
Vol.:(0123456789)1 3

The Visual Computer (2022) 38:1027–1050 
https://doi.org/10.1007/s00371-021-02066-w

ORIGINAL ARTICLE

Color image encryption scheme based on fractional Hartley transform 
and chaotic substitution–permutation

Gurpreet Kaur1  · Rekha Agarwal2 · Vinod Patidar3 

Accepted: 6 January 2021 / Published online: 22 January 2021 
© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021

Abstract
We propose a novel opto-digital method of color image encryption which utilizes compound chaotic mappings, the real-
ity preserving fractional Hartley transformation and piecewise linear chaotic map for substitution, optical processing and 
permutation of image pixels, respectively. The image to be encrypted initially undergoes a chaos-based substitution in the 
spatial domain through the compound chaotic maps followed by a transformation to the combined time–frequency domain 
using the fractional Hartley transform. A reality preserving version of the fractional Hartley transform is used to eliminate 
the complexity associated with transform coefficients. Optical transformation of the image, in the fractional Hartley domain, 
is followed by a permutation through piecewise linear chaotic maps. Due to the intertwined application of optical transfor-
mation and chaos-based substitution and permutation processes, the proposed image encryption scheme possesses higher 
security. The input parameters (initial conditions, control parameters, and number of iterations) of chaotic maps along with 
fractional orders of the fractional Hartley transform collectively form the secret keys for encryption/decryption. The pro-
posed scheme is a lossless and symmetric encryption scheme. The level of security provided in terms of high sensitivity to 
keys, resistivity to brute-force attack, classical attacks, differential attacks, entropy attack, noise and occlusion attack along 
with the elimination of complex coefficients proves its better efficacy as compared to other similar state-of-the-art schemes.

Keywords Color image encryption · Fractional Hartley transform · Chaos · Substitution · Permutation

1 Introduction

Digital information has evolved through decades with 
extensive growth in its capabilities. In particular, the past 
10 years have seen a massive increase in usage of digital data 
accompanied with day-to-day advancing electronic devices 
such as smartphones, robotic devices, electronic readers, 
etc. Such devices ascertain fast processing, immense data 
storage and computational capabilities. The security con-
cern related to data dissemination, especially images and 
videos, is still an active area of research. As compared to 
advancements in technology, most of the security measures 

such as encryption schemes are based on methodologies 
that were followed 10 years ago. The classical methods that 
include data encryption standards (DES), advanced encryp-
tion standards (AES), blowfish, etc. are not suitable for bulk 
data [1, 2] such as image and video. This prompted research-
ers to come up with some alternative methods for bulk data 
encryption rather than relying on pure number theory.

For image encryption, there are numerous methods 
proposed in the literature that include dynamical chaos-
based ciphers [3–5] and their hybridization with finite state 
machine [6], with optimized S-Box generation [7], cascade 
coupling [8, 9], higher dimensional chaos with DNA [10], 
parallel with compressive sensing [11]. On the other hand, 
optical transforms-based image encryption is an active area 
of research due to the inherent property of high speed and 
massive parallelism. The transform orders that provide an 
extra degree of freedom to the encryption scheme serve 
as secret keys. The transform-based image encryption is 
inspired from the classical double random phase encod-
ing scheme (DRPE) [12–14] which is implemented with an 
optical setup comprising of lenses, spatial light modulators 
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(SLM) and charged coupled devices (CCD). Most commonly 
used optical image encryption schemes include Fractional 
Fourier transform (FrFT) [15–18], Fresnel transform [19, 
20], Gyrator transform [21, 22], Mellin transform [23, 24], 
Hartley transform [25–27], etc.

According to a recent survey reported by Ghadirili et al. 
[28], 32.03% of total published works on image encryption 
are based on chaos and only 8.65% are based on transform 
domain-based encryption schemes. Although the optical 
transform-based algorithms offer high speed, parallel data 
processing and thus for image encryption, provide greater 
flexibility for manipulating parameters such as wavelength, 
polarization, amplitude or phase but still their usage in prac-
tical implementation is less preferred owing to drawback 
related to complex domain outcome and smaller keyspace. 
Various researches on cryptanalysis have shown that these 
algorithms are vulnerable to chosen-plaintext attack (CPA), 
known-plaintext attack (KPA) and some heuristic attacks 
[29–31]. Chen et al. [29] suggested that a larger keyspace is 
required to avoid blind decryption. The reuse of keys should 
also be avoided [31] following a one-time pad approach.

As mentioned by Ghadirili et al. [28], chaos-based image 
encryption is preferred owing to its inherent characteristics 
of high sensitivity to seed values, randomness and ergodic-
ity. The chaotic maps are broadly classified as 1D or higher 
dimensional maps, whereas 1D maps are simple in hardware 
implementation but due to certain flaws such as the existence 
of blank windows in bifurcations, smaller keyspace, etc., 
lead to their vulnerability to potential attacks [5, 32]. On 
the other hand, higher dimensional chaotic maps are com-
plex and have larger keyspace but are not cost-effective in 
hardware implementation [33, 34]. Hybridization of chaotic 
maps is looked upon as one of the solutions to overcome 
these limitations [28, 35]. Working toward hybridization, 
there are number of schemes recently proposed [27, 36–39] 
that combine chaos with transform domain encryption. Such 
schemes are based on combination of chaos-dependent 
permutation along with a particular transform for making 
the image unintelligible where the order of their applica-
tion may vary. Either permutation is followed by transform 
or permutation is performed in the spatial domain prior to 
transform. However, such schemes are unable to provide 
enough security although their immunity to noise and data 
occlusion attacks is fairly good [39, 40]. Moreover, many 
such schemes fail to provide testimony against most of the 
classical attacks and differential attacks [29, 30, 41, 42]. 
Some of the most recently proposed schemes [18, 22, 26, 
40, 43–46] lack such analysis.

Keeping into consideration all above-stated limitations 
in the transform and chaos-based encryption schemes, 
we propose a novel opto-digital method of color image 
encryption in which the image to be encrypted is initially 

processed nonlinearly in the spatial domain with the help 
of a compound chaotic mapping followed by a reality 
preserving 2D fractional Hartley transform operation to 
convert the processed image in the optical domain. The 
transform coefficients obtained are further scrambled with 
the help of a piecewise linear chaotic map to enhance the 
security. The input parameters of chaotic maps thus used 
and the fractional-order of the fractional Hartley transform 
serve as the secret symmetric keys for encryption/decryp-
tion. The performance and security analyses prove that 
the proposed scheme is robust and efficient for the secure 
transmission of images. The proposed scheme is highly 
sensitive to the keys and has a larger keyspace and thus can 
withstand various cryptanalytic attacks. Its distinct fea-
ture of the complete elimination of the complex coefficient 
terms makes it suitable for real-time image transmission.

This paper is organized as follows: Introduction in 
Sect. 1 is followed by Sect. 2 that describes the prelimi-
naries such as fractional transform, reality preserving 
methodology, chaotic maps, compound mapping, etc., 
used in the proposed image encryption method. Section 3 
elaborates the step-by-step procedure used for the pro-
posed image encryption/decryption, and Section 4 gives 
the results of performance and security analyses of the 
proposed scheme. A comparative analysis is included in 
Sect. 5. Finally, the work is concluded in Sect. 6.

