
The Visual Computer (2022) 38:1051–1063
https://doi.org/10.1007/s00371-021-02067-9

ORIG INAL ART ICLE

Class-discriminative focal loss for extreme imbalancedmulticlass
object detection towards autonomous driving

Guancheng Chen1 · Huabiao Qin1

Accepted: 7 January 2021 / Published online: 20 January 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021

Abstract
Currently, modern object detection algorithms still suffer the imbalance problems especially the foreground–background
and foreground–foreground class imbalance. Existing methods generally adopt re-sampling based on the class frequency or
re-weighting based on the category prediction probability, such as focal loss, proposed to rebalance the loss assigned to easy
negative examples and hard positive examples for single-stage detectors. However, there are still two critical issues unresolved.
In practical applications, such as autonomous driving, the class imbalance will become more extreme due to the increased
detection field and target distribution characteristics, needing a more effective way to balance the foreground–background
class imbalance. Besides, existing methods typically employ the sigmoid or softmax entropy loss for classification task, which
we believe is not capable to realize the foreground–foreground class balance. In this paper, we propose a new form of focal loss
by re-designing the re-weighting scheme that can calculate the weight according to the probability as well as widen the weight
difference of the examples. Besides, we introduce the extended focal loss tomulti-class classification task by reformulating the
standard softmax cross-entropy loss for better utilizing the discriminant difference of foreground categories, thereby yielding
a class-discriminative focal loss. Comprehensive experiments are conducted on the KITTI and BDD dataset, respectively.
The results show that our approach can easily surpass focal loss with no more training and inference time cost. Besides, when
trained with the proposed loss function, current state-of-the-art object detectors no matter in one-stage or two-stage paradigms
can achieve significant performance gains.

Keywords Object detection · Focal loss · Class-discriminative · Class imbalance

1 Introduction

Modern object detection algorithms are developed based on
convolutional neural networks (CNNs) and can be roughly
divided into two categories, two-stage detectors [13] and
one-stage detectors [24,40]. Compared with the classical
object detector, the modern object detector has evolved
from the traditional manual feature extractor (e.g. LBP [25],
Haar [19,27,38], or HOG [7,17,23]) to the semantic fea-
ture extractor based on CNN, but inherits the two-stage and
proposal-driven mechanism. As popularized in the R-CNN
framework [13], an appropriate amount of candidate target
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locations is generated in the first stage, and then finely clas-
sified into foreground or background classes in the second
stage. Since then, a series of advanced two-stage detectors
[6,12,14,18,20,33] have been proposed, and have achieved a
constant improvement in accuracy on the challenging PAS-
CAL VOC [8] and COCO benchmark [22].

Although the two-stage detector can achieve high detec-
tion accuracy, it has the disadvantage of tacking too long time
due to the need to carry out two stages of training and infer-
ence. In contrast, the one-stage detector is proposed, such as
YOLO series [1,5,30–32], SSD [10,24], RetinaNet [21] and
FCOS [36], to complete the target classification and loca-
tion regression only in a single stage. The one-stage detector
greatly reduces the inference time while achieves consid-
erable detection accuracy, and is considered to be a more
efficient and elegant target detection method especially for
autonomous driving application, which requires a high trade-
off between accuracy and speed.
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Fig. 1 Illustration of focal weight. Focal loss has introduced a scheme
of weighting the loss of the examples based on the predicted probabil-
ity, which we call focal weight. It is determined by the probability of
the ground truth class as well as the parameter γ . As γ increases, the
contribution of the easy examples decreases

While the two-stage detector and the one-stage detector
are structurally different, they are all subject to the class
imbalance problems [26]. The two-stage framework typically
applies region proposal mechanisms (e.g. Selective Search
[37], Edge Boxes [42], RPN [33], DeepMask [28,29]) to
screen a large number of candidate target locations in the
first stage. In the second stage, sampling methods like fixed
ratio of foreground to background [33] or online hard exam-
ple mining (OHEM) [35] are used to obtain a reasonable
balance between foreground and background. But for one-
stage detectors, solving the class balance problem is a bigger
challenge because it regularly adopts dense sampling of tar-
get locations, aspect ratios, and scales and all the possible
candidates need to be learned during training. To improve
the training efficiency, techniques like data enhancement
[31], hard examples mining [35,38], and loss function design
[2,16,21] have been proposed. The recent work focal loss
[21] has received rising spotlight. It tried to reduce the class
imbalance by modifying the sigmoid cross-entropy loss to
down-weight the loss assigned to the easy negative exam-
ples.

However, in practical applications, such as automatic driv-
ing, it is necessary to performmulticlass object detection in a
wide viewing angle scene. The anchormechanismwill create
more extreme imbalance in foreground and background can-
didates in high-resolution images, increasing the difficulty
of balancing the quantity of negative and positive examples.
Therefore, the formof focal loss needs a further improvement
to accommodate more imbalanced application scenarios.
On the other hand, focal loss only considers the balance
between foreground and background. There is no use of dis-
criminative information between foreground classes, which
is helpful for improving the discrimination of foreground
categories.

