed to reconstruct visual
information from different types of audio signals. Existing
studies in audio-to-visual generationmainly synthesize a spe-
cific talking face from an audio clip and a still image. For
example, Chung et al. [23] use facial landmarks and voice
clip to synthesize a talking face video by an encoder–decoder
CNNs model. Chen et al. [22] design a cascade GANs com-
bined RNN to learn joint features from voice clip and facial
landmarks to generate talking face video on the features. Fur-
thermore, Vougioukas et al. [24] and Yi et al. [35] consider

facial expressions in generation. They adopt GANs to syn-
thesize a talking face video from voice and image.

On the other hand, somemethods try to generate lip shapes
from voice to synthesize a specific identity face with lip
shape. Suwajanakorn et al. [36] and Jalalifar et al. [37] use the
long-short termmemory (LSTM) network to generate talking
mouth features from voice to synthesize a talking video of
Obama conditioned on these landmarks. To improve the qual-
ity of synthesis lip, Sadoughi and Busso [38] propose cGANs
to learn emotion features from the speech, and generate lip
animation with different expressions. However, these meth-
ods need to parametrize the reconstructed facemodel a priori,
this often requires post-processing using computer graph-
ics techniques to produce realistic albeit subject-dependent
results.

There are very few works try to leverage audio to directly
generate facial image, which is different from the above-
mentionedmethods using both audio and visualmodalities as
inputs. Existingmethods onvoice-to-face generation [12–14]
use CNNs to extract embedding features from input voice,
then the feature is feed into the generator or decoder to gener-
ate corresponding images. Moreover, some works generate
images condition on music directly [10,39]. To overcome
shortcomings of the conventional cross-modal GANs model
and generate more realistic face, we introduce the emotion
to our facial expression GAN (FE-GAN) and perform voice-
to-face generation.

3 Proposedmethods

3.1 Overview of V-net and FE-GAN

This section gives the detailed architecture of V-net and FE-
GAN, as shown in Fig. 2. V-net is a standard CNNs with
normalization, which learns a voice embedding from speech
prosody feature. FE-GAN is composed of G-net (which gen-
erates a face image from a voice embedding), D1-net with
C1-net, and D2-net with C2-net (two pairs of a discrimina-
tor with its classifier to identify whether a face image is true
from identity and emotion perspectives, respectively).

After extracting speakers’ voice and face from videos, we
can obtain the training dataset tuples of Fv, IT , lve, lvi, lfe,
lfi, where Fv are the Fbank features extracted from speakers’
voice, IT is the face image, and lxy is the label of y based on
attribute x where x can be v (voice) or f (face) and y can
be i (identity) or e (emotion). Given the identity label lvi and
the Fbank feature Fv, we firstly pre-train V-net to classify
a person through her voice. After pre-training of V-net, the
voice embeddings Ev of each voice can be extracted.

Subsequently, given a voice embedding Ev with Gaus-
sian noise Ng, G-net is trained to generate the target face
IG. Concurrently, we use the true face IT with labels (lfi, lfe)
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Fig. 2 The detailed architecture of V-net and FE-GAN. The symbol
+ represents concatenation operation; the / represents OR operation
chooses the corresponding labels, and the label symbol lfe, lfi, lvi, lve
(yellow blocks) represent face emotion, face identity, voice emotion and
voice identity, respectively; IT and IG (gray blocks) represent real face

from dataset and fake face fromG-net, respectively; blue line and green
dotted line denote forward and backward propagation paths, respec-
tively. The dimensions of input and output are denoted on top of the
blocks. Besides, the loss equations LG, LD1, LD2, LC1, LC2 (green
blocks) and other symbols are described in the rest of Sect. 3

and fake faces IG with labels (lve, lvi) to train the discrimi-
nators D1-net and D2-net, with the auxiliary network C1-net
and C2-net. In this way, D1-net and D2-net are trained to
distinguish input face image IT or IG is true or fake, respec-
tively; C1-net and C2-net are trained to classify the emotion
and identify labels of input face, respectively. Besides, the
proposed triple loss combining loss equations from the gen-
erator, the discriminators and the classifiers are designed to
optimize FE-GAN.