2  Preliminaries

2.1  Fractional integral transform

Fractional transforms have found many applications in the 
field of engineering and science ever since the advent [16, 
47, 48] and later for applications in optics [15, 49, 50]. 
With the evolution of the digital era, the fractional trans-
forms were studied for their digital representations [17, 
51, 52]. The ordinary Fourier transform is the generalized 
form of fractional-order transforms where the transform 
order is unity. The integer orders when replaced with frac-
tional orders expand the application area of these trans-
forms. Particularly in optical processing, these transforms 
are useful in digital holography, as means of modeling 
speckle fields propagating through apertured optical sys-
tems, in quantum optics, in optical encryption by means 
of random phase encoding (DRPE), in wave field theory 
to describe the reflection of coherent light from a non-uni-
form surface which is beneficial in meteorology. The basic 
form of the integral transform is the Fourier transform. 
Fourier is obtained following integral representations for 
f (x) and its nth integral as:
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where � depicts the frequency. Replacing ‘ n ’ by an arbitrary 
fractional number ‘ � ’ gives the fractional-order equivalent 
transform of the function f (x). The arbitrary angle � cor-
responds to the angle of rotation in the time–frequency 
domain. It is also understood as the Wigner rotation as 
explained in position–momentum paradigm [15]. The frac-
tional transform integral is said to be in purely time domain 
for � = 0 and in purely frequency domain if � = 1. Thus, 
a fractional order corresponds to the collective time–fre-
quency domain which gives an extra degree of freedom for 
its application to image encryption. The Fourier transform 
and Hartley transform are closely related [25, 52] as the 
eigenvalues of the DFT are also the eigenvalues of the Hart-
ley transform. Thus, a fractional Hartley transform can also 
be represented by a fractional Fourier transform [5, 7]. Hart-
ley transform of a function f (x) is given by

where radian frequency variable � = 2�f  and cas function is 
defined as cas(�x) = cos(�x) + sin(�x) . The fractional Hart-
ley transform of a time-domain signal is defined as:

where the fractional Hartley kernel is defined as:

In the discrete domain, the eigenvectors of discrete frac-
tional Fourier transform (DFrFT) are also the eigenvectors 
of discrete fractional Hartley transform (DFrHT). Thus, in 
terms of the Fourier transform, FrHT for a 2D signal can be 
represented as:

where F�,� corresponds to the fractional Fourier transform 
coefficient, �1 =

��

2
 , �2 =

��

2
 , ||𝜙1

||, ||𝜙2
|| < 𝜋 , (u, v) represent 

the transform domain.
Therefore, fractional Hartley transform is the real part 

of fractional Fourier transform plus the negative of the 

(1)

Dnf (x) =
1

2�∫
∞

−∞

f (�)d�∫
∞

−∞

tncos
{
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}
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(2)H(�) =
1√
2�∫

∞

−∞

f (x)cas(�x)dx

(3)H�{f (t)}(�) = ∫
∞

−∞

f (t)S�(t, �)dt

(4)
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(
1 − jcot�
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)1∕2

e
j�2

2
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e
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1

2

[(
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j
(
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)]
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)
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+

(
1 +
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[
j
(
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)]
2

)
F�,�(−u,−v)

imaginary part of the fractional Fourier transform [27]. The 
DFrHT possesses all the basic properties that are required 
in a fractional integral transform. The optical realization of 
fractional Hartley is described in [53]. However, the trans-
form coefficients of a fractional Hartley transform are com-
plex. These complex values need a holographic technique to 
record two images, one for spectrum and another for phase. 
This makes the storage and transmission less efficient due 
to double memory space requirements. Moreover, the com-
putation complexity also increases during inverse operation.

2.2  Reality preserving method

The reality preserving concept was first introduced by Ven-
turini and Duhamel [54] to overcome the complexity issue in 
the transform domain, where a reality preserving alternative 
to the complex fractional cosine and sine transforms was 
proposed. The reality preserving algorithm maintains most 
of the desired properties of the transform. As the resulting 
transform can have continuously increasing decorrelation 
power as the fractional order varies from ‘0’ to ‘1’ with an 
order of ‘0’ corresponding to no decorrelation and order 
of ‘1’ corresponding to a base transform with maximum 
decorrelation. This decorrelation power is used in various 
signal processing applications. Reality preserving can be 
employed where an orthogonal reality preserving transform 
is required and the de-correlating power is to be controlled 
by some parameter. The steps for deriving a reality preserv-
ing equivalent of FrHT are as follows:

Step 1 For a 1D FrHT of length, M : Let H
⊣,

M

2

 be a com-
plex-valued fractional Hartley transform matrix with size 
M∕2(M is even). The real input signal is represented by 
y =

{
y0, y1, y2,… yM−2, yM−1

}t from which a permutation 
matrix (P) is obtained as, y� =

{
y�
0
, y�

1
, y�

2
,… y�

M−2
y�
M−1

}t 
denoted as y� = Py,

Step 2 ŷ =
{
y�
0
+ jy M�

2

|||| y
�
1
+ y�

M

2
+1

||||… y�
M

2
−1

+ jy�
2

|||| y
� + jy�

M−1

|||
}t

 

is the complex vector built from y . Further, a transform out-
put is obtained from this complex vector such that,

Step 3 The Reality preserving equivalent of transform is 
obtained as z� =

{(
Re ẑ

)
,
(
Im ẑ

)}
;z = P−1(z�)

t , t represents 
transpose. Thus, z = P−1RPFrHT⊣Py

ẑ = FrH⊣
(
ŷ
)
.

(6)

RPFrHT⊣ =

[
Re(H⊣) −Im(H⊣)

Im(H⊣) Re(H⊣)

]
is obtained fromH⊣,M∕2 + jH⊣,M∕2.



1030 G. Kaur et al.

1 3

2.3  Chaotic maps

Dynamical chaos, observed in many nonlinear dynamical 
systems, is a deterministic, bounded, aperiodic behavior 
possessing sensitivity on initial conditions/system param-
eters. Along with the crucial feature of sensitivity on the 
initial condition, chaotic systems possess many other 
interesting and universal features like ergodicity, mixing, 
invariant density measure, positive metric entropy (KS-
entropy), etc. These features make them suitable for use in 
secure communication. During the last two–three decades, 
the use of chaotic systems has been explored extensively 
and a well-defined close relationship between chaotic 
systems and ideal cryptographic systems has emerged 
[33]. According to Shannon [55], in order to attain a per-
fect secrecy, a combination of diffusion and confusion is 
essential in a cryptographic system. For images, which 
are characterized by the bulk of data, high correlation and 
redundancies, the chaotic systems have been found most 
suitable for achieving the desired level of permutation and 
substitution [4, 34]. In the proposed image encryption, we 
use chaotic systems as the source for introducing confu-
sion and diffusion in conjunction with the optical process 
governed by the reality preserving fractional Hartley trans-
form. The purpose of using transform is to bring the data 
from the spatial domain to the combined time–frequency 
domain so that the chaos-based analysis may not be feasi-
ble for the intruder. In the following paragraph, we briefly 
describe the chaotic systems being used in the proposed 
image encryption scheme.

2.3.1  For permutation/scrambling stage: Piecewise linear 
chaotic map (PWLCM)/Zhao map

The mathematical form of PWLCM [56] used for diffusion 
in the proposed image encryption scheme is as follows:

where  �  ( 0 < 𝜀 < 1∕2) is the control/system parameter. 
If  Y ∈ [0,1] , it is known as normalized PWLCM. In this 
paper, we are using a normalized PWLCM [57] that can be 
expressed using a simple affine transformation:

(7)f (y, �) =

⎧
⎪⎪⎨⎪⎪⎩

y

�
, y ∈ [0, �)

y−�
1

2
−�
, y ∈

�
�,

1

2

�

F(1 − y, �), y ∈
�

1

2
, 1
�

(8)F[0,1](y) =
F
(

y−�1
�2−�1

)
− �1

(�2 − �1)
∶ [0,1] → [0,1].

2.3.2  For substitution: Compound chaotic maps

Due to some inherent weaknesses in one-dimensional 
maps for cryptographic applications [41] and to enhance 
the robustness in the complete parameter range, research-
ers have used a combination of chaotic systems, i.e., com-
pound chaotic map [3, 8, 58]. In the proposed work, we 
use a similar nonlinear combination of three seed maps, 
F
(
xn
)
,G

(
xn
)
 and H(xn) . A compound chaos is defined by, 

xn+1 =
(
F
(
G
(
xn
))

+ H
(
xn
))
mod 1. The mod operation is to 

ensure that the output sequence is restricted in the range [0, 
1]. The combination of the two maps improves the chaotic 
behavior [8]. Further, the addition of the third map (modulo 
1) enhances the mixing and results in enhanced complexity.

In the proposed image encryption scheme, logistic map 
(L), tent map (T), and sine map (S) are used for compound 
mapping.