Fig. 2 Illustration of extended focal weight. Inspired by the original
focal weight, we proposed the extended focal weight which adap-
tively calculates the loss weight according to the probability, but further
widens the weight difference of the examples. In addition to reducing
the loss from easy examples, the loss from hard examples is attached a
higher weight

In this paper, firstly we explore the form of the weight-
ing factor in the focal loss, which we call it focal weight, as
shown in Fig. 1. It can be intuitively seen that the loss weight
of the current example is determined by the prediction prob-
ability. The greater the probability, the smaller the weight
of loss. Inspired by that, we propose the extended function
form of focal weight as shown in Fig. 2. Compared with the
focal weight, it has the same function of adaptively calculat-
ing the weight according to the probability, but can further
widen the weight difference of the examples. Secondly, we
investigate the function form of focal loss. We believe that
the original focal loss cannot dig into the constraint rela-
tionship between foreground classes in the form of sigmoid
cross-entropy loss, so we apply the extended focal weight
to softmax cross-entropy loss. Finally, we propose a new
loss function called class-discriminative focal loss aiming
for achieving the foreground–foreground class imbalance.
On the one hand, we reformulate the standard softmax cross-
entropy loss to calculate the negative logarithmic loss of the
prediction probability for both the ground-truth class and
wrong categories. On the other hand, as shown in Fig. 3,
we define a weighting factor called discriminative weight in
order to adjust the loss of the wrong prediction probability
according to its similarity with ground truth. In short, the
contributions of our research are as follows:

1. We propose a new form of focal loss, namely extended
focal loss, that is capable to further mitigate the extreme
class imbalance.

2. We propose the class-discriminative focal loss by intro-
ducing the extended focal loss tomulti-class classification
task as well as reshaping the standard softmax cross-
entropy loss, which can improve the discriminability of
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(a) (b)

(c) (d)

Fig. 3 Illustration of discriminative weight. In addition to the parameter γ , it will adjust adaptively based on the prediction probability for both the
ground-truth class pt ′ and wrong categories pi

foreground categories so as to reduce the foreground–
foreground class imbalance.

3. Our proposed loss function can easily surpass the state-
of-the-art method, focal loss, by nearly 1.1 mAP with no
more cost of training as well as inference time. It is easy
to generalize and apply to other detection models.

4. When trained with our proposed loss function, the net-
work can achieve significant performance gains, out-
performing other state-of-the-art methods on two major
datasets of autopilot detection tasks, KITTI and Berkeley
deep drive (BDD).

The rest of the paper is organized as follow. Section 2
reviews relatedworks. Section 3 details the proposedmethod.
Experimental results are given in Sect. 4, and the conclusions
are presented in Sect. 5.

Fig. 4 Histogram of target category statistics in KITTI dataset

123



1054 G. Chen, H. Qin

Fig. 5 Histogram of target category statistics in BDD dataset

2 Related works

2.1 CNN-based object detection

Since the application of CNNs, the accuracy of object detec-
tion methods have been greatly improved. Especially after
the impressive work called AlexNet done by Krizhevsky et
al. in 2012 [15], deep neural network has begun to domi-
nate the object detection and other various tasks in computer
vision.With the development of neural network structure, the
object detection algorithm is also progressing, and it is grad-
ually divided into two main directions: two-stage detectors
and one-stage detectors.

The two-stage framework, applied on classical object
detectionmethods, has a long history. The two-stage detector
has adopted this framework into CNN architectures. R-CNN
[13]was the pioneer to use theCNNas the feature extractor in
thefirst stage followingby the support vectormachine (SVM)
for the classification task in the second stage. After that, Fast
R-CNN [12] upgraded the classifier to a convolutional neural
network in the second stage largely improving the accuracy.
Faster R-CNN [33] creatively proposed the region proposal
mechanismmaking the object detection systeman entire neu-
ral network structure. Numerous extensions to this structure
have been proposed, e.g. [6,18,20].

One-stage detectors typically finish the feature extraction,
object localization, and object classification in a convolu-
tional neural network. OverFeat [34] was one of the first
one-stage detectors. SSD [10,24] and YOLO [30–32] drew
on many ideas such as anchor boxes and feature pyramid
from two-stage detectors. The recent work, RetinaNet [21],
has received great attention for its elegant architecture and
high efficiency.

