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Abstract
Human activity recognition (HAR) is a highly prized application in the pattern recognition and the computer vision fields. Up
till now, deep neural networks have acquired big attention in computer studies and image processing fields, and have generated
significant results. In this paper, we propose a deep temporal residual system for daily living activity recognition that aims to
enhance spatiotemporal feature representation in order to improve the HAR system performance. To this end, we adopt a deep
residual convolutional neural network (RCN) to retain discriminative visual features relayed to appearance and long short-term
memory neural network to capture the long-term temporal evolution of actions. The latter was considered to implement time
dependencies occurring when carrying out the activity to enhance features extracted from the RCN network by adding time
information to address the dynamic activity recognition problem as a sequence labeling job. The deep temporal residual model
for human activity recognition system is performed on two benchmark publicly available datasets: MSRDailyActivity3D and
CAD-60. the proposed system achieves very competitive results when compared to others from the state of the art.
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1 Introduction

Human activity recognition in video sequences has attracted
significant attention in computer vision in recent decades,
because of their very broad scope such as home care or daily
living assistance for the elderly/disabled. Research progress
in this field has been faster than expected. Our research pro-
poses a daily living activity recognition that aims to observe
persons and automatically identify what they are doing as
actions in a video sequence. For human action classification,
when we deal with video sequences and not just an image, an
action can be defined as the analyze of what a person is doing
in front of the camera. So, it describes the main events in the
video and it can be represented by a sequence of frameswhich
people can understand seamlessly by using reading contents
of sequential frames. The temporal dynamics between frames
in a video sequence provide more motion information to
recognize the action. Here, the task becomes more computa-
tionally expensive because video sequences are composed of
hundreds of frames that require to be executed separately. In
complex video scenes, visual data need to be analyzed and
transformed into a format that represents the visual content
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effectively. For this purpose, human parsing techniques [1–
4] can be adopted to reduce potentially the searching space
and to provide contextual hints for human action recogni-
tion, in order to obtain the high-level semantic for an image.
Several human activity recognition (HAR) approaches have
been proposed, ranging from traditional method-based hand-
crafted feature descriptor to deep learning-based methods.
HAR approaches based on deep learning have focused great
researcher attention by the considerable improvement in the
recognition accuracy since they overcome several obstacles
confronted by traditional handcrafted feature-based meth-
ods. The strength of deep neural networks is provided by
their ability to act as automatic feature extractor to repre-
sent hidden patterns by backpropagation and learn long-term
temporal dependencies. Handcrafted feature-based methods
extract low-level features from video data and feed them to a
classifier, such asK-nearest neighbor (KNN), hiddenMarkov
model (HMM), support vector machine (SVM) to recognize
actions. These approaches [5,6] are limited by their difficulty
to process lengthy videos containing sequential and contin-
uous information. They are ineffective to recognize more
than one-person action in a scene such as space–time–volume
(STV)-based methods. Some used techniques such as space–
time features (STF) and motion history image (MHI) are
more appropriate to simple datasets, but with hybrid meth-
ods combining different feature extractors (such as HOG,
SURF and SIFT), systems become more expensive in terms
of computational complexity. The action recognition is based
on action detection taking into account a sequence of frames
to determine the overall action. The action detection can like-
wise be used to describe the dominant events in a video. The
human activity recognition task can be described by taking
sequential data as input to provide one single classification
as output. The video representation process has to be simple
and efficient to enforce by selecting and extracting power-
ful and discriminant high-level features, which are robust to
viewpoints and appearance changes. The good representa-
tion of spatiotemporal features from video frame sequences
is critical to build and train a robust model serving to accu-
rately recognize the activity. Convolutional neural networks
(CNNs) are renowned for their great potential in identifying
implicit features for visual appearance data by backpropaga-
tion, so they act as automatic feature extractor without any
artificial intervention. Nevertheless, they are unable to rep-
resent long-term temporal dynamics between frames of the
entire video. Recurrent neural networks (RNN) are suitable
to extract hidden patterns of data in both space and tem-
poral domains. To reduce the impact of vanishing gradient
problem, LSTM has been elaborated to handle time series
data and to acquire long-term dependencies between frames.
Since we are facing the daily living activity recognition prob-
lem, we have to be very quick to make prompt decision. A
model that should make an accurate prompt decision should