(a) Logistic map: It is originally introduced as a demo-
graphic model [59] and is mathematically defined as:

where � ∈ [0,4] or r ∈ [0,1] is the control parameter, 
also known as the bifurcation parameter. The 1D logis-
tic map is chaotic for its control parameter range as 
0.9 ≤ r < 1.

(b) Tent map: It is the simplest piecewise linear chaotic 
map and is a topological conjugate of logistic map 
[60] defined in the interval [0, 1] and mathematically 
described as:

where 0 < r ≤ 1 . The chaotic behavior is observed for 
0.61 < r < 1

(c) Sine map: Sine map is another simplest 1D nonlinear 
map [32], mathematically described as:

The chaotic behavior in this map is observed for 
r ∈ [0.87, 1]. It is qualitatively identical to the logistic map 
as the topological entropy of the sine map is equal to that of 
the logistic map at  r = 1. Figure 1 illustrates the complete 
schematics of developing these three compound chaotic 
maps (CCM), CCM1, CCM2, and CCM3. The mathemati-
cal representation of each CCM is given in Table 1.

(8)
xn+1 = L

(
xn
)
= 𝜇xn

(
1 − xn

)
= 4rxn

(
1 − xn

)
, 0 < xn < 1

(10)xn+1 = T
(
xn
)
=

{
2rxn, if 0 ≤ xn ≤ 0.5

2r
(
1 − xn

)
, if 0.5 < xn ≤ 1

(11)xn+1 = S
(
xn
)
= rsin

(
�xn

)
.
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3  Encryption and decryption procedure

In this section, we describe the processes of encryption and 
decryption in detail. The proposed encryption process is 
based on three different stages. A chaos-based substitution/
confusion in the spatial domain is the first stage followed by 
optical processing using reality preserving fractional Hartley 
transform and finally the third stage of chaos-based diffusion 
/scrambling in the transform domain. There are a total of 24 
keys used in the encryption process that includes nine keys 
for confusion (first stage), six keys for optical transform and 
then nine keys for scrambling in the transform domain.

Encryption

3.1  Stage 1: Substitution based on compound 
chaos (CCM)

The input image ‘P’ of size M × N × 3 is decomposed 
into its red (R), green (G) and blue (B) component images 
each of size M × N. The first level of encryption is based 
on compound chaotic maps described in Sect. 2.3.2. For 
example, the CCM used for the red component (R)M×N 
is  (T(L) + L)mod 1 compound chaotic map (CCM1) with 
parameters {c10, u1, i1} where c10 denotes the initial value, 
u1 is the bifurcation parameter and  i1 is the number of 
iterations to be discarded as transient. For CCM1, a cha-
otic sequence is iterated for i1 +MN different values, i.e., 
{ c1i1+M×N} . The initial i1 iterations are discarded in order 
to avoid any computational error and also to increase the 

security. A similar process is followed for other CCMs. The 
values of sequence thus obtained are in floating point. These 
are converted to integer form as:

The integer sequence is then reshaped to a 2D image of 
size M × N  and is used for the substitution of each color 
component of the input image, P� ∈ [R,G,B] as:

3.2  Stage 2: Reality preserving 2D fractional 
Hartley transform

The outcome from Stage 1 in the spatial domain is then 
transformed via a fractional Hartley transform with a real-
ity preserving algorithm. The transformation results in the 
complex coefficients which in optical processing require 
special holographic techniques for recording. In the digi-
tal domain, it becomes difficult to store and transmit the 
complex coefficients as it leads to increased complexity and 
memory requirements. To overcome such issues, a reality 
preserving algorithm [54] is used to obtain transform in the 
real domain as explained in Sect. 2.2. The substituted out-
come of Stage 1 is transformed using the steps explained in 
Sect. 2.2. It is likely to mention that 1D transformation has 
to be extended to 2D for image data. The 1D RPFrHT can 
be easily extended to 2D by cascading two transforms, one 
along rows of the image and another along with the columns. 
This requires two different transform orders (�, �) for both 

(12)ĉ =
(
c(1×M×N) × 1014

)
mod 256.

(13)S = bitxor
(
ĉ(M×N),P

�
(M×N)

)
.

Fig. 1  Generation of compound 
chaotic maps form basic maps

Table 1  Mathematical representation of compound chaotic maps

CCM Mathematical representation

CCM1 (T(L) + L)mod 1
xn+1 =

{
(4�

(
4�xn

(
1 − xn

))(
1 − 4�xn

(
1 − xn

))
+
(
2 − 2�)xn

)
mod1 for xn < 0.5(

4�
(
4�xn

(
1 − xn

))(
1 − 4�xn

(
1 − xn

))
+
(
2 − 2�)(1 − xn

))
mod1 else

CCM2 (L(L) + T)mod 1
xn+1 =

{ (
4�2�xn

(
1 − 2�xn

)
+ (4 − 4�)xn

(
1 − xn

))
mod 1 for xn < 0.5(

4�2�
(
1 − xn

)(
1 − 2�

(
1 − xn

))
+ (4 − 4�)xn

(
1 − xn

))
mod 1 else

CCM3 (L(S) + T)mod 1
xn+1 =

{ (
� sin

(
𝜋2�xn

)
+ (4 − 4�)xn

(
1 − xn

))
mod 1 for xn < 0.5(

� sin
(
𝜋2�

(
1 − xn

))
+ (2 − 2�)

(
1 − xn

))
mod 1 else
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directions. For the sake of brevity, the individual steps of 
transformation are not again illustrated here. However, to 
correlate with explanation given in Sect. 2.2, final outcome 
of 1D RPFrHT for input as substituted image of Stage 1 is 
represented as:

This 1D RPDFrHT can be extended to 2D by follow-
ing the same procedure as shown above but in y-direction. 
For that, each column is treated as a different array and the 
values are wrapped to half along each column to obtain a 
matrix of dimensions M∕2 × N. The transform order along 
y-direction, i.e., along each column, is denoted by �. Hence, 
a 2DRPDFrHT can be described as a cascaded operation of 
two 1D RPDFrHT ’s as:

where (M,N) represents the size of the image, ( �, �) are the 
transform orders, S(M,N) is the substituted image of Stage 1. 
The above-stated procedure is repeated for each color com-
ponent image with a different set of transform orders.

3.3  Single‑bit phase modulation

The transformed image, obtained after reality preserving 
2D fractional Hartley transform, in its coefficient has both 
positive and negative values which are not suitable for opti-
cal detection by CCD camera if an optical setup is used. In 
the digital domain, negative values cannot be realized while 
storing and retrieving. This issue needs to be handled for 
the complete recovery of data during the reverse process. A 
phase modulation method is used with a single bit of the data 
representing it as either a negative or positive value. This can 
be termed as a single-bit phase modulation method. In this 
method, we use a variable Pb(u, v) which is assigned a bit ‘0’ 
for positive value and bit ‘1’ for negative value correspond-
ing to the transform coefficients h(k+1)(u, v):

(14)

Ẑ = {Re(FrH�(N)) + j × Im(FrH�(N))}
�
Re

�
Ŝ
�
+ j × Im

�
Ŝ
��

⇒ Z =

⎡⎢⎢⎣
Re(FrH�(N)Re

�
Ŝ
�
− Im((FrH�(N))Im

�
Ŝ
�

Im(FrH�(N))Re
�
Ŝ
�
+ Re(FrH�(N))Im

�
Ŝ
�
⎤⎥⎥⎦

=

�
Re(FrH�(N)) −Im(FrH�(N))

Im(FrH�(N)) Re(FrH�(N))

�⎡⎢⎢⎣
Re

�
Ŝ
�

Im
�
Ŝ
�
⎤⎥⎥⎦

∴Z = RPDFrH�T(N) × S

(15)
2DRPFr HT

{�,�}
T
{
S(M,N)

}
= 1DRPFrHT

(�)(N)⋅S(M,N)

⋅ 1DRPFrHT
(�)(M)

(16)Pb(u, v) =

{
1, if h(k+1)(u, v) < 0

0, otherwise

This single bit value is extracted for each color component 
and then is concatenated into a single image. This matrix 
of size M × N × 3 can be used as a public key as it does not 
reveal any intuitive information about the encrypted data. 
Moreover, as it is a single-bit matrix, storage and transmis-
sion will not be an issue of concern. During the decryption 
process, the original transform coefficients are obtained as:

3.4  Stage 3: Chaotic scrambling using PWLCM

As explained in Sect. 2.3.1, a PWLCM map is used for 
generating a chaotic sequence owing to its LE (Lyapunov 
exponent) being positive over the entire range of its control 
parameters. Three different PWLCM or W-maps are used 
each for red, green and blue components of the transform 
coefficients obtained in Stage 2. For the transform coeffi-
cients of size M × N corresponding to each color compo-
nent, the PWLCM with parameters 

{
x0, u, t

}
 is iterated for 

( t +M × N ) number of iterations and a sequence of M × N 
is generated by discarding first t terms to avoid any compu-
tational error of transients.