2.2 Class imbalance

Imbalance problems in object detection have received signifi-
cant attention, especially class imbalance [26]. For two-stage
detectors, owing to the region proposal mechanism [33], this
problem was solved more satisfactorily by some common
sampling schemes [33,35]. While these sampling heuristic
can be applied on one-stage detectors, they are still inefficient
due to the domination of the easily classified background
examples in the training process [21]. Despite that, kinds of
hard negativemining [24,35,38] that excavate the hard exam-
ples are proposed to improve the training efficiency. Another
influential approach is to modify the loss function. Bulo et
al. [2] put forward a loss function called Loss Max-Pooling
to eliminate the influence of dataset with long tail distri-
bution on training. Liu et al. [24] integrated the so-called
α-balance into the cross-entropy loss to weight the losses
of different classes according to their frequency. Lin et al.
[21] brought up the focal loss for down-weighting the easy
negatives, while the hard examples are unaffected. Weber et
al. [39] introduced a focal loss variant called automated focal
loss, which can greatly reduce the training convergence time.
The above methods hold the opinion that examples of minor
classes should have higher losses than those of major classes
as the feature learned from the minor classes is poorer. While
the focal loss focuses addressing inliers (easy examples),
the Huber Loss [9] is designed to reduce the contribution
of outliers (hard examples). The recent work Gradient Har-
monizing Mechanism [16] also considers the harmfulness of
the very hard examples, but it bases on the statistical distribu-
tion of the gradient, not the statistical distribution of the loss.
Meanwhile, as discussed in [16], the optimal distribution of
gradient is unclear. In our work, we also take the idea of
reshaping the loss function. However, in addition to reducing
the class imbalance, our proposed class-discriminative focal
loss is also capable to utilize the interrelationship between
foreground classes so as to increase the discriminability of
foreground categories and improve the accuracy.

2.3 Objective function design

The loss function of the object detection system usually com-
bines two parts, one for object classification, the other for
object location regression. In general, softmax cross-entropy
[10,31,34] or sigmoid cross-entropy [21] is adopted for the
classification loss. In [21], the function form of focal loss
is sigmoid cross-entropy. The work presented in [3] intro-
duced focal loss to softmax cross-entropy and demonstrated
that sigmoid cross-entropy is more stabled for training with
a variety of aspect ratios and scales, while softmax cross-
entropy can get higher performance. We also talk about the
difference of them in our work, and our class-discriminative
focal loss bases on softmax cross-entropy in consideration
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of its ability to generate category prediction probability with
constraints.

For box regression loss, usually the L2 loss [30,34], the
smooth L2 loss [24] or the similar smooth L1 loss [10] are
used. The modification of regression loss is not our aim, and
we follow the RetinaNet to adopt the smooth L1 loss.

3 Class-discriminative focal loss

The focal loss introduced by [21] tried to eliminate the train-
ing inefficiency caused by the imbalanced data distribution
for one-stage detectors. However, while focal loss achieves
competitive results on the COCO benchmark [22], it has
slightly worse performance on the much more imbalanced
dataset like KITTI [11] and BDD [41]. The reason is that
in these autopilot datasets, the resolution of the images is
higher than those in COCO, which is closer to the practi-
cal applications such as automated driving, leading to more
extreme imbalance between foreground andbackgroundwith
the anchor mechanism. Besides, as discussed in [3], extend-
ing the focal loss to multi-class task works better. When the
focal loss is applied on the binary classification, the sigmoid
operation is utilized to compute the probability of the targets
with the loss computation in the loss layer. But formulti-class
classification, the softmax operation is adopted. The former
performs in greater numerical stability, while the latter per-
forms in higher accuracy. Based on the above considerations,
we extend the form of focal weight to further widen the
weight difference of the examples, forming the extended
focal loss. In this case, the hard positive examples can get
more contributions in the loss, adapting to the extreme imbal-
anced situations. In addition, we apply the extended focal
loss on multi-class classification. In contrast to the previous
work [3], we utilize the softmax operation in the loss layer
aiming to get the classes prediction probability with con-
straints. With the help of the constraint category probability,
we furthermore propose the class-discriminative focal loss
to increase the difference in loss weight between foreground
categories, which helps to improve the discriminability of
foreground categories, especially similar categories.

To clearly introduce our class-discriminative focal loss,
a normal definition of focal loss is required. Focal loss was
first applied on sigmoid cross-entropy:

CEsigmoid(p, y) =
{− log(p) if y = 1

− log(1 − p) otherwise.
(1)

where p is the prediction probability of the class, generated
by the sigmoid function:

p = σ(z) = 1

1 + exp(−z)
(2)

where z is the output of the network. For notational con-
venience, the probability that the network assigned to the
positive example or the negative example can be unified as:

pt =
{
p if y = 1
1 − p otherwise.

(3)

and the sigmoid cross-entropy can be simplified as:

CEsigmoid(p, y) = CEsigmoid(pt ) = − log(pt ) (4)

The main contribution of focal loss is the adaptive weight
w formulated as Eq. 5:

w = (1 − pt )
γ (5)

In the above, w is determined by two variable, pt and γ .
The former is the probability of the ground truth class esti-
mated by the model and the latter is a modulating parameter.
According to [21], since the range of pt is [0,1], it is used to
quantify the classification difficulty of the examples. When
pt is big enough (pt � 0.5), the corresponding example is
well-classified. In this case, 1− pt is near 0, down-weighting
the loss. In contrast, 1− pt is near 1when pt is small, keeping
the loss for the hard examples unaffected. Besides, the mod-
ulating factor γ is used for smooth adjustment. We called w

as focal weight and plotted it with γ ∈ [0, 5] as shown in
Fig. 1.