learn from scratch.More recently, He et al. [7] have proposed
deep residual networkswhich are very helpful to attenuate the
degradation problem when training deeper networks, since
they involve more than hundreds of layers by announcing a
novel architecture which includes residual connections mak-
ing the residual networks easier to optimize than the plain
networks. The residual connections facilitate the learning of
the identity function; therefore, they facilitate the propaga-
tion of the gradient from the outlet to the network entrance
to enable its efficient training. Before the development of
this type of network architecture, it was impossible to train a
network with more than 25 layers. As the layers got deeper
and the gradients got smaller, performance inevitably dete-
riorated; the error was no longer propagated correctly and
the update of the weights was directly affected. Residual
neural networks have made it possible to go beyond this lim-
itation. Their architecture allows the creation of very deep
neural networks, with better accuracy than those with linear
architectures because they allow to extract more information
and thus have a more advanced analysis of images. Since in
this research work we use databases containing many videos
which are in turn split into a large number of images, learn-
ing the network therefore requires a fairly large amount of
data. Aware of this problem,we explore the daily living activ-
ity recognition issue by proposing a deep temporal residual
model for human activity recognition using raw color (RGB)
data information. Our proposed DTR-HARmodel converges
faster than previous deep neural networks with linear archi-
tecture (AlexNet [8], GoogLeNet [9], VGGNet [10]). In fact,
this model was based on both the skill of the convolutional
neural network to extract spatial features implicitly and the
power of recurrent neural networks (LSTM) to handle with
time series data in order to model the temporal evolution of
the activity.More particularly, inspired by the recent advance
of residual neural networks [7] and video classification [11],
we develop a deep temporal residual network composed of
two subnetworks: The first is a deep residual convolutional
neural network (RCN) with dense residual crossconnections
between the layers to encode sequential data and extract
visual appearance features using a pre-trained CNN archi-
tecture based on ImageNet. To enhance features extracted
from the RCN network a second subnetwork is developed
which is an LSTM model that takes advantage of capturing
the long-term temporal evolution of actions by sequencing
the learning features. To simplify the task, we separate the
video into many sequence video frames, which will be used
as input to our model. The residual convolutional stream-
based pre-trained ResNet-101 [7] model encodes the video
frames as residual spatial features. The latter are enhanced
by applying activations for the last fully connected layer of
the trained RCN network to generate a new encoded feature
representation. These features are fed in second step, into
the LSTM model to extract temporal features by sequencing
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them taking into account the temporal dependencies of activ-
ities in the frame sequences and to finally output the activity
class of each video.

Our paper has the following main contributions. We first
propose a deep temporal residual model for human activ-
ity recognition (DTR-HAR) using raw color (RGB) data
information by combining two deep learning architectures:
A feed forward neural network with end-to-end structure-
based residual CNN architecture is carried out to extract
visual residual spatial features relayed to the appearance of
persons automatically and a LSTM network to capture the
long-term temporal evolution of actions in video streaming.
CNN and LSTMnetworks are fused together to generate new
encoded feature representations useful for automatic activ-
ity recognition. Then, we have reduced the required training
time and avoid our classifier from overfitting by ensuring
the best weight initialization, given the quite small number
of available datasets. We used transfer learning to fine-tune
the parameters of a pre-trained architecture that was trained
on ImageNet dataset. Finally, we expand our datasets arti-
ficially by applying some transformations and geometric
deformations as data augmentation technique to prevent the
model from overfitting and to better discriminate between
pertinent characteristics. Through considerable experimen-
tations, we have spotlighted the benefits of our framework
by validating it on two publicly available datasets, i.e., MSR-
DailyActivity3D dataset and CAD-60. The obtained results
are competitive to the state-of-the-art performance (91.65%
on MSRDailyActivity3D and 91.18% on CAD-60) proving
the efficiency and the utility of the proposed approach.

The organization of the remainder of this article is as fol-
lows: In Sect. 2, we highlight the related works; in Sect. 3, we
elaborate our methodology in detail. We validate our exper-
imentations and discuss our results in Sect. 4. Finally, we
conclude our paper in Sect. 5.