Step 1 The chaotic sequence generated by each PWLCM 
can be represented as:

Step 2 The chaotic sequence is then sorted in ascend-
ing/descending order into a vector, and the index of the 
vector is stored as the address into another vector as: [
ind,Ps

]
= sort(Pl). This changes the positions of the ele-

ments. Record the new index of Ps , i.e., mth element of Ps 
corresponds to ind{mth} element of Pl.

Step 3 The 2D transform matrix of Stage 2 is reshaped 
into the 1D sequence of size MN × 1 . Vectorization is per-
formed to convert M × N transform coefficients to a matrix 
of size M × N × 1 by extracting the values column by 
column.

Step 4 Now, the recorded index of the sorted vector ind is 
used to reorder (permute/scramble) the 1D transform vector 
as RPFrHT(ind). Finally, this 1D matrix is converted into 2D 
image format by reconverting it into M × N vector.

In this stage, the initial value, control parameter and number 
of iterations to be discarded 

{
x0, u, t

}
 are used as the secret 

keys. Therefore, there are a total of nine keys for scrambling 
(three each for R, G and B individually). The scrambled 
transform coefficients give a final encrypted image which 
can now be transmitted over a public channel. The complete 
encryption process is shown in Fig. 2.

(17)h�(k+1)(u, v) = h(k+1)(u, v) × [exp
(
i�Pb(u, v)

]
.

(18)Pl = Pt+1,Pt+2,Pt+3,…Pt+MN−1,Pt+MN .
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Decryption

The decryption procedure is illustrated in Fig. 3. Decryption 
is exactly the reverse of that of encryption. Exactly the same 
keys (all 24 keys) are required in each stage of decryption 
to completely recover the original image, thus making it a 
symmetric key cryptographic process.

The output of Stage 3 of the encryption process which is 
scrambled transform coefficients is descrambled using the 
same PWLCM’s with parameters 

{
x0, u, t

}
 as used during 

encryption. The descrambled image components are then 
inverse transformed with ( RPFrHT)−1 which is similar to 
the forward transform with the same transform orders but 
with negative values (six keys). The next step is the genera-
tion of the CCMs with nine keys of Stage 1. The generated 
CCMs need to be exactly same as used during the forward 
procedure, for them to be substituted with the inverse trans-
form coefficients to retrieve the original image components.

4  Simulation results

The proposed scheme is realized in MATLAB 9.0, on a 
personal computer with Intel(R) Core (TM) i5 8250U CPU 
(3.45 GHz), 8 GB RAM, and 1 TB hard disk capacity. Two 
standard images (Lena, Baboon) taken from the SIPI dataset 
[61] are considered as test images for visual analysis and sta-
tistical analysis. The simulation results for numerical analy-
sis are evaluated for a number of other images taken from 
the same dataset. The secret keys used in this simulation are 

randomly generated using a random number generator in 
MATLAB. The simulations are done with the same set of 
secret keys throughout this work. The distribution of keys 
and their corresponding values are given in Table 2.

4.1  Experimental analysis

Figure 4 shows encryption at each stage from left to right. 
Figure 4a, f shows the original standard color test images 
(Lena and Baboon). The first stage of encryption is the substi-
tution with compound chaotic maps as described in Sect. 3.1, 
and the results obtained for this stage using the secret keys 
(Table 2) for red, green and blue channels, respectively, are 
shown in Fig. 4b, g. In order to enhance the security, a plain 
image-dependent session key is generated for each color 
channel (δr, δg, δb). Also, the session keys are added either to 
the initial condition or to control parameter alternatively to 
further create more confusion for any intruder. The next stage 
is to obtain the reality preserving fractional Hartley transform 
(RPFrHT) of the image by following the procedure described 
in Sect. 3.2. The secret keys at the transform stage are basi-
cally the pairs of fractional transform orders along the rows 
and columns of red, green and blue channels, respectively, 
as shown in Table 2. The resultant transformed images are 
shown in Fig. 4c, h. The transform output also has certain 
negative-valued coefficients which are stored in a single-
bit phase modulation matrix by storing a bit ‘0’ for positive 
value and bit ‘1’ for negative value of the coefficients, and the 
resultant matrix in the form of an image is shown in Fig. 4d, 

Fig. 2  Encryption process

Fig. 3  Decryption process
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i. It can be seen that transform output has some visual pat-
terns which need to be removed. Therefore, the third and 
final stage is to permute the transformed image obtained after 
the second stage with the piecewise linear chaotic map as 
described in Sect. 3.4. The set of secret keys (Table 2) are 
used to permute each component image to make it a random 
noise-like image. The resultant images after the permutation 
are shown in Fig. 4e, j. This is the final encrypted image that 
is transmitted over the public channel along with the single-
bit phase modulation matrix.

The decryption is exactly the reverse of that of the 
encryption procedure. If the same sets of keys (as used dur-
ing encryption) are supplied at all stages of decryption, the 
original image can be recovered without any loss of data. 
The complete process of decryption of encrypted images 

is shown in Fig. 5. Figure 5a, f shows encrypted images of 
Lena and Baboon, respectively. The encrypted image will be 
first processed for descrambling/inverse permutation using 
PWLCM with the same set of secret keys as used for Stage 
3 of encryption. The resultant images after the inverse per-
mutation are shown in Fig. 5c, h. This transformed image 
(which carries the magnitude of transform coefficients) 
along with the single-bit phase modulation matrix as shown 
in Fig. 5b, g collectively represents the exact transform coef-
ficients to be processed for the next stage of decryption, 
i.e., inverse reality preserving Hartley transformation. This 
combination (images in Fig. 5b, g along with Fig. 5c, h) is 
processed for inverse RPFrHT with the same pairs of frac-
tional orders as supplied in Stage 2 of the encryption but 
with negative sign (as explained in Sect. 3). The resultant 

Table 2  Secret keys in each 
stage of encryption

Key Parameter Value

Stage:1(
K1,K2,K3

) [
c10, u1, i1

]
[0.814723686393179, 0.305791937075619 + δr, 1386](

K4,K5,K6

)
[c20, u2, i2] [0.313375856139019 + δg, 0.426986816293506, 1213](

K7,K8,K9

) [
c30, u3, i3

]
[0.397540404999410 + δb, 0.232359246225410, 1432]

Stage:2(
K10,K11

)
[�1,β1] [0.2784, 0.5468]

(K12,K13) [�2��2] [0.3648, 0.4575](
K14,K15

) [
�3, �3

]
[1.1576, 1.4853]

Stage:3(
K16,K17,K18

) [
x0, u, t

]
R

[0.421761282626275, 0.141886338627215, 1478](
K19,K20,K21

) [
x0, u, t

]
G

[0.735711678574190, 0.432207329559554, 1321](
K22,K23,K24

) [
x0, u, t

]
B

[0.733993247757551, 0.555740699156587, 1435]

Fig. 4  Perceptual security analysis at each stage of encryption (left to right)
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images after the inverse transform are shown in Fig. 5d, i. 
Now the third stage of decryption is executed on the image 
shown in Fig. 5d, i by following the procedure explained in 
Sect. 3.1 based on the compound chaotic maps (described in 
Sect. 2.3.2) and subject to the same set of secret keys for the 
red, green and blue channels as used in Stage 1 of encryp-
tion. The resulting images are the final decrypted/recovered 
images which are shown in Fig. 5e, j.