3.2 Pre-processing andV-net

Wefirstly use voice activity detection (VAD)module [40] for
original voice to remove the silent frames (e.g., in RAVDESS
datasets, the average duration time of the original voice is
3.6 s. After removing silent parts, it is shortened into 2.4
s.). Then, the voice clips are resampled at 32 kHz and a sin-
gle audio channel is preserved. Next, we repeat the audio
clips 3 4 times and eliminate the redundancy so that they
all become 10 s long. Furthermore, Fbank features (Fv),
MFCC and Spectrogram are calculated by fast Fourier trans-
form with window length of 33 ms (milliseconds), and a hop
length is 16 ms. In addition, we use the face detector based
on Resnet-18 in Dlib [41] to detect the face regions from
video, and resize them to 128∼128 pixels. To augment the
training data, we use random cropping in audio features and
left-right flipping in image, the cropping length is 300–800
ms.

Our V-net aim to classify features Fv into different iden-
tity categories and extract voice embedding features Ev.

V-net takes 64 × T (frequency × time) dimensional Fv
as input, and outputs 1 × 128 dimensional features Ev.
The top row of Fig. 2 shows the network architecture of
V-net where there are 5 one-dimensional convolutional lay-
ers 1D-Conv1, 1D-Conv2, . . ., and 1D-Conv5 with kernel
size 3, stride 2 and padding 1 and a batch normaliza-
tion (BN) operation is followed with Leaky-ReLU as the
activation function. After the 5th convolutional layers, the
temporal channels of Fv have been decimated to 256. Next,
we apply the average 1D pooling layer along the temporal
dimension. This allows us to efficiently aggregate informa-
tion over time and makes the model applicable to input
speech of varying duration. By the 1D pooling layer, V-
net compresses features Ev to 1× 128 dimensions. Besides,
cross-entropy loss with softmax function is used to train V-
net.

3.3 G-net

G-net will learn the emotion and identity mapping between
voice embeddings and generated images so that it can gener-
ate more realistic face images to deceive discriminators. The
architecture of G-net is shown in the middle row in Fig. 2.
First of all, the voice embedding Ev is concatenated with
1× 128 dimensional noise Ng and this concatenated embed-
ding is mapped to 1× 1× 128 by two fully connected layers
(FC1, FC2) with BN operation and ReLU function. Then,
we use 6 two-dimensional transposed convolution layers (Tr-
Conv1 6) to upsample to 3×128×128 dimensional IG. Each
layer has kernel size 4, stride 2 and padding 1 followed by
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BN and ReLU. Apart from the first layer (kernel size 4, stride
1 and padding 0) and the last layer (kernel size 1, stride 1 and
padding 0). The number of channels in transposed layers is
1024-512-256-128-64-32. To improve the generative capac-
ity of G-net, we add a dropout strategy and Tanh activation
function inspired by Wasserstein GANs [42].

3.4 D-net and C-net

The original AC-GANs conducts backpropagation mainly
determined by one discriminator and one classifier. One dis-
criminator only judges the images from the one perspective,
but not the different semantic perspectives. Likewise, one
classifier is not able to solve multi-label consistency prob-
lem. In the paper, we argue that corresponding voice and
face can match with the two types semantic label. Therefore,
apart fromdistinguishing real or fake identity attributes of the
speaker fromD1-net, we also distinguish real or fake emotion
attributes by D2-net. To further control the label consistency
in generating, we use two corresponding classifiers C1-net
and C2-net to make sure the generated faces belong to the
same label with input audios.

D1-net and D2-net are designed to discriminate whether
the input image is real face IT or fake IG. In this way,
the fake label and true label are, respectively, couple with
IG and IT , then input them into D1-net and D2-net to get
two scores. The two discriminators architecture is shown in
bottom row in Fig. 2. They both have 6 two-dimensional
convolution layers. Each layer is only followed by a Leaky-
ReLU function. The number of channels in convolution
layers is inverse of G-net that is 32-64-128-256-512-1024,
and the other parameters like kernel size, stride are also
inverse. Finally, we apply a FC7 with 1 channel and sig-
moid activation function to obtain a score as the output.
Besides, our discriminators base on DCGANs [43] archi-
tecture.