2 Related works

This section reviews the most relevant existent methods
from literature related to action recognition, beginning
from handcraft-based representation approaches until deep
learning-based ones.

2.1 Handcraft-based approaches

In action recognition, classical descriptors used to extract
video representations/features are extended to include tem-
poral dimension [12–15]. The scale-invariant feature trans-
form (SIFT) in [16] was extended to 3D-SIFT [12] and
used to encode spatiotemporal local information to bring
more robustness to the system. The speeded up robust fea-
ture (SURF) technique, which analyses each input frame

at different scales to ensure its invariance to scale changes
by applying a scale-invariant descriptor and rotation, was
extended to 3D SURF [17,18]. In [13], the authors devel-
oped the concepts of histogram of oriented gradient (HoG)
descriptor in video sequences to obtainHoG-3D. The authors
extended images to videos to get 3D gradient vectors. Subse-
quently, descriptor parameterswere calculated andoptimized
for action recognition. Reference [19] used the motion his-
tory image (MHI) to represent the motion direction, the
foreground image (FI) to get the background subtraction
and the HOG descriptor to characterize the magnitude and
direction of corners and edges. These three types of feature
representation were then merged and classified using a sim-
ulated annealing multiple instance learning support vector
machine (SMILE-SVM). Furthermore, for data modeling,
several works have relied on a sparse representation to extract
the key characteristics used by the human activity recogni-
tion systems [20–22]. In [20], the authors presented a human
daily activity recognition framework based on the selection
of an overcomplete dictionary to construct sparse represen-
tations using signals sampled fromwearable sensors. In [21],
Bhattacharya et al. introduced a sparse-coding technique to
represent sensor data for an unsupervised estimation using a
codebook of basis vectors that includes characteristic and
latent movement patterns for human activity recognition.
Also, the work of [22] proposed a multi-temporal dictionary
learning strategy based on sparse representations to recover
quantitative and remote sensing products that are contami-
nated by thick clouds and consequent and attendant shadows.
Despite its great success to achieve remarkable performance
in the field of human action recognition, the aforementioned
approaches have several limitations. In fact, they have dif-
ficulty in handling lengthy videos containing high levels of
illuminations and temporal occlusions, and their capacitywas
stymied to effectively model and learn long-term temporal
information. Furthermore, the requirement of an engineer-
ing process to extract features, get representations and build
vocabulary is labor-extensive (Table 1).

2.2 Deep learning-based approaches

Owing to the cited limitations of handcraft-based approaches,
many researchers focused theirworks on deep learning-based
approaches. These latter have shown significant improve-
ments in several domains such as object tracking [23,24],
video saliency [25,26], image cropping [27], mental activity
observation [28] and image reconstruction [29].

For visual object tracking, Dong et al. [23] proposed a
quadruplet Siamese deep network that uses the potential
connections among the training instances to achieve more
powerful and robust representations for one shot learning.
The authors used a combination between triplet and pair loss
by automatically adjusting weights to improve the perfor-
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Table 1 Related works on handcraft-based approaches in HAR

References Year Feature extraction Feature classification Dataset Acc (%)

Asadi et al. [15] 2018 Large margin nearest
neighbor (LMNN)
+ efficient match
kernel (EMK)

Linear SVM multicolumn1lMSR
action 3D

95.6

MSRDailyActivity3D 85.0

MSR gesture 3D 97.0

3D action pairs 100

UT kinect 97.0

Oreifej et al. [14] 2013 A histogram of
oriented 4D
surface normals
(HON4D)