We have also experimented with a lot of other images 
having widely different contents using several combinations 
of secret keys and analyzed the corresponding encrypted and 
decrypted images with all intermediated images. We observe 
that the proposed method completely converts the images 
into visually obfuscated data and gives a lossless recovery 
in decryption.

4.2  Security analysis

The major concern of any cryptosystem lies in the level of 
security it provides. In other words, a good encryption tech-
nique should be robust against all sorts of cryptanalytics, 
statistical and brute-force attacks. In this section, we attempt 
to provide a complete investigation on the security of the 
proposed encryption technique.

4.2.1  Brute‑force attack

In cryptographic applications, the most important part is 
the selection of keys. The keyspace should be large enough 
to counter any brute-force attack. This type of attack is 
based on exhaustive key searching where the adversary gets 

capability of recovering the original information by search-
ing all possible keys in the keyspace until a correct key is 
found. The resistance to brute-force attack is the measure of 
the keyspace. A larger keyspace ensures better resistance. 
The keyspace should be > 2120 to preclude any eavesdrop-
ping [33, 62].

In this scheme, 24 keys are used with different precision 
levels. There are 12 keys with a precision of  10–15, six keys 
with the precision of  10–4, six keys with integer values (4 
digits). Therefore, the total keyspace can be evaluated as

which is sufficiently larger than  2120 to resist any brute-force 
attack.

4.2.2  Perceptual security analysis

Perceptual security analysis determines the measure of dis-
similarity between plain and encrypted images.

The utmost requirement of encryption is to make the 
information unintelligible and obfuscate the pixels in such 
a way that it appears as random white noise. It is evident 
from Fig. 4 that the final encrypted images are completely 
random and thus are visually unrecognizable.

Apart from visual quality, the perceptual security analy-
sis results are numerically represented in terms of certain 
parameters, viz. peak signal-to-noise ratio (PSNR), mean 
square error (MSE) and spectral similarity index (SSIM). 
For a pair of original and encrypted images represented as 
oi,j and ei,j , respectively, these parameters are defined as:

1015×12 × 104×6 × 104×6 ≈ 10228,

Fig. 5  Illustration of decryption at each stage of recovering the original image (left to right)
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where [M,N] is the image size, L is the highest intensity 
value (256 for an 8-bit image), �o,�e, �o, �e, �oe are mean, 
variance and covariance of original and encrypted images. 
C1,C2 are constants that are used to stabilize division with 
a weak denominator.

Mean square error (MSE) is an error metric that allows to 
compare pixel values of original with that of the encrypted 
image. Thus, a high value of MSE is desirable during 
encryption and in the decryption process, MSE should be 
ideally ‘0′ for lossless image recovery. PSNR is used as a 
metric for spectral information measure and is an error met-
ric that is used as quality measure statistics of an image with 
respect to a reference image. The higher the value of PSNR, 
the better is its quality. Thus, two similar images will have 
infinite PSNR. However, a PSNR ≥ 28 is considered satis-
factory for a reconstructed image. The purpose of evaluat-
ing PSNR is to show that the PSNR of the encrypted image 
with respect to the original image is very low ( ≪ 28) which 
indicates a significant difference between the original and 
encrypted image. However, there is a limitation of just rely-
ing on the MSE and PSNR values as these measures utilize 
only numeric values of pixels and do not consider other fac-
tors of the human visual system (HVS). Wang et al. [63] pro-
posed Structural Similarity Index (SSIM) as another metric 
that considers three main biological factors, viz. luminance, 
contrast and structure comparison between an image and a 
reference image, and is a method of subjective evaluation for 
quantifying the visual image quality. SSIM ∈ [−1,1] with a 
value of ‘1’ for ideally similar images.

Different images along with test images are simulated 
for these parameters’ evaluation. The simulated results are 
given in Table 3. As is evident from the results, the PSNR 
of encrypted images is very low ( ≪ 28) with MSE values 
( ≅ 104 ) very high. SSIM of encrypted images is near to 
‘zero’. All these parameters indicate that the encrypted 
images have high perceptual security.

During decryption, it is recommended to have decryption 
error negligibly low [66] for applications such as biometrics 
and secure military communications. The decryption error 
of decrypted image, De(i, j) corresponding to plain image 
Pl(i, j) of size M × N is evaluated [67] as

(19)PSNR(o, e) = 10log10
(L − 1)2

1

MN

∑M

i=1

∑N

j=1

�
oi,j − ei,j

�

(20)MSE(o, e) =
1

MN

M∑
i=1

N∑
j=1

[
|||oi,j − ei,j

|||
2

]

(21)SSIM(o, e) =

(
2�o�e + C1

)
(2�o,e + C2)(

�2
o
+ �2

e
+ C1

)
(�2

o
+ �2

e
+ C2)

where Q(i, j) =
{

1, Pl(i, j) = De(i, j)

0, otherwise

The decryption error of all the images is ‘zero’ in the pro-
posed scheme. We have also checked the objective metrics 
for the same to validate our claim. The objective metrics are 
the same for all test images and are listed in Table 4.

(22)DErr =

(
1

MN

M∑
i=1

N∑
j=1

Q(i, j)

)
× 100%

Table 3  Parameter evaluation for perceptual security analysis

Image Channel PSNR MSE SSIM

Lena (256 × 256) Red 7.6923 1.1062 × 10
4 0.0103

Green 8.6871 8.7970 × 10
3 0.0099

Blue 8.8999 8.3769 × 10
3 0.0101

Baboon (512 × 512) Red 8.8555 8.4763 × 10
3 0.0099

Green 9.0326 8.1250 × 10
3 0.0089

Blue 7.8808 1.0593 × 10
4 0.0080

Balls (256 × 256) Red 8.7310 8.7093 × 10
3 0.0104

Green 8.0530 1.0181 × 10
4 0.0106

Blue 9.1423 7.9223 × 10
3 0.0094

Peppers (512 × 512) Red 9.1118 7.9782 × 10
3 0.0123

Green 7.4589 1.1673 × 10
4 0.0073

Blue 7.0301 1.2885 × 10
4 0.0065

House (256 × 256) Red 9.5722 7.1756 × 10
3 0.0105

Green 8.8021 8.5679 × 10
3 0.0096

Blue 8.0486 1.0191 × 10
4 0.0082

Flowers (256 × 256) Red 9.2646 7.7023 × 10
3 0.0094

Green 9.6180 7.1004 × 10
3 0.0095

Blue 7.3184 1.1883 × 10
4 0.0100

Jupiter moon (256 × 256) Red 5.7259 1.7398 × 10
4 0.0039

Green 6.3810 1.4962 × 10
4 0.0057

Blue 4.9971 2.0576 × 10
4 0.0025

Paints (256 × 256) Red 8.2937 9.6318 × 10
3 0.0067

Green 8.5793 9.0188 × 10
3 0.0081

Blue 8.5167 9.1498 × 10
3 0.0096

Red 7.4706 1.1642 × 10
4 –

Ref. [18] Green 7.6293 1.1224 × 10
4 –

Blue 9.1401 7.9264 × 10
3 –

Ref. [64] – ≈ 8 × 10
3 –

Ref. [65] Red 9.2766 – –
Green 8.3819 – –
Blue 9.2494 – –
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4.2.3  Statistical analysis

4.2.3.1 Histogram analysis An image histogram depicts the 
intensity value distribution of image pixels against each gray 
level. This statistical data can reveal some crucial informa-
tion for an intruder to decrypt image by analyzing its his-
togram. Also, this information can be used to mount more 
statistical attacks. Thus, it becomes necessary to investigate 
the histograms of the encrypted image. The histogram of an 
encrypted image should be different from that of the actual 
image and also independent of the content of the actual 
image. As shown in Fig. 6, the first and third rows are the 
RGB channel histograms of plain image Lena and Baboon 
respectively. The second and fourth rows depict correspond-
ing histograms of encrypted images. It is evident from Fig. 6 
that the histograms of the encrypted image are quite differ-
ent from that of the original image. One more important 
point worth mentioning here is that the histograms of the 
final encrypted image are always independent of the original 
image and hence, do not reveal any information about the 
original image.