C1-net is emotion classifier that helps achieve expression
reconstruction of the speakers. And the C2-net is identity
classifier that ensures the speakers’ facial identity. In other
words, the emotional category of IG and corresponding voice
emotion label Lve should keep consistent, and face emotion
label Lfe is consistent with the category of IT . In addition,
C1-net and C2-net share weights with the convolution lay-
ers in D1-net and D2-net, respectively. The architectures of
the classifiers are similar to D1-net and D2-net, as shown
in bottom row in Fig. 2, they also consist of the 6 two-
dimensional convolution layers followed by Leaky-ReLU
functions, a FC7 and softmax function. The FC7 of the two
classifiers have i and m channels, respectively (i denotes
the number of speakers, and m denotes voice emotion cate-
gories).

3.5 Triple loss

Our triple loss is composed of three parts: The G-net loss
LG, two discriminator losses LD1 and LD2, and two clas-
sifier losses LC1 and LC2. The generator and discriminator
losses are both designed to reduce the differences between
true face IT and generated face IG. The classifier losses
target to guarantee the semantic consistency, which can con-
trol the generated faces in the specific class domains. Here,
we use these losses to optimize the different parts of FE-
GAN, the backpropagating paths of these losses are shown
in Fig. 2.

First, we adopt the cross-entropy loss with softmax acti-
vation as losses of two classifiers. Here, the loss equations of
LC1 and LC2 are defined as:

LC1 = −
n∑

j=1

p
(
l jfi

)
log

(
p

(
l jfi (C1, IT )

))

−
n∑

j=1

p
(
l jvi

)
log

(
p

(
l jvi (C1, IG)

))
(1)

where p(l) denotes the probability of the label l, l jfi and l jvi
denotes the j-th face and voice identity labels, respectively;
l jfi(C1, IT ) and l jvi(C1, IG) denotes that the predicted label by
C1-net given the true and generated faces are the j-th face
identify label, respectively; n denotes the numbers of identity
categories.

LC2 = −
m∑

j=1

p
(
l jfe

)
log

(
p

(
l jfe (C2, IT )

))

−
m∑

j=1

p
(
l jve

)
log

(
p

(
l jve (C2, IG)

))
(2)

where p(l) denotes the probability of the label l, l jfe and l jve
denotes the j-th face and voice emotion labels, respectively;
l jfe(C2, IT ) and l jfe(C2, IG) denotes that the predicted label by
C2-net given the true and generated faces are the j-th emo-
tion label, respectively; m denotes the numbers of emotion
categories.

Then, the generator loss LG of G-net is defined as:

LG = 1

2
E

(ev,Ng)∼data
[−logD1

(
G

(
ev, Ng

))

−logD2
(
G

(
ev, Ng

))] (3)

where D1, D2 andG represent the discriminatorsD1-net,D2-
net and generator G-net, respectively; embedding feature Ev

is from V-net; G(Ev, Ng) takes Ev and a random noise Ng as
input, and generates a fake image IG, that is, G

(
ev, Ng

) =
IG; D1(G(.))is the score assigned by discriminator D1-net,
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D2(G(.)) is similar to D1 that is the score assigned by D2-
net, e.g., D1(IT ) is the score from D1-net given a real image
IT .

Meanwhile, the two discriminators loss LD1 and LD2 are
formulated as:

LDi=1,2 = E(IT )∼data
[
log (Di (IT ))

]

+ E(ev,Ng)∼data
[
log

(
1 − Di

(
G

(
Ev, Ng

)))]
.

(4)

Finally, we implement cross-entropy loss with sigmoid
function as loss functions LG, LD1and LD2, and our triple
loss L triple is a combination of the above four losses:

arg min{G,C1,C2} max{D1,D2} L triple = LG + λ1LD1

+λ2LD2 + LC1 + LC2

(5)

where λ1 and λ2 are the hyper-parameters to control the rel-
ative weight of LD1 and LD2, respectively. In triple loss, the
generator learns to minimize the score that can obtained by
the generated IG, then the two discriminators learn to give
higher score to the real images IT and give lower score to
the generated images IG to maximize LD1 and LD2. Besides,
the two classifiers need to minimize LC1 and LC2 between
the predicted label from IG or IT and the target emotion and
identity label.