SVM MSR action 3D 88.9

MSR gesture 3D 92.4

3D Action Pairs 96.6

Hu et al. [19] 2009 MHI and HOG SMILE-SVM CMU action –

Système de
surveillance dans
les centres
commerciaux

–

Klaser et al. [13] 2008 Histograms of
oriented 3D
spatiotemporal
gradients

SVM KTH 91.4

Weizmann 84.3

Hollywood 24.7

Willems et al. [18] 2008 SURF3D SVM KTH 84.2

Bay et al. [17] 2007 SURF Bayes classifier Caltech background
and airplanes set

–

Scovanner et al. [12] 2007 3D SIFT descriptor SVM Weizmann 82.6

mance. To get around the drift problems caused by partial
occlusion and appearance deformation, Liang et al. [24]
proposed a local semantic Siamese network to learn local
semantic features during the offline training for fast object
tracking. In fact, they added a classification branch and a
residual channel attention block into the classical Siamese
framework. To further enhance the representation of features,
a focal logistic loss is designed to mine the hard-negative
samples. During the online tracking, the classification branch
is removed and an efficient template updating strategy is
applied to handle long-term object deformation. For fast and
efficient video saliency detection,Wang et al. [25] proposed a
deep learningmodel by using convolutional neural networks.
The proposed deep video saliency network involves two
parts, namely static saliency network and dynamic saliency
network, which are considered to capture static and dynamic
saliency information. The saliency estimated from the static
network is fused into the dynamic network to produce accu-
rate spatiotemporal saliency result. Lai et al. [26] proposed
a spatiotemporal residual attentive neural network to predict
dynamic attention from limited data. The proposed network

emphasizes two parallel DNN streams to capture and predict
spatial and temporal saliency features. To learn the compre-
hensive spatiotemporal saliency representation, the saliency
features of two network streams are fused by incorporating
dense residual crossconnections among different layers. To
further enhance the spatiotemporal saliency representations,
the authors integrate a composite attention module to learn
the local and global attention priors. To model the temporal
attention transitions across video frames from limited data, a
lightweight recurrent network convGRU is introduced to the
network. Deep learning is also used on photograph cropping.
This technique is used to further polarize the image focus
toward the salient regionwhich canbedefined as themost vis-
ibly bringing out region of an image. Studying this problem,
[27] proposed a deep approach designing a model composed
of two subnetworks: an attention box prediction (ABP) net-
work and an esthetic assessment (AA) network; both of them
is designed to share the same multiple convolutional feature
maps of initial convolution layers. The ABP network derives
initial cropping as an attention bounding box. From a few
cropping candidates generated around the initial cropping,
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the AA network selects the final cropping window with the
best esthetic quality among the candidates. The authors lever-
aged attention prediction and esthetic assessment to produces
high-quality cropping results.

These implemented deep learning models have also
been investigated for action recognition applications. Deep
learning-based approaches [11,30–33] are end to end train-
able, and they can directly be applied on the raw data
frame. To deal with the challenge of action recognition,
[30] implemented 3D convolutional networks in time axis
to extract spatial and temporal features. Karpathy et al.
[11] modified the CNN architecture to a multi-resolution
framework separated in two streams: The context stream
learns low-resolution features, and the fovea stream learns
high-resolution features by applying center crops regions in
the middle portion of the image. In each video sequence,
CNNs was applied to multiple frames to obtain tempo-
ral information using three types of fusion (early, late and
slow); nevertheless, this approach does not provide consid-
erable improvement when compared to single-framemodels.
Simonyan et al. [31] proposed a two stream CNN archi-
tecture that incorporates two feature types: The first one is
spatial stream that takes RGB frames as input data, and the
second is a temporal stream that takes as input dense opti-
cal flows. Since features extracted from optical flow images
contain only short-term temporal information, adding it to
a framework does not enable to learn long-term temporal
dependencies between frames. Tran et al. [32] propose in
their research work, a deep network named 3D convolutional
framework (C3D) that enables to extract temporal features
in an end-to-end structure which evaded the requirement
of pre-computing optical flow features. Nevertheless, C3D
approach covers only a short interval of the video sequence.
To represent the temporal dynamics between frames of the
entire video, recurrent neural networks (RNNs) have been
employed in the task of human activity recognition (HAR)-
based video. RNNs are powerful and robust type of neural
networks that are used to find and extract hidden patterns
of data in both space and temporal domains. In RNN, the
data are processed sequentially and go through a loop so
that when the system makes a decision, it takes into account
the current input and the learned inputs received previously.
The majority of the state-of-the-art approaches [34–40] that
have combinedCNNsandRNNsnetworks for humanactivity
recognition have obtained impressive results. Nevertheless,
because of the huge number of computation’s parameters and
the disappearance of preliminary inputs after few layers, the
problem of vanishing gradient has appeared. An effective
method have been proposed as a solution to this problem,
which is LSTM (long short-termmemory) [35,37,41] that are
able to acquire long-term dependencies and integrate multi-
plicative logic gates allowing to store and access relevant
information over long intervals, thus reducing the impact of