In addition to reducing the imbalance between hard exam-
ples and easy examples, focal loss also integrates a weighting
factorαt for addressing the class imbalance between negative
examples and positive examples:

αt =
{

α if y = 1
1 − α otherwise.

(6)

In the above, α is the weighting factor for positive examples
while 1 − α for negative examples, and α can be set by the
inverse class frequency.

Finally, the focal loss can be defined as:

FL(pt ) = −αt · w · CEsigmoid(pt )

= −αt (1 − pt )
γ log(pt )

(7)

3.1 Extended sigmoid focal loss

Since the class imbalance in the practical applications is even
greater, we try to improve the form of focal weight and pro-
pose the extended focal weight wextended as Eq. 8:

wextended =
⎧⎨
⎩
1 − 1

2

(
pt

1−pt

)γ

if pt < 0.5

1
2

(
1−pt
pt

)γ

if pt ≥ 0.5
(8)
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As shown in Fig. 2, wextended is a piecewise symmetric func-
tion.We assume that the example is easy to classify when the
corresponding probability is greater than 0.5, in which the
assigned loss weight should be small. (We have also experi-
mented other probabilities like 0.3, 0.4, 0.6, and 0.7, but we
found 0.5 towork best in our experiments. Further discussion
are presented in Sect. 4.3.6.)

Figure 2 shows the graph of the extended focal weight.
Intuitively, the extended focal weight reduces the loss con-
tribution from the well-classified examples just like the focal
weight. However, for difficult examples, the extended focal
weight endows them a higher loss weight compared to focal
weight. In this case, the difference between the hard examples
and easy examples is widen to adapt to the more imbalanced
situations.

With the extended focal weight, the extended focal loss
for binary classification can be formulated as:

EFL-B(pt ) = −αt · wextended · CEsigmoid(pt )

=
⎧⎨
⎩

−αt

(
1 − 1

2

(
pt

1−pt

)γ )
log(pt ) if pt < 0.5

−αt
1
2

(
1−pt
pt

)γ

log(pt ) if pt ≥ 0.5

(9)

3.2 Extended softmax focal loss

In order to investigate the relationship between the fore-
ground categories, we introduce the extended focal weight
to the softmax cross-entropy loss:

CEsoftmax(p, y) = −
∑
i=1

yi log(pi ) = − log(pt
′)

pi = pt
′(yi = 1)

(10)

In the above, p is a vector meaning the estimated probability
of the network for multiclass prediction and y is the one-hot
ground-truth label. Since y is one-hot label, we define p′

t for
the ground-truth class. The element of p is pi , generated by
the softmax operation:

pi = softmax(z) = ezi∑C
j=1 e

z j
(11)

Similar with Eq. 6, we define a weighting factor α′
t for

rebalancing the loss assigned to foreground and background:

αt
′ =

{
α′ if yi = 1
1 − α′ otherwise. (12)

But in the above α′ is for the ground-truth foreground class
while 1−α′ for the other foreground classes and background.

With the extended focal weight and the softmax cross-
entropy as well as the weighting factor α′

t , the extended focal

loss for multiclass classification can be formulated as:

EFL-M(pt
′) = −αt

′ · wextended · CEsoftmax(pt
′)

=
⎧⎨
⎩

−αt
′
(
1 − 1

2

(
pt ′

1−pt ′
)γ )

log(pt ′) if pt ′ < 0.5

−αt
′ 1
2

(
1−pt ′
pt ′

)γ

log(pt ′) if pt ′ ≥ 0.5

(13)

3.3 Class-discriminative focal loss

The traditional softmax cross-entropy loss only calculates the
negative logarithmic loss of the ground-truth class−log(pt )′
due to the one-hot label y ignoring the other prediction proba-
bility for thewrong categories pi (yi �= 1). In our opinion, the
same p′

t may be generated with different pi (yi �= 1) imply-
ing that the similarities between the predicted classes and the
ground-truth class are different, which helps to improve the
discriminability of the foreground categories. Therefore, we
reshape the original softmax cross-entropy to calculate the
negative logarithmic loss on the ground-truth class as well as
the wrong classes

∑
i −I (yi �= 1) log (1 − pi ). Besides, we

also define a weighting factor called discriminative weight
wdiscriminative:

wdiscriminative =
⎧⎨
⎩

(
pi

1−pt ′
)γ

if pt ′ < 0.5(
pi
pt ′

)γ

if pt ′ ≥ 0.5
(14)

In the above, both pi
1−p′

t
and pi

p′
t
quantify the difference

between the predicted wrong classes and the ground-truth
class. The former calculates the ratio of each wrong pre-
dicted probability to the total wrong predicted probability,
weighting for the hard examples. The latter calculates the
ratio of each wrong predicted probability to the ground-truth
probability, weighting for the easy examples. We plotted
wdiscriminative with γ ∈ [0, 2] as shown in Fig. 3.