Note that the proposed triple loss is different from the loss
in Triangle GANs (Δ-GANs) [44] and Triple GANs [45],
which adopts their triple loss between the input image and
the reconstruction image in the image space. In this paper, we
employ the two different modalities triple loss to optimize
our FE-GAN. In addition, FE-GAN is trained in a semi-
supervised manner. The generator and the discriminators are
trained iteratively. That is, the generator is fixed, and two
discriminators and two classifiers are updated once. Then,
we fix the discriminator, and update the parameters of the
generator.

4 Experiments

4.1 Datasets and settings

Tovalidate the performance of FE-GANinvoice-to-face gen-
eration task, our experiments are run on two multi-modal
datasets: RAVDESS [18] and eNTERFACE [18]. They are
collected in lab-controlled environments where the speak-
ers are asked to read the given sentences with certain voice
emotions and facial expressions. RAVDESS consists of 1440
clips, which are expressed by 24 actors with 8 emotion
categories. eNTERFACE contains 1166 clips, which are
expressed by 43 speakers with 6 emotion categories. Table 1
summarizes the details of the datasets used in our work.

Our model is implemented in PyTorch and trained on
Nvidia GeForce RTX 2080ti. V-net and FE-GAN are trained
separately. First, using RAVDESS [18] or eNTERFACE [19]
datasets, V-net is pre-trainedwhere SGDoptimizer is chosen,
the batch size is 64 and the initial learning rate is 0.03 which
decreases by half for every 100 epochs. Next, FE-GAN is
trained with Adam optimizer, the batch size is set to 64 and
the learning rate is 0.0002. In addition, the hyper-parameters
λ1 and λ2 in triple loss is 0.7 and 0.3, respectively.

4.2 Evaluationmetrics

To evaluate realism and variation of the generated images, we
choose Inception score (IS) [46], Fréchet Inception Distance
(FID) [47] and classification accuracy as quantitativemetrics.

IS (g) = exp
(
Ex∼gDK L

(
p

(
y
∣∣x

) ∣∣∣∣p (y)
)

(6)

where x ∼ g represents generated images from generator;
p(y) and p(y|x) are marginal label distribution and condi-
tional label distribution, respectively.

FID measures the quality of an overall generative images.
FID computes theWasserstein-2 distance between the gener-
ated images and the real images in the feature space from by
a pre-trained Inception-v3 network [48]. The FID is defined
as follows:

F I D (x, g) = ∥∥μx − μg
∥∥2
2

+Tr

⎛

⎝
∑

x

+
∑

g

−2

(
∑

x

∑

g

) 1
2
⎞

⎠ (7)

where (μx , μg) and (
∑

x ,
∑

g) are the means and covari-
ances of the images from the true dataset distribution and
generator’s learned distribution, respectively. The authors of
FID [47] shows that FID is consistent with human judgment
and more robust to noise than IS.

In our experiments, a lower IS value indicates that the
model can produce the images that are less variety and not
associated with voice features; a higher IS indicates that the
model falls into mode collapse and the images have blurry
parts. Thus, the reasonable IS of models is similar to the
datasets. FID is a more confident and comprehensive met-
ric. A lower FID value means the generated images are
closer to the distribution of a dataset. In addition, to evaluate
the model’s performance regarding the identity and emotion
preservation, we compute the emotion and identity classi-
fication accuracy by VGG-Face network [49]. The way to
obtain accuracy is that the VGG-Face are pre-trained on
RAVDESS or eNTERFACE dataset, and then we use the
pre-trained VGG-Face on our generated results. Due to the
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Table 1 Summary of datasets’
sample numbers, duration time
and emotion categories

Datasets Speakers Emotion categories
(numbers)

Duration time (h)

RAVDESS 24(12 M, 12 F) Happy (384), angry (384),
sad (384), surprise (384),
fear (384), disgust (384),
calm (384), neutral (192)

∼ 4

eNTERFACE 43(34 M, 8 F) Happy (213), anger (217),
sad (216), surprise (216),
fear (216), disgust (216)

∼ 11

M for male, F for female

previous works [12,14] lack of the emotion in generating, we
are not able to compute emotion accuracy of their works.