the vanishing gradient problem. Combining CNN and LSTM
to extract spatial and temporal characteristics is a technique
that has attracted attention to dealwith computer vision tasks.
For instance, an implementation of daily living activities
(DLA) recognition using deep networks is developed in [42]
proposing two deep learning approaches that exploit LSTM
to learn long-term temporal dependencies. The first approach
is a multi-scale LSTM (MT-LSTM) model which combines
three LSTMs to detect temporal dependencies of the activ-
ity from preprocessed features of skeletal data. The second
is a CNN-LSTM model which combines convolutional and
recurrent networks to extract spatial and temporal informa-
tion from raw data. Reference [37] proposed and evaluates
two types of deep neural network architectures to merge
spatial and temporal image information over longer peri-
ods of time. The first one uses a CNN network to explore
high-level features of frames and improves the classification
accuracy by increasing the number of frames. AsCNN-based
approaches are able to extract only visual appearance fea-
tures, and lack the capability to model a long-term temporal
information, a second model was proposed to explicitly rep-
resent the video as a sequence of frames and connect the
output of the CNN network to the recurrent LSTM architec-
ture. Therefore, for better action recognition, reference [43]
suggested CNN and bidirectional LSTM networks to reduce
the complexity and redundancy. The CNN model extracts
features from the sixth frame of videos, and the BD-LSTM
network is used to learn the long-term sequential information
from features of the lengthy videos. The BD-LSTM model
is composed of two layers each having forward and back-
ward passes. Reference [44] used two stream ConvNet to
extract spatial and temporal features using ResNet-101; this
work concatenates spatial and temporal features to construct
feature matrices which are used as data input to a temporal
segment LSTM or a temporal inception for activity predic-
tion to better exploit temporal information. Reference [45]
proposed a system that combines bidirectional gated recur-
rent unit based on recurrent neural network with a 3D CNN
in a votingmanner. The resulting RNN and CNN features are
then fused and fed into an SVM classifier for action predic-
tion. In [46], Lieyun Ding et al. implemented a deep learning
hybrid model which combines CNN and LSTM neural net-
works to recognize workers’ unsafe actions. In fact, CNN
generates spatial features from each video frame, which are
used as input data to theLSTMmodel to learn about their tem-
poral dynamics. The authors in [47] proposed a two-stream
approach to recognize human action from multimodal video
data involving RGB images and articulated poses; a con-
volutional model takes 3D tensor data as input to process
the pose stream and a spatiotemporal attention mechanism is
used to manage the RGB flow. Reference [48] incorporated
a deep three-dimensional convolutional network (C3D) and
LSTM networks to capture spatiotemporal dynamics over
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long range. The C3D network models motion and appear-
ance information integrating temporal information, and then,
the LSTM is used to encode features and to classify the
activities. Reference [49] proposed a deep architecture that
employs LSTMnetwork to capture long-term temporal infor-
mation that evolves with pose change and CNN to focus on
static appearance information. Scores of LSTM-based skele-
ton andCNN-based appearance classifiers are fused to obtain
the final score for activity classification (Table 2).

In the light of these earlier works, the present paper
proposes a simple and effective method to handle with
the human action recognition issue. The developed frame-
work aims to incorporate the residual convolutional neural
network with the recurrent neural network to acquire the
temporal information from time series data. In this paper,
we used a residual-based CNN network to generate global
contextual feature representation, enabling the use of exist-
ing CNN models namely ResNet-101 directly applied on
video data using fine-tuning techniques. Our model pro-
vides effective feature representation for spatial and temporal
sequential data by combining CNN and RNN networks;
in fact, RNN uses the extracted residual CNN features as
input and provides stronger encoded features that take into
account long-term temporal dependencies of thewhole video
sequence input data. The resulting spatiotemporal feature
vector is inserted into the softmax layer that operates as
classifier by generating probabilities which will be used to
classify actions and then to recognize them by predicting the
corresponding label of the video sequence. Experimentally,
the proposed approach shows competitive results compared
to state-of-the-art methods when applied on two publicly
available daily activity benchmarks.