With the reshaped softmax cross-entropy and the extended
focal weight as well as the discriminative weight, we define
our class-discriminative focal loss as Eq. 15:

CDFL(pi , pt
′) = −αt

′ I (yi = 1) wextended log
(
pt

′)
− αt

′ ∑
i

(I (yi �= 1) wdiscriminative log (1 − pi ))
(15)

4 Experiments

To compare with the original focal loss and other rebalance
strategies,we chooseRetinaNet [21] as the detection network
and adopt ResNet-50 as backbone with feature pyramid net-
work (FPN) architecture for ablation study. Furthermore, to
better demonstrate the effectiveness of our methods, we con-
ducted horizontal study by improving current state-of-the-art
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detection networks with our methods. For comprehensive
evaluation, mean of average precision (mAP) is reported.

4.1 Datasets

We present experimental results on the challenging detec-
tion tasks of KITTI and BDD since these public datasets are
collected from real application environment which has an
extreme imbalanced distribution.

KITTI consists of 7481 images, containing three object cate-
gories of car, pedestrian and cyclist. These object categories
are in a great imbalance, inwhich the ratio of the ground-truth
numbers is 17.7:2.7:1, as shown in Fig. 4. Besides, separating
pedestrian from cyclist is quite difficult for its similarities.
We divide the dataset into two parts, 90% for training and
10% for validation.

BDD has a larger amount of data, where 70K is the train-
ing set, 10K is the validation set, and 20K is the test set.
Similarly, the target category distribution in the BDD dataset
is highly uneven, and it contains ten target categories, more
than KITTI. The target quantity distribution is shown in Fig.
5. We only use the 10K validation set for algorithm research
since both the training set and validation set of BDD have
the same uneven category distributions. In the same way, we
divide the dataset into two parts, 90% for training and 10%
for validation.

4.2 Implementation details

For the models except YOLOv3 [32] and YOLOv4 [1], we
make the implementation based on the OpenMMLab Detec-
tion Toolbox [4] and make the implementation for YOLOv3
and YOLOv4 based on their pytorch implementation. All
studies are trained using the default settings in the origi-
nal code of each algorithm and adaptively conducted on an
NVIDIA GTX 1080Ti.

4.3 Ablation study on KITTI dataset

Comprehensive experiments are conducted on KITTI and
BDD dataset, respectively. In this section, we mainly show
the ablation study on KITTI dataset for hyperparameter tun-
ing and validating the performance of our proposedmethods,
since the experiments on BDD have the similar results.

4.3.1 Sigmoid focal loss

We first train the network with the original sigmoid focal
loss as the baseline and the results are presented in Table 1.
According to [21], the parameter γ cannot be set too large,
and the parameter α usually ranges from 0.25 to 0.9. As

Table 1 Varying γ for FL (w. optimal α)

γ α Car Pedestrian Cyclist mAP (%)

1.0 0.25 89.5 78.8 82.4 83.55

2.0 0.25 89.2 77.8 81.8 82.93

1.0 0.5 89.6 80.3 86.2 85.34

2.0 0.5 89.5 79.1 84.6 84.39

1.0 0.75 89.6 80.0 86.1 85.22

2.0 0.75 89.4 80.9 85.0 85.08

1.0 0.8 89.5 80.3 85.3 85.04

2.0 0.8 89.3 81.2 84.5 85.01

1.0 0.9 89.4 80.6 85.1 85.04

2.0 0.9 89.0 78.6 84.6 84.10

0 0.75 89.6 78.3 84.0 83.99

Bold values indicate the best performance

Table 2 Varying γ for EFL-B (w. optimal α)

γ α Car Pedestrian Cyclist mAP(%)

1.0 0.25 89.6 78.1 83.6 83.76

2.0 0.25 89.4 76.2 81.2 82.35

1.0 0.5 89.7 79.9 83.6 84.39

2.0 0.5 89.7 78.8 82.2 83.56

1.0 0.75 89.5 81.5 86.6 85.85

2.0 0.75 89.6 79.7 86.3 85.18

1.0 0.8 89.3 80.9 85.5 85.30

2.0 0.8 89.5 80.0 86.6 85.38

1.0 0.9 89.3 80.2 85.3 84.92

2.0 0.9 89.3 80.2 85.6 85.04

0 0.75 89.6 76.3 85.4 83.73

Bold values indicate the best performance

shown in Table 1, the original focal loss achieved a best mAP
of 85.3, in which the AP of car or cyclist is much higher than
pedestrian. The parameter setting of γ = 1.0 and α = 0.5
achieved the highest AP of car and cyclist. Besides, the AP
of pedestrian and cyclist greatly declined while the AP of car
was unaffected when γ was set as 0 and α was set as 0.75. In
this case only the α-balance strategy was implemented, indi-
cating the effectiveness of focal loss to improve the detection
accuracy of hard examples.