4.2.3.2 Correlation analysis The adjacent pixels in an 
ordinary image with definite visual content are highly cor-
related in horizontal, vertical and diagonal directions. A 
good encryption scheme should be capable to make the 
correlation sufficiently low in order to resist the statistical 
attacks. To analyze and compare the correlations of adja-
cent pixels in the plain and encrypted image, correlation 
analysis of the proposed scheme is done.

We have randomly selected 100 × 100 pixels of the red 
channel from each image. (For brevity, only red channel 
for both the test images is shown.) Figure 7a–c shows the 
horizontal, vertical and diagonally shifted pixels of plain 
image Lena, and Fig. 7d–f shows corresponding correla-
tion plots in encrypted image. Similarly, Fig. 7g–i shows 
the horizontal, vertical and diagonally shifted pixels of 
plain image Baboon, and Fig. 7j–l shows corresponding 
correlation plots in encrypted Baboon. In order to quantify 
the adjacent pixel correlation in the encrypted image, cor-
relation coefficients are computed through Eq. (23) where 
xk and yk are gray values for kth pair of selected adjacent 
pixels.

w h e r e  D(x) =
1

M

∑M

k=1
(xk − E(x))2  , 

D(y) =
1

M

∑M

k=1
(yk − E(y))2

The correlation analysis is done for all the images in the 
horizontal, vertical and diagonal directions. We observe 
that the adjacent pixels are highly correlated in the plain 
images. However, this correlation is completely removed 
after the encryption of the images using the proposed 
image encryption technique. The quantitative results of the 
correlation coefficients between the horizontally, vertically 
and diagonally adjacent pixels distributions are given in 
Table 5 for the encrypted images only (for all three color 
components). A very low value ( ≈ 0) of the correlation 
coefficients for encrypted images proves no correlation 
and hence resistance to statistical attacks.

4.2.4  Key sensitivity analysis

A cryptosystem is evaluated for its effectiveness in terms 
of key sensitivity. Therefore, the sensitivity of the keys 
should be as high as possible. There are two aspects of 
evaluation for key sensitivity: (1) During encryption, a 
completely different ciphertext should be generated with 
a very minute change in key, and (2) During decryption, 
there should be incorrect recovery (almost a random noise-
like) with wrong keys. A key sensitivity parameter (KS) is 
introduced in [72] which should be ideally 100% for two 
completely dissimilar images.

However, in practical terms, KS should be as close to 
100%. For each key, KS is evaluated in the encryption 
stage corresponding to each wrong key. For example, the 
value for the key  (K1) gives ciphered image ( C1) , and 
for altered key with very minute variation 

(
K′
1

)
 another 

ciphered image 
(
C2

)
 is obtained. Therefore, KS parameter 

for two ciphered images, C1 and C2 is as:

(23)rxy =

1

M

∑M

k=1
(xk − E(x)

�
yk − E(y)

�
√
D(x)D(y)

E(x) =
1

M

M∑
k=1

xk, E(y) =
1

M

M∑
k=1

yk

Table 4  Parameters for 
recovered images

Result is same for all images in the proposed scheme

Metric R G B Ref. [40] Ref. [65] Ref. [68]

PSNR ∞ ∞ ∞ 306.586 44.62 41.51
MSE 0 0 0 – – –
SSIM 1 1 1 – – –
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Fig. 6  a–c Are RGB histograms of plain image Lena, d–f are histograms of Lena in the encrypted domain, g–i are RGB histograms of plain 
image Baboon, j–l are histograms (Baboon) in the encrypted domain
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Fig. 7  Correlation analysis: a–c are H, V, D correlation plots for plain image Lena, d–f are H, V, D correlation plots for corresponding encrypted 
pixels of image Lena, g–i are H, V, D correlation plots for plain image Baboon, j–l are H,V,D of encrypted image Baboon
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Table 5  Correlation analysis for 
encrypted images (RGB)

Image Shift axis Red channel Green channel Blue channel

Lena (256 × 256) Horizontal 0.0033 −0.0021 −0.0029

Vertical −0.0097 0.0031 0.0022

Diagonal −0.0046 −0.0070 −2.9717 × 10
−5

Baboon (512 × 512) Horizontal −0.0029 −0.0034 8.5471 × 10
−5

Vertical 0.0011 −0.0022 −4.926 × 10
−4

Diagonal −0.0041 0.0038 −9.0239 × 10
−4

Balls (256 × 256) Horizontal −0.0062 −0.0035 0.0016

Vertical −0.0052 0.0014 −0.0048

Diagonal −0.0055 −0.0013 0.0037

Peppers (512 × 512) Horizontal −4.1538 × 10
−4 −0.0015 −0.0033

Vertical −2.0646 × 10
−5 0.0043 3.8279 × 10

−4

Diagonal −0.0016 −2.8419 × 10
−4 −0.0016

House (256 × 256) Horizontal −0.0021 2.7418 × 10
−4 −0.0021

Vertical −0.0041 0.0027 0.0040

Diagonal 6.6665 × 10
−4 0.0056 −0.0017

Flowers (256 × 256) Horizontal −0.0028 −0.0040 −0.0078

Vertical −6.1750 × 10
−4 −0.0069 −0.0055

Diagonal −0.0027 −0.0023 0.0023

Jupiter moon (256 × 256) Horizontal 0.0027 −0.0050 −0.0043

Vertical −0.0017 −0.0023 0.0017

Diagonal 0.0035 −0.0020 −0.0044

Paints (256 × 256) Horizontal 0.0058 −0.0070 −3.9824 × 10
−4

Vertical 0.0043 0.0048 9.4416 × 10
−4

Diagonal −0.0023 −7.2946 × 10
−4 −0.0050

Ref. [18] – 0.0024 −0.0029 −0.0015

Ref. [67] – 0.0010 0.0054 0.0056

Ref. [69] Horizontal 0.0693 0.0693 0.0693

Vertical 0.0610 0.0610 0.0610

Diagonal −0.0242 −0.0242 −0.0242

Ref. [70] Horizontal −0.0221 −0.0221 −0.0221

Vertical −0.0074 −0.0074 −0.0074

Diagonal 0.0075 0.0075 0.0075

Ref. [71] Horizontal −0.00147 0.00029 0.00262

Vertical 0.00242 0.00072 −0.00192

Diagonal −0.00234 −0.00016 −0.00744

Table 6  Key sensitivity at Stage 
1 of encryption

Key K
1

K
2

K
3

K
4

K
5

K
6

K
7

K
8

K
9

KS (%) 99.59 99.57 99.58 99.60 99.61 99.58 99.62 99.66 99.56

Table 7  Key sensitivity at Stage 
2 of encryption

Key Precision K
10

K
11

K
12

K
13

K
14

K
15

KS (%) 10–2 99.64 99.59 99.67 99.68 99.60 99.66
10–4 93.75 92.97 92.76 93.21 92.53 92.55
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where C1 and C2 are two different ciphered images with the 
difference in any one of the keys,

(24)KS =
1

M × N

M∑
m=1

N∑
n=1

C1(m, n)⊗ C2(m, n)

The KS value for each key in all three stages of encryp-
tion is evaluated (for image Lena) as shown in Tables 6 (for 
Stage 1), 7 (for Stage 2),  8 (for Stage 3). The KS values are 
very close to 100% which clearly indicates that key sensi-
tivity is extremely high at the encryption side. It has also 

(25)C1(m, n)⊗ C2(m, n) =

{
1, C1(m, n) ≠ C2(m, n)

0, C1(m, n) = C2(m, n)

Table 8  Key sensitivity at Stage 
3 of encryption

Key K
16

K
17

K
18

K
19

K
20

K
21

K
22

K
23

K
24

KS (%) 99.63 99.60 99.61 99.62 99.59 99.61 99.57 99.58 99.62

Fig. 8  MSE plots for deviation from correct values a for key K1, b for key K2, c for key K3, d for key K10, e for key K11, f for deviation in both 
(K10, K11) collectively, g for key K16, h for key K17, i for key K18
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been observed that the key sensitivity of Stage 2 (transform 
stage) is evaluated at different precisions. The KS is a little 
less when a precision of  10–4 is used. This depicts that using 
only transform for decorrelating the pixels cannot provide 
optimum security and hence the addition of other security 
layers is essential.