4.3 Ablation experiments

Two ablation experiments are conducted on RAVDESS
dataset to (1) find which kind of audio feature is the most
suitable feature for our task, and (2) analyze the contribution
of each component of our FE-GAN.

First of all, we perform ablation experiment on different
audio features: MFCC, Fbank and Spectrogram. Specif-
ically, we report IS and FID by using the same model
and training method with audio features varied. Table 2
shows the quantitative results. Fbank can lead to the high-
est FID score (58.79) and IS score (1.71) and MFCC is
in the second place with a litter higher value FID (64.35)
and a lower IS (1.65). Compared to Fbank and MFCC,
Spectrogram performs the worst where FID score (96.16)
and IS score (1.91) are the highest IS (1.91) among all
the audio features. The reason may be threefold: (1) Spec-
trogram is too primitive so that it may include many
irrelevant emotion and identity information in audio; (2)
MFCC outperforms Spectrogram, but it only retains 13-
dimensional features that related to speech content, and
discards some information about emotion and identity; (3)
Fbank is best because it preserves more prosodic and acous-
tic information from the inputting voice. Figure 3 shows the
qualitative results. We can observe that Fbank can obtain
better generated images compared with MFCC and Spec-
trogram. In general, images generated by Fbank is sharper
and with more distinct expressions in mouth and eye.
Therefore, Fbank feature is selected in the rest of experi-
ments.

Second, we conduct an experiment to evaluate the impact
of four components in FE-GAN, say (a) C1-net, (b) C2-net,
(c) D1-net and (d) D2-net. These four components share the
same baseline (FE-GAN) but a particular part is abandoned.
That is to say, FE-GAN is running without (a) C1-net, (b)
C2-net, (c) D1-net and (d) D2-net. Table 2 shows their IS
and FID scores.

(a) Influence of C1-net: If adding C1-net into the model, it
can make a dramatic improvement in FID by 42.3% and
in IS by 12.8%. As C1-net and D1-net share weights,
the well-trained C1-net can provide the basic identity
information to D1-net so that the generated images of
different speakers are forced to keep the consistency of
identity label between voices and images.

(b) Influence of C2-net: If adding C2-net, it can lead to fur-
ther improvement in FID by 47.0% and in IS by 10.4%.
The emotion feature is a special identity feature that
relies on facial attributes, and the single C1-net has weak
representation ability to extract emotion features. Thus,
we use C2-net to learn the emotion representation from
voice. The union of C1-net and C2-net can progressively
reduce the collapse mode in training and improve the
classification accuracy of generated images.

(c) Influence of D1-net: If using D1-net, it can improve
FID by 53.8% and IS by 3.4%. The discriminator loss
LD1 provides G-net strong guidance toward the ground-
truth. Besides, C1-net shares weights with D1-net, it can
optimize G-net from point of view of the identity label
distribution. Therefore, G-net knows the way to learn
identity semantic relevance between image and voice.

(d) Influence of D2-net: The single discriminator only dis-
cerns images by one attribution and it cannot exactly
control the content of generated images. Therefore, we
add two discriminators to improve distinguish ability
and generation performance. Extra D2-net can supply
the missing emotion information to our model. Table 3
shows that D2-net can improve 34.7% in FID and 2.3%
in IS, which means that the two discriminator performs
better than the single discriminator and further improve
image quality. The shared weights also could help to
learn better D2-net.

Finally, Fig. 4 visualizes the influence of above com-
ponents. The generated images by full model have more
fine-grained details and are more similar to the ground truth.
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Table 2 Ablation experiments:
FID and IS results of different
audio features, duration time,
noises and components on
RAVDESS dataset

Experiments Ablation items FID Score IS Score

Audio features Spectrogram 96.16 1.91

MFCCs 64.35 1.65

Fbank (our method) 58.79 1.71

Network components Without C1-net or C2-net 101.94/110.84 1.96/1.91

Without D1-net or D2-net 127.12/90.02 1.77/1.67

Fig. 3 Ablation experiments 1: generated images by different voice fea-
tures that performed on the RAVDESS dataset. GT represents ground
truth. The red circles depict the mouth regions under analysis for dif-
ferent expressions

4.4 Robustness tests

Robustness of FE-GAN is evaluated in this section. Two
robustness experiments are conducted to verify how FID and

Table 3 Robustness tests: FID and IS results of different duration times
and noises on RAVDESS dataset

Experiments Input items FID Score IS Score

Noise intensity (dB) 1 61.56 1.71

5 68.08 1.73

10 72.92 1.63

25 93.57 1.43

Audio duration time (s) 1 72.70 1.67

3 67.98 1.68

5 64.17 1.72

10 58.54 1.71

IS scores vary when different input conditions are given: (1)
the audio with different levels of noise; (2) the audio with
different time durations.