4.3.2 Extended sigmoid focal loss

Results using our extended sigmoid focal loss are shown in
Table 2. The extended sigmoid focal loss achieved a best
mAP of 85.9 with the parameter setting of γ = 1.0 and
α = 0.75. In this case, the APs of pedestrian and cyclist are
highest while the AP of car is high enough, showing that
hard positive examples have gotten more attention and the
loss distribution is more balanced. We can see our extended
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Table 3 Varying γ for EFL-M (w. optimal α′)

γ α′ Car Pedestrian Cyclist mAP(%)

1.0 0.25 89.5 78.4 85.0 84.29

2.0 0.25 89.4 76.3 84.0 83.26

1.0 0.5 89.6 79.7 85.7 85.03

2.0 0.5 89.5 79.5 85.1 84.70

1.0 0.75 89.5 79.9 86.9 85.44

2.0 0.75 89.5 80.0 86.3 85.25

1.0 0.8 89.4 80.7 87.1 85.72

2.0 0.8 89.4 78.5 85.3 84.37

1.0 0.9 88.9 79.3 84.9 84.36

2.0 0.9 88.9 80.7 86.3 85.29

0 0.75 89.4 76.8 87.9 84.71

Bold values indicate the best performance

Table 4 Varying γ for CDFL (w. optimal α′)

γ α′ Car Pedestrian Cyclist mAP(%)

1.0 0.25 – – – –

2.0 0.25 – – – –

1.0 0.5 89.8 78.2 82.4 83.49

2.0 0.5 90.0 79.6 86.1 85.23

1.0 0.75 89.9 81.1 87.1 86.06

2.0 0.75 89.9 80.5 86.2 85.54

1.0 0.8 89.6 82.3 87.1 86.35

2.0 0.8 89.8 79.4 87.3 85.52

1.0 0.9 88.7 81.3 85.3 85.43

2.0 0.9 88.5 80.2 87.4 85.69

0 0.75 89.8 81.2 86.9 85.95

Bold values indicate the best performance

sigmoid focal loss has slightly better performance than the
original focal loss.

4.3.3 Extended softmax focal loss

Table 3 shows the results using our extended softmax focal
loss. For multi-class classification task, the weighting fac-
tor α′ is only applied on the ground-truth class. We can see
the best mAP of the extended softmax focal loss is 85.7
with γ = 1.0 and α′ = 0.8, which is higher than that of
the original focal loss. When γ = 0, our loss is equivalent
to the softmax cross-entropy with α-balance scheme, which
outperforms the sigmoid cross entropy. When γ = 1.0 and
α′ = 0.75, the performance of the extended softmax focal
loss is almost equal to that of the extended sigmoid focal
loss. However, a small increase in α′ to 0.8 brought a con-
siderable promotion of the mAP, demonstrating the better
performance and less numerical stability of softmax cross-
entropy. We also found that the best mAP of the extended

Fig. 6 Loss curves of RetinaNet variants with various focal loss func-
tions. Models trained with original focal loss or our proposed variants
of focal loss can converge in the same amount of time

Table 5 Ratio of the loss of negative examples to positive examples

FL EFL-B EFL-M CDFL

ratio 5.60:1 5.31:1 473.25:1 260.25:1

softmax focal loss is slightly lower than that of the extended
sigmoid focal loss. We blame this deficiency on the tradi-
tional softmax cross-entropy method that only calculates the
negative logarithmic loss of the ground-truth class.

4.3.4 Class-discriminative focal loss

Results using our class-discriminative focal loss are given
in Table 4. The class-discriminative focal loss achieved a
best mAP of 86.4 with γ = 1.0 and α′ = 0.8, surpassing
the original focal loss by 1.1 mAP. The results are better than
that of the extended softmax focal loss except the results with
α′ = 0.5 and γ = 1.0, demonstrating the effectiveness of
our approach. When α′ = 0.25, the model cannot converge
due to the excessive imbalanced distribution of the examples.
However, we can easily avoid this situation by setting α′
based on the inverse class frequency. When γ = 0 and α′ =
0.75, the loss function adopting only the α-balance strategy
achieved a mAP of 86.0, which outperforms other α-balance
variants of sigmoid cross-entropy as well as softmax cross-
entropy. Focusing on the best mAP, we found that the AP of
pedestrian, the most difficult class to classify, is the highest,
and the gap of theAPs has been narroweddown.These results
show that our class-discriminative focal loss is capable to
fully exploit the relationship between foreground classes as
well as mitigate the problem of imbalanced data distribution.
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Table 6 Experiments based on
RetinaNet+CDFL with different
threshold

KITTI (%) BDD (%)

0.3 86.29 39.97

0.4 86.09 39.18

0.5 86.35 41.72

0.6 86.27 40.06

0.7 86.11 40.07

Bold values indicate the best per-
formance

4.3.5 Analysis of the various focal loss

For an in-depth understanding of the various focal loss func-
tions, we plotted the loss curves as shown in Fig. 6. We can
see that our proposed focal loss variants converge within the
same number of iterations as the original focal loss, demon-
strating its effectiveness. Besides, since the loss calculation is
not required in the inference stage, our method has the same
inference speed compared to focal loss. Furthermore, we
made statistics on the loss contribution of negative examples
and positive examples in the training process and obtained
the ratio of the loss of negative examples to positive exam-
ples as shown in Table 5. These ratios also reflect the loss
proportion of easy examples to hard examples, because most