At decryption, key sensitivity is measured in terms of 
MSE plots corresponding to deviation in each key over a 
range in close proximity. For this, each key value is little 
deviated by infinitesimally small values and the decrypted 
image is evaluated for its MSE with reference to the origi-
nal image. It is observed while simulation that the recovery 
with each wrong key gives a completely random image. For 
avoiding any redundancy in results, the MSE plots for wrong 
keys are generated corresponding to each stage for the Red 
channel only ( K1–K3 : Stage 1,K10–K11 : Stage 2, K16–K18 : 
Stage 3). The reader may refer to Table 2 for the description 
of keys.

The MSE plots depict high sensitivity as there is an error 
of order of  104 with a deviation of as minute as an order of 
 10–15 in the key values for chaotic maps (keys K1–K3 ) as 
shown in Fig. 8a–c. For MSE plots of keys at stage 2, the 
values are deviated by  10–4 in transform order along x-direc-
tion ( K10 ) in Fig. 8d, along y-direction ( K11 ) in Fig. 8e and 
collectively for both ( K10,K11 ) in Fig. 8f . For MSE plots 
corresponding to keys at stage 3, deviation in key values 
( K16 , K17 , K18 ) of an order of  10–15 is plotted and shown in 
Fig. 8g–i, respectively. It is observed that MSE plots of other 
channels are similar.

4.2.5  Information entropy analysis

Entropy refers to the measure of amount of information in 
any signal. For image, the amount of information entropy/

Shannon entropy depends on the probability of occur-
rence of particular pixel intensity in the histogram. For a 
flat image, entropy is zero and for an encrypted image, its 
entropy is defined as the amount of uncertainty associated 
with the random image. The random variable can be a quan-
titative measure of any one of the pixel entities such as color, 
luminance, saturation, etc. Entropy is thus a statistical meas-
ure of randomness. For an image R with pixel values ri , its 
entropy is explicitly defined as:

where p is the probability of occurrence of rith pixel; b is 
the base of log which can be e, 10 or 2 . In an image with 
maximum n bits,M = 2n , b = 2.

Recently, another measure for image randomness is 
introduced [73] which is coined as local entropy measure. 
It is based on Shannon entropy measure over local image 
pixels. Local entropy measure is able to overcome certain 
weaknesses of Shannon entropy measure. Some of proved 
weaknesses in [73] are unfair randomness comparisons for 
images of variant sizes, failure to distinguish image random-
ness before and after shuffling, inaccurate values in the case 
of synthesized images, etc.

Local entropy is the mean entropy of several nonover-
lapping image blocks that are randomly selected from the 
source image. In order to differentiate from local entropy, 
Shannon entropy is termed as global entropy. Local entropy 
is evaluated over a certain number of nonoverlapping blocks 
(k) of image pixels (TB), therefore termed as (k, TB)-local 
entropy as:

(26)H(R) = −

M∑
i=1

p(ri)logbp(ri),

Table 9  Entropy analysis for 
global (Shannon) and local 
entropy

Comparison w.r.t. Lena image

Test image Global entropy Local entropy, k = 30, TL=256
B

= 1936

Red Green Blue Red Green Blue

Lena 7.9837 7.9916 7.9550 7.8795 7.8889 7.8527
Baboon 7.9865 7.9918 7.9557 7.9615 7.9665 7.9306
Balls 7.9846 7.9919 7.9555 7.8834 7.8866 7.8534
Peppers 7.9679 7.9913 7.9565 7.9437 7.9669 7.9318
House 7.9857 7.9905 7.9550 7.8820 7.8851 7.8533
Flowers 7.9842 7.9914 7.9557 7.8819 7.8892 7.8521
Jupiter moon 7.9834 7.9917 7.9567 7.8794 7.8911 7.8534
Paint colors 7.9843 7.9915 7.9569 7.8820 7.8883 7.8541
Ref. [18] 7.3894 7.5280 7.5131 – – –
Ref. [74] 7.9938 7.9938 7.9938 – – –
Ref. [65] 7.7771 7.7190 7.7150 – – –
Ref. [75] 7.9901 7.9898 7.9899 – – –
Ref. [70] 7.8892 7.8892 7.8892 – – –
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where Si are randomly selected nonoverlapping image blocks 
as S1, S2, S3 … Sk and TB are the number of pixels in each 
block, Sk. For image intensity level, L = 2 (binary image), 
TL=2
B

= 2 . Similarly, for L = 256 TL=256
B

= 1936 and the total 
number of nonoverlapping blocks should not be less than 
30 (k ≥ 30).

The entropy analysis results of a few test plain images and 
their corresponding encrypted images are given in Table 9. 
The values of information entropy for the encrypted images 
are almost converging to a value of 7.9999, i.e., the highest 
possible value of information entropy for an 8-bit random 
image. The local entropy values are also evaluated, and it 
is observed that local entropy is close to global entropy. 
This ensures that the proposed scheme gives randomness in 
encrypted domain indicating a negligible information leak-
age and thus is secure against entropy attack.

4.2.6  Differential attack analysis

A differential attack is successful when an intruder is able to 
retrieve some clue about secret keys by slightly changing the 
plain image and comparing it with the encrypted image. In 
order to ensure robustness to such attack, it is required that a 
minute change in the plain image should be able to generate 
a huge difference in encrypted image. In other words, the dif-
fusion of the system should be able to spread the difference 
over the entire image. There are two indicators that are used 
to quantify robustness to differential attack, NPCR (number 
of pixel change rate) and UACI (unified average change in 
intensity) [76, 77]. For a plain image with width W and height 

(27)H(k,TB)
(S) =

k∑
i=1

H
(
Si
)

k

H,, let there be two ciphertexts generated (C1, C2) correspond-
ing to the plain image and another with altered value at pixel 
location (i, j). These measures are mathematically defined as:

where D(i, j) =
{

1, C1(i, j) ≠ C2(i, j)

0, otherwise

where L = 256 for an 8-bit image. For a 256 Gy-level image 
encryption, the expected value of NPCR is 99.6094%, 
whereas that of UACI is 33.4635%. In the proposed scheme, 
we have modified a randomly selected pixel location (126, 
137) for evaluating these parameters. The corresponding 
NPCR, UACI values are given in Table 10.

4.2.7  Classical attack analysis

There are four types of such attacks that include cipher-
text only attack where it is assumed that the adversary has 
access to few ciphertext only [42], plaintext attack where it 
is assumed to have access to set of plaintext only, known-
plaintext attack where knowledge of a set of plaintexts and 
corresponding ciphertext is available to the adversary and 
fourth is a chosen-plaintext attack where it is assumed that 
the adversary has access to set of plaintexts to be encrypted 
to obtain ciphertexts. As known ciphertext attack provides 
more information to an adversary, it is believed that if a 
ciphertext can resist a chosen ciphertext attack, it can also 
resist other types of attacks [78]. The proposed scheme is 

(28)NPCR =
(

1

WH

) W∑
i=1

H∑
j=1

D(i, j) × 100%

(29)UACI =
1

WH

[
W∑
i=1

H∑
j=1

||||
C1(i, j) − C2(i, j)

L − 1

||||

]
× 100%

Table 10  Differential attack 
analysis

Comparison w.r.t. Lena image

Test images NPCR (%) UACI (%)

Red Green Blue Red Green Blue

Lena 99.5605 99.5651 99.6613 34.7023 32.4410 34.4960
Baboon 99.5972 99.5827 99.6357 33.0327 33.8374 34.4669
Balls 99.6201 99.5590 99.5972 34.2801 31.9508 33.7173
Peppers 98.9708 99.5544 99.5770 31.2086 34.1040 34.4196
House 99.5728 99.5514 99.6140 34.4071 32.1189 34.3282
Flowers 99.6140 99.5743 99.5987 34.5727 34.2000 33.3969
Jupiter moon 99.6201 99.5621 99.5987 34.7109 32.5353 33.0210
Paint colors 99.6033 99.5895 99.5773 34.5705 33.2692 34.0478
Ref. [65] 99.7300 99.7300 99.7300 0 0 0
Ref. [68] 99.5600 99.5600 99.5600 31.1700 31.1700 31.1700
Ref. [69] 99.5697 99.5544 99.5789 33.4100 33.4549 33.4409
Ref. [70] 99.8953 99.8953 99.8953 33.7869 33.7869 33.7869
Ref. [71] 99.9900 99.9919 99.9980 33.3403 32.9525 33.3036
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designed such that it is highly sensitive to keys. Moreo-
ver, the ciphertext is dependent on plaintexts as the initial 
conditions of the chaotic maps that are used in Stage 1 of 
encryption strongly depend on the plain input. Therefore, a 
unique ciphertext is generated corresponding to each plain-
text. Hence, the proposed scheme is robust to the chosen 
ciphertext attack.