First of all, we study the effect between various levels
of noise and quality of images. On RAVDESS dataset, we
add different intensities of babble noises to voice with four
Signal Noise Ratio (SNRs): 1 dB, 5 dB, 10 dB and 25 dB.
The qualitative results for the experiments with added noise
can be seen in Figs. 5 and 6. While the noise intensity is
increased, we observe that the generated images are gradu-
ally to be blurry and unrecognizable. The reason may be that
the useful features can be destroyed by noises as no identity
and emotion information in noises. Moreover, the quantita-
tive results of this experiment are reported in Table 3. We
also observe that the FID and IS scores of various levels of
noise gradually decrease, which are also consistent with the
qualitative results.

The effect of different audio durations on FE-GAN is then
evaluated. We conduct experiment on 1 s, 3 s, 5 s and 10
s voice segments. We observe that the audio duration has
obvious effect on the quality of the reconstructions, as shown
in Figs. 5 and 6. The qualitative results show that a longer
duration of the input voice can improve the performance. For
example, when using 10 s voice segments (the 4th column in
Figs. 5 and 6), the generated faces are seen to be more clear,
recognizable and less background noises. Furthermore, the
corresponding quantitative results are also shown in Table 3.
We find that feeding longer audio segments as input leads
to considerable improvement in the FID and IS scores, that
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Fig. 4 Ablation experiments 2: generated images by four components that performed on the RAVDESS dataset. The red circle depicts the obscured
and incorrect regions under analysis for different expressions

is, reconstructed faces capture the personal attributes and
emotions better, regardless of which of the levels of noise
are added.

Besides, Figs. 5 and 6 also show qualitative comparison of
the effect of gender.We find that themodel is able to success-
fully capture the latent attributes like gender, reconstructing
the facial image with different voices.

4.5 Comparison to state-of-the-art

To verify the effectiveness of our FE-GAN model, we com-
pare with two state-of-the-art methods on RAVDESS and
eNTERFACE datasets, say AC-GAN [14] and CGANs [12].
Table 4 shows the comparison results of FID and IS, and
Table 5 shows results of identity classification accuracy.
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Fig. 5 Robustness tests with
female speakers: generated
images by voices with different
noisy conditions and duration
times that performed on the
RAVDESS dataset. The left side
represents the noise levels, and
the right side represents the
emotion types. Each row
represents the generated faces
using one of the four noisy
conditions with different
duration times

Fig. 6 Robustness tests with
male speakers: generated
images by voices with different
noisy conditions and duration
times that performed on the
RAVDESS dataset

We first conduct comparison on the RAVDESS. Table 4
shows that FE-GAN performs better than AC-GAN, which
can improve FID by 23.7% and IS by 2.8%. Compared with
CGANs method, FE-GAN also improves FID by 48.1% and
IS by 2.3%. As shown in Table 5, we make an improvement
in training accuracy of identity by 9.7%, 15.1% compared

with AC-GANs and CGANs, respectively. In the testing
dataset, FE-GAN can achieve an increase of 9.8% and 18.0%
compared with AC-GANs and CGANs. Besides, FE-GAN
always achieves the high emotion accuracy of 95.08% in
the training dataset. These quantitative results reveal that
the sufficient utilization of both identity and emotion infor-

Table 4 FID and IS results of
different methods on RAVDESS
and eNTERFACE dataset

Methods FID score IS score

RAVDESS eNTERFACE RAVDESS eNTERFACE

FE-GAN (our method) 58.79 84.58 1.71 1.89

AC-GANs [14] 77.04 94.26 1.76 1.71

CGANs [12] 113.31 129.28 1.75 1.78

Ground truth (GT) – – 1.71 1.94

Table 5 Identity classification
accuracy of different methods
on RAVDESS and
eNTERFACE dataset