Table 7 Performance
comparison with different
rebalance schemes on KITTI
validation set

Backbone Car Pedestrian Cyclist mAP (%)

Sigmoid + α balance (α = 0.75) ResNet-50-FPN 89.6 78.3 84.0 83.99

Softmax + α balance (α = 0.75) ResNet-50-FPN 89.4 76.8 87.9 84.71

FL (α = 0.5, γ = 1) [21] ResNet-50-FPN 89.6 80.3 86.2 85.34

GHM (M = 30) [16] ResNet-50-FPN 89.3 78.6 81.7 83.20

EFL-B (α = 0.8, γ = 1, ours) ResNet-50-FPN 89.5 81.5 86.6 85.85

CDFL (α = 0.8, γ = 1, ours) ResNet-50-FPN 89.6 82.3 87.1 86.35

Bold values indicate the best performance

Table 8 Performance comparison with different rebalance schemes on BDD validation set

Car Bus Person Bike Truck Motor Train Rider Traffic sign Traffic light mAP (%)

FL (α = 0.75, γ = 1) [21] 70.3 47.2 54.5 38.4 44.0 19.5 0.00 28.5 55.5 49.0 40.71

GHM (M = 30) [16] 71.0 40.3 53.6 31.6 44.0 21.6 0.00 32.0 54.8 48.1 39.65

EFL-B (α = 0.9, γ = 1, ours) 70.6 44.9 54.9 37.5 46.3 25.8 0.00 30.8 54.9 48.3 41.39

CDFL (α = 0.8, γ = 1, ours) 70.4 44.7 55.8 35.2 44.7 25.5 0.00 35.4 56.5 49.1 41.72

Bold values indicate the best performance

Table 9 Performance
comparison with other
state-of-the-art methods on
KITTI validation set

Backbone Car Pedestrian Cyclist mAP (%)

Two-stage methods

Faster R-CNN [33] ResNet-50 89.9 79.4 88.1 85.82

Faster R-CNN + CDFL (ours) ResNet-50 89.5 81.2 88.6 86.44

One-stage methods

SSD512 [24] VGG-16 87.0 51.6 64.2 67.60

YOLOv3 [32] DarkNet-53 89.9 75.8 75.2 80.28

GHM [16] ResNet-50-FPN 89.3 78.6 81.7 83.20

RetinaNet [21] ResNet-50-FPN 89.6 80.3 86.2 85.34

RetinaNet + EFL-B (ours) ResNet-50-FPN 89.5 81.5 86.6 85.85

RetinaNet + CDFL (ours) ResNet-50-FPN 89.6 82.3 87.1 86.35

FCOS [36] ResNet-50-FPN 89.7 79.8 87.0 85.54

FCOS + EFL-B (ours) ResNet-50-FPN 89.8 82.0 86.6 86.10

YOLOv4m [1] CSPResNext50 98.1 90.6 96.4 95.02

YOLOv4m + EFL-B (ours) CSPResNext50 98.1 89.4 96.0 94.49

Bold values indicate the best performance
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Table 10 Performance comparison with other state-of-the-art methods on BDD validation set

Car Bus Person Bike Truck Motor Train Rider Traffic sign Traffic light mAP (%)

Two-stage methods

Faster R-CNN [33] 72.1 46.9 55.3 36.7 51.2 32.0 0.00 38.5 59.0 49.7 44.14

Faster R-CNN + CDFL (ours) 72.1 51.9 54.7 37.2 49.9 33.9 0.00 36.4 58.5 48.8 44.35

One-stage methods

SSD512 [24] 58.3 19.5 16.2 10.6 28.4 0.00 0.00 0.00 32.0 24.3 18.94

YOLOv3 [32] 59.2 37.0 35.5 19.9 39.5 7.6 0.00 15.4 34.8 26.6 27.54

GHM [16] 71.0 40.3 53.6 31.6 44.0 21.6 0.00 32.0 54.8 48.1 39.65

RetinaNet [21] 70.3 47.2 54.5 38.4 44.0 19.5 0.00 28.5 55.5 49.0 40.71

RetinaNet + EFL-B (ours) 70.6 44.9 54.9 37.5 46.3 25.8 0.00 30.8 54.9 48.3 41.39

RetinaNet + CDFL (ours) 70.4 44.7 55.8 35.2 44.7 25.5 0.00 35.4 56.5 49.1 41.72

FCOS [36] 71.6 45.4 54.5 34.4 47.2 27.4 0.00 28.2 58.2 51.1 41.79

FCOS + EFL-B (ours) 72.0 46.1 54.0 36.1 47.8 26.9 0.00 32.7 59.2 51.9 42.68

YOLOv4m [1] 73.7 45.0 53.2 30.4 47.2 28.8 0.00 28.4 63.6 59.1 42.90

YOLOv4m + EFL-B (ours) 73.8 44.8 54.0 32.4 46.2 34.9 0.00 29.1 64.9 58.5 43.98

Bold values indicate the best performance

Fig. 7 Detection results of the baseline and proposed algorithms on the KITTI validation set. The first column shows the detection results of
RetinaNet, whereas the second column shows the results of RetinaNet+CDFL