Fig. 9  Data occlusion attack analysis. The first and third rows show the encrypted images cropped from different locations, and second and 
fourth rows show the corresponding decrypted images with different visual clarity

Table 11  Averaged parameter values

Data occluded (%) PSNR MSE SSIM

50 9.3565 7.35 × 10
3 0.0994

25 10.5519 5.75 × 10
3 0.2179

12.5 11.8733 5.00 ×103 0.2766
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4.2.8  Data occlusion attack

There is a possibility of data loss while communicating 
images over heavy traffic channels or due to insecure chan-
nels. An effective encryption scheme should be able to 
recover the image even after occlusion attack if the data 
are uniformly diffused over the entire image. Post-process-
ing techniques can be further used to recover the losses. 
To check the tolerance of the proposed scheme, encrypted 
data are subjected to varying amounts of data loss and cor-
responding decrypted images are checked for perceptual 
security. In Fig. 9, the first and third rows depict cropping 
in encrypted data (Lena image), whereas in the second and 
fourth rows corresponding decrypted images are shown. It 
is observed that image contour is still recoverable with up 
to 50% of data loss. The average values for data loss up to 
12.5%, 25% and 50% are recorded in Table 11. The numeri-
cal values clearly indicate that the proposed scheme can 
resist data loss for recovery of the image which can be fur-
ther improved by applying data post-processing techniques.

4.3  Noise attack analysis

Robustness against noise is an important index to check for 
the encryption scheme as distortion, degradation and cor-
rupted data (coding error) are common in communication 
channels. The proposed scheme is checked for the addition 
of Gaussian noise with zero mean and varying variances 
to get data corresponding to different SNR (signal-to-noise 
ratio) between noisy and noise-free encrypted images. This 
can be mathematically explained as:

where  Ie′ is noisy image Ie is the encrypted image, G rep-
resents the Gaussian noise with � as its standard deviation. 
Figure 10 shows decrypted images when the encrypted 
images are distorted with different noise levels. The noise 
levels are quantified according to the SNR of noisy image 
with reference to encrypted image. MSE values are plotted 
for different SNR values. The plot clearly shows that error is 
proportional to the amount of noise in the encrypted domain. 

Ie
� = Ie(1 + �G)

Fig. 10  Noise attack analysis. a–f are decrypted images with SNR of 1 dB, 5 dB, 10 dB, 15 dB, 20 dB and 25 dB, respectively. g is the corre-
sponding plot of SNR vs. mean square error in decrypted image

Table 12  Time analysis for the 
encryption algorithm (time in s)

Image size Our algorithm Ref. [40] Ref. [79]

Encryption Decryption Encryption Encryption

DFrHT MPFrHT-I MPFrHT-II

256 × 256 0.49436 0.34984 0.601 4.1964 4.2432 1.8876
512 × 512 1.3408 1.0158 – 71.417 71.027 8.4616
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It is evident from Fig. 10 that image contour is detectable 
with as low as SNR of 1 dB, thereby giving testimony to 
the fact that the proposed scheme performs fair enough in a 
noisy environment and thus can resist noise attack.

4.3.1  Speed analysis

The run time of an encryption algorithm is an important 
issue for real-time applications. Optical transforms have 
an inherent property of fast and parallel processing. This is 
due to the optical setup that comprises SLM (for processing 
complex coefficients) and CCD (for storage). However, in 
the digital domain, the run time of an algorithm depends 
on the complexity associated with it. Therefore, a compro-
mise between speed and complexity is highly desirable. The 
proposed scheme has multiple security layers for attaining 
substitution, transformation and permutation. The average 
encryption and decryption times are recorded in Table 12. 
It is likely to mention that run time can be further improved 
by optimization methods.

5  Comparative analysis

This section gives a brief summary on various comparisons 
of the proposed scheme with other similar state-of-the-art 
schemes. Firstly, by using a reality preserving algorithm 
[54], the complex computation is eliminated completely 
which is inherited in all DRPE and other optical transform 
domain-based encryption schemes [19, 21, 31, 36, 80, 81]. 
Another limitation in such similar schemes is the shorter key 
space, thereby leading to possibility of brute-force attack 
[28, 29, 82]. Table 13 lists some of the recent schemes with 

their key space for comparison with that of the proposed 
scheme.

On the bases of histogram analysis, the histogram in 
the encrypted domain with the proposed scheme is nearly 
uniform as compared to other similar schemes with optical 
transform domain [18, 19, 23, 40, 45, 64, 87]. The uniform 
histogram gives higher security against entropy attacks. A 
comparison of entropy values for RGB of image Lena is 
listed in Table 9.

Any encryption algorithm can be characterized by its 
decorrelating ability. For a comparison on this, Table 14 lists 
some of the recent published works in terms of their aver-
aged correlation coefficients (with reference to Lena image).

Another important parameter for comparison is the 
decrypted image quality. To check, we have evalu-
ated decryption error (DErr) as explained at the end of 
Sect. 4.2.2. DErr is ‘zero’ for all test images which clearly 
depicts that proposed scheme is lossless unlike some other 
recent schemes that are either fixed/single transform order-
based [23, 40, 46, 65, 67, 86, 88] or others that are based on 
multiple parameters [43, 64, 74, 79, 89]. The PSNR of the 
decrypted image with reference to the original image (Lena 
image) is listed in Table 4. The proposed scheme is also 
robust to differential attacks as is evident from the analysis 
for NPCR and UACI values (Table 10).

6  Conclusion

Recently, many researchers have come up with image 
encryption schemes based on the optical transform domain. 
To overcome the limitations of shorter keyspace with the 
only transform-based approach, researchers have intertwined 
chaos and fractional transform domain in some way or other 
to get the benefit of both. Most of the schemes are focused 
on decorrelation based on fractional transform and chaos-
based scrambling with different orders of their operation to 
improve security and also to enlarge the keyspace. However, 
these schemes fail to provide enough security due to certain 
limitations of the transform domain. The proposed scheme 
is based on three security layers with compound chaos-based 
substitution followed by decorrelation of pixels with a reality 
preserving fractional Hartley transform and another chaos-
based permutation, thereby facilitating a lossless recovery at 
decryption. The proposed scheme is a novel method that not 
only enlarges the keyspace but also provides better robust-
ness to most of the possible attacks. Security analysis and 

Table 13  Comparative for 
keyspace analysis

Algorithm Ref. [67] Ref. [83] Ref. [84] Ref. [85] Ref. [86] Ref. [71] Proposed

Keyspace 2250 ≈ 10
75

4.2 × 10
59

10
90

2129 ≈ 10
39

10
165

10
98

10
228 ≈ 2757

Table 14  Comparison of averaged correlation coefficients

Algorithm Horizontal Vertical Diagonal

Ref. [18] 0.0023 – –
Ref. [67] 0.0010 0.0054 0.0056

Ref. [83] 0.0033 0.0027 0.0043

Ref. [84] 0.0014 0.0029 0.0038

Ref. [85] 0.0040 0.0011 0.0008

Ref. [71] 0.0015 0.0017 0.0033

Ref. [65] 0.0207 – –
Ref. [79] 0.00063 – –
Ref. [69] 0.0693 0.0610 0.0242

Proposed 0.0028 0.0050 0.0039
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comparative analysis collectively give testimony to the effi-
cacy of the scheme.
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