3 Methodology

In this section, we describe our deep feature representation
method for HAR in detail. We first introduce the deep resid-
ual neural networks and how they are exploited for residual
feature extraction. Secondly, we introduce LSTM networks
and the technique to extract temporal features taking into
account temporal information dependencies between video
frames.

3.1 Data augmentation techniques

Following [11,16], we benefit from the data augmenta-
tion method to expand our datasets artificially by applying
some transformations and geometric deformations to original
images allowing to produce transformed images. This pre-
vents the model from overfitting by increasing the number
of frames having the same legends and help to better dis-
criminate between pertinent characteristics. Indeed, before

introducing data to the network, we apply preprocessing
operations to all frames. The first kind of data augmentation
consists of making image reflections on the left direction, so
that pixel values were reflected along the boundaries of the
frame. The second stage of preprocessing consists in translat-
ing the images bymoving them on the horizontal and vertical
axes.

3.2 Temporal residual representation

3.2.1 Deep residual neural networks

Recently, deep residual networks have shown persuasive per-
formance and acceptable convergence behaviors on several
experiments carried out on large scale image recognition
challenge, such as ImageNet [50]. These studies claims that
residual frameworks are very helpful to attenuate the degra-
dation problem when training deeper networks, since they
involves more than hundred of layers by announcing a novel
architecture which includes shortcut connections making
the residual networks more easy to optimize than the plain
networks. The difficulty in learning such deep networks is
particularly related to the backpropagation of the gradient.
Furthermore, with deeper networks, the gradient is lower for
updating the weights of the lowest level layers (first layers),
so too deep architecture does not really update these layers.
The main idea proposed in ResNet [7] is to utilize residual
connections enabling beneficial optimization for very deep
neural networks. A residual connection materializes the task
to pass the input in two convolution filters and also to pass
the same input directly to the following layers. And this is
done by calculating the sum of the results of the two convo-
lutional layer and the input value. By using this structure, the
authors demonstrate the interest of learning very deep neural
networks by their performances and facilitate their efficient
training.

Before the development of the residual network architec-
ture, it was impossible to train a network with more than 25
layers. As the layers became deeper and the gradients became
smaller, the performances were inevitably degraded: The
error was no longer propagated correctly, and the update of
the weights was directly affected. Residual neural networks
have made it possible to go beyond this limitation. Their
architecture allows the creation of very deep neural networks,
with better accuracy than those with linear architectures
because they have the ability to extract more information
and thus have a more advanced analysis of images.

Residual blocks A residual block is considered as the basic
unit in a residual network, and each residual block contains a
residual branch and an identity mapping. The corresponding
formula is represented as,
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xl+1 = xl + F(xl , wl) (1)

where xl and xl+1 match, respectively, to the input and the
output of the lth residual block, F represents a residual func-
tion and wl is a set of weights, respectively, associated with
the block. A residual network is composed of residual blocks
stacked sequentially.

3.2.2 The ResNet-101 model

ResNet-101 is a model that is easy to implement and particu-
larlywell suited for different types of recognition problems. It
has been pre-trained on the ImageNet database, which con-
tains more than 14 million images classified in more than
20,000 category and available by the image analysis com-
munity of Stanford Vision Lab. This model is composed
in total of 347 layers corresponding to 101 layer residual
network, has the particularity of introducing residual connec-
tions and can classify images into 1000 object categories. The
ResNet-101 architecture is composed of five convolutional
layers, two pooling layers and two fully connected layers.
Moreover, the Residual Network ResNet-101 model based
on the work of [7] is required because the network architec-
ture requires a very large number of parameters. Learning
all these parameters using a small database is a significant
challenge that causes an enormously waste of time. Unlike
convolutional neural networks that have a linear architecture
(a stack of layers for which each output is only connected
to the next layer) (see architecture A of Fig. 1), in a residual
network, the output of the previous layers is connected to
the output of the new layers to pass them both to the next
layer. A schema is required (see architecture B of Fig. 1):
In ResNet model, every layer is composed of several blocks.
ResNets go deeper by increasing the number of operations
within a block; however, the total number of layers remains
unchanged. An operation consists of a convolution, a batch
normalization and a rectified linear unit (ReLU) activation
function, apart from the operation of the last block that does
not apply the ReLU activation. At the heart of this model, the
main idea is that the identity function must be added at every
additional layer. This denotes that when we train a new addi-
tional layer into an identity mapping: f (x) = x , we obtain
an effective model as the initial one. The new model is able
to give better solution to adapt the training dataset, and so, to
extract deeper sparse and pertinent residual representation of
spatial features from the action video frames, the additional
layer can facilitate reducing the training errors.