Methods Training (%) Testing (%)

RAVDESS eNTERFACE RAVDESS eNTERFACE

FE-GAN (our method) 99.40 99.23 84.64 76.83

AC-GANs [14] 89.37 92.10 74.79 68.03

CGANs [12] 84.22 83.57 66.67 59.27
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Fig. 7 Generated images of different methods on the RAVDESS
dataset. The red circles depict the eye regions under analysis for differ-
ent expressions

mation from voice can significantly boost the performance
of classification task. Furthermore, the qualitative results of
RAVDESS are as shown in Fig. 7, which also based on our
FE-GAN and two competitors. It can be seen that FE-GAN
can not only generate the faces with more exactly identity
information, but also maintain the more expression informa-
tion. Our results have less noise in background and are more
realistic than without emotion samples.

To further verify the robustness of ourmethod for voice-to-
face generation, we evaluate our method on another dataset
eNTERFACEand also give the comparison results inTables 4
and 5. In Table 4, we observe that our method achieves the
highest IS (1.89) and the lowest FID (84.58), demonstrating
the effectiveness and robustness of our method. As shown in

Fig. 8 Generated images of different methods on the eNTERFACE
dataset

Table 5, FE-GAN also achieves the highest identity accuracy
in training (99.23%) and testing (76.83%). FE-GAN outper-
forms comparison methods in eNTERFACE. However, there
are still some defects in the generated images. Figure 8 shows
that the faces are blurs and artifacts, even corrupted facial
expressions around eyes, nose and mouth regions. Besides,
our method also gets the low emotion accuracy of 73.15%
on training images. This is because of the imbalanced data
distribution and large variance between same class of train-
ing data. A low-quality and bad-controlled dataset may cause
unstable generation results. Although the images in Fig. 8 are
not sharp, we can still see that the identity of the generated
images is semantically consistent with the input audio infor-
mation, which means our method has captured the semantic
attribution from speech features to some extent.

4.6 Limitation of FE-GAN

During our experiments, we found there are some generated
images which have observable failures as shown in Figs. 3, 4
and 7. The major problems include moderate artifacts (e.g.,
the texture and color of face seem unnatural), loss of facial
contours and details (e.g., tooth, hair and eyebrow region
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are obscure or missing), and minor semantic inconsistency
(e.g., compared with GT images). There are the two main
reasons for these problems: (1) The intra-personal and inter-
personal variances of emotion are large in datasets, which
make FE-GAN hard to learn these face and voice emotion
features effectively. (2) The input embedding features are
only from the single modality (voice) instead of multiple
modalities (voice and face). That is, a part of facial attributes
is irrelevant to speakers’ voices so that the generator cannot
build these mapping between voice and face. Therefore, it
is unable to generate high-quality tooth, hair, eyebrow and
head pose by only using single modality features.

5 Conclusion

Facial expression plays an important role in high-quality
face generation. Human perception is very sensitive to subtle
facial expression. Therefore, without taking emotion about
this face and voice into account, it is hard to generate shaper
and proper face images. In this paper, we propose a novel
FE-GAN to consider the emotion in voice-to-face genera-
tion problem. Specifically, audio emotion and identity are
used to directly generate face images with expressions. We
proposed FE-GAN which includes one generator and two
discriminators with their auxiliary classifiers. The core idea
is to use auxiliary classifiers to help discriminators to better
identify whether a face image is generated or true based on
the identity and emotion represented in this image. There-
fore, the generator can be trained to generate more realistic
face images. Finally, the proposed triple loss facilitates the
generalization and optimization ability of the model. Exper-
imental results show that our proposed method outperforms
the state-of-the-art approaches in both quantitative and qual-
itative perspectives.

FE-GAN has its own limitation. Firstly, the output based
on single generator has model collapse and over-fitting
problems. For example, some facial identity features and
emotional features cover up each other, resulting in a lot of
ambiguous and pixel jittering in images, and some emotion
samples are insufficient, which can affect the generation of
face images. On the other hand, the model is hard to achieve
the best balance between the two discriminators in training.
In addition, the intensity of the expressions should be con-
sidered to further improve the quality of generated images.
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