of easy examples are negative examples. For sigmoid cross-
entropy, the ratio of EFL-B is 5.31:1, slightly smaller than
that of FL. For softmax cross-entropy, the ratio of CDFL is
260.25:1, greatly smaller than that of EFL-M. These results
confirm that our proposed loss functions, especially CDFL,
can better achieved the rebalancing of categories.

4.3.6 Analysis of different threshold setting

According to Focal Loss [21], the threshold of pt is defined as
0.5 without in-depth analysis. In this paper, we have further
explored the impact of different threshold setting.Based on
RetinaNet+CDFL, we implemented experiments under dif-
ferent thresholds between 0.3 to 0.7 on both KITTI and BDD
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Fig. 8 Detection results of the baseline and proposed algorithms on the BDD validation set. The first row shows the detection results of RetinaNet,
whereas the second row shows the results of RetinaNet+CDFL

datasets, and the results are shown as Table 6. The results
show that 0.5 is the best threshold, which is consistent with
focal loss [21].

4.3.7 Qualitative results

Some qualitative results are shown in Figs. 7 and 8. As shown
in the figure, our proposed method can detect more diffi-
cult targets that have high similarity such as pedestrian and
cyclist. Besides, our methodwill get more accurate bounding
box locations.

4.4 Horizontal study on BDD and KITTI datasets

In this section, experiments are conducted on both KITTI
and BDD datasets. We first compare our methods with other
rebalance schemes and the results are shown in Tables 7 and
8.TheCDFLoutperforms all current state-of-the-artmethods
for weakening the damage of the class imbalance in object
detection. In both Tables 7 and 8, it achieves a ∼ 1.1 point
mAP gap (86.4 vs. 85.3, 41.72 vs. 40.71) with the closest
competitor, focal loss [21]. Compared to GHM [16], we can
see a gain of 2–3.2 mAP based on CDFL.

Furthermore, to further verify the effectiveness of our pro-
posedmethods,we conduct thorough ablation experiments to
compare the proposed mechanisms with current state-of-the-
art detectors. ExceptRetinaNet,we also employour proposed
methods to the main stream two-stage detector Faster R-
CNN, one-stage anchor-free detector FCOS and one-stage
anchor-based detector YOLOv4. For faster analysis in our
ablation experiments, we implement the simplified version
of YOLOv4, namely YOLOv4m, which is all the same with
YOLOv4 except the model depth and width. The results
are shown in Tables 9 and 10. It shows that when trained
with the proposed mechanisms, the baseline network can
achieve significant performance gains, 1.01/1.01 for Reti-
naNet, 0.62/0.21 for Faster R-CNN, 0.56/0.89 for FCOS
in KITTI/BDD. Although YOLOv4m+EFL-B has a slight

Table 11 Performance improvement on minor classes in KITTI and
BDD validation set compared with each baseline network

KITTI(%) BDD(%)
Pedestrian Cyclist Rider Motor

Faster R-CNN + CDFL +1.8 +0.5 −2.1 +1.9

RetinaNet + EFL-B +0.8 +0.4 +2.3 +6.3

RetinaNet + CDFL +2.0 +0.9 +6.9 +6.0

FCOS + EFL-B +2.2 −0.4 +4.5 −0.5

YOLOv4m + EFL-B −1.2 −0.4 +0.7 +6.1

performance degradation in KITTI, it has a significant per-
formance improvement in BDD, which has a more serious
category imbalance. As shown in Table 11, it is obvious that
the mAPs of minor classes such as pedestrian and cyclist in
KITTI as well as rider and motor in BDD have a remarkable
improvement. These results confirm that our proposed meth-
ods, namely EFL-B and CDFL, can effectively improve the
performance of main stream one-stage as well as two-stage
detectors in imbalance application scenarios.

5 Conclusions

In this work, we analyse the limitation of existing rebal-
ance schemes for object detection in consideration of the
practical extreme imbalanced scenarios and multi-class clas-
sification task. To address this, we propose a extended focal
loss to further mitigate the foreground-background class
imbalance. Moreover, we propose the class-discriminative
focal loss by introducing the extended focal loss to multi-
class classification task and reformulating the standard
softmax cross-entropy loss, which can improve the dis-
criminability of foreground categories so as to reduce the
foreground-foreground class imbalance. Extensive experi-
ments conducted on KITTI and BDD datasets show that our
approach can easily surpass the state-of-the-art method, focal
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loss, with no more training and inference time cost. Besides,
ourmethod is easy to generalize and apply to current state-of-
the-art one-stage or two-stage object detectors and achieve
the best performance.
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