3.2.3 Deep residual feature extraction

In this paper, the residual network ResNet-101 is used with
pre-trained parameters from ImageNet database and applied
to extract sparse and pertinent residual representations of spa-

Fig. 1 Extract from the architecture of a convolutional neural network
without a and with b residual connection

tial features from video frames of each video sequence. The
architecture is composed of several ResNet blocks with three
layer deep composed of five composite convolutional layers
including small kernels sizing by 7× 7, 1× 1 and 3× 3, The
output is obtained from the average pooling operation applied
to the final feature map of the network followed by the fully
connected layer “fc.” In fact, the 2048-dimensional features
resulting from the last average pooling layer “pool5” with 1
× 1 × 2048 activations are used as input to the fully con-
nected layer “fc”with 1× 1×NbreInputVideo activations. The
finally yielded NbreInputVideo × 2048 is considered as resid-
ual features generated from the reused pre-trained model in a
feed forward pass. In fact, each sequence video was consid-
ered as a class of activity apart. So, we have as many classes
as number of video sequences in the database. Each video
was separated into many clips. Video frames are picked to
be processed randomly, as they were represented temporally
during the course of the action. For each input frame, we cal-
culate the output of neurons connected to the local regions
in the residual layers. In this input volume, we calculate the
product between weights and the small region to which neu-
rons are connected and an identity function must be added at
every additional layer like one of its elements. This denotes
that when we train the new additional layer into an iden-
tity mapping: f (x) = x , we obtain an effective model as
the initial one. The new model is able to give better solu-
tion to adapt the training dataset, and so, to extract deeper
sparse and pertinent residual representations of spatial fea-
tures from the action video frames, the additional layer can
facilitate reducing training errors. A feature vector of dimen-
sion Nbrinput_video × 2048 is the outcome of the fully
connected layer which represents the deep residual feature of
each sequence video from the database. Figure 2 summarizes
the proposed method for the residual features extraction.
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Fig. 2 Proposed residual feature extraction methodology

3.3 Deep temporal feature encoding

3.3.1 Recurrent neural network

To examine the hidden patterns and encode spatial extracted
features temporally, recurrent neural network (RNN) is
required. A recurrent neural network models the temporal
dynamics by generating the current hidden state ht and the
output yt utilizing its current input xt and the previous hidden
state ht−1 via the following equations:

ht = F(Wxhxt + Whhht−1 + bh) (2)

yt = F(Whyht + by) (3)

where Wxh , Whh and Why stand, respectively, for the input-
to-hidden, the recurrent hidden-to-hidden and the hidden-to-
output connections. by and bh are biases terms for output and
hidden states, respectively. F is an element-wise nonlinear-
ity, such as a sigmoid, hyperbolic tangent or a rectified linear
unit. To handle video sequences and understand an action
context, we must explore the visual information restricted to
each sequential video frame. RNN is able to deal with such
problems, but it can be difficult to train long-range sequences,
because it frequently forgets the earlier sequences informa-
tion’s, which are due to the vanishing or exploding gradients
problems [51] that can be produced when propagating gra-
dients down over many RNN layers. The vanishing gradient
occurs when it tends to zero due to n small derivatives that
are multiplied together across T indices of time. The explod-
ing gradient arises over exponential increase by multiplying
gradients repeatedly through all network layers. This phe-
nomenon will eventually lead to a totally unstable network.
LSTM has been considered to overcome the vanishing and
exploding gradient problems by integrating memory units to
learn long-term temporal dynamics over sequential frames.

3.3.2 Long short-termmemory (LSTM) model

LSTM is a variety of recurrent neural networks that contain
memory cells that facilitate to learn long-term dynamics,
and conserve data information through time. Furthermore,
LSTM network announces an exceptional structure that uses
three gates (input, forget and output) to supervise and update
the cell memory’s state and to manage long-term tempo-
ral dependencies among consecutive frames. These gates
make adjustments by a sigmoid unit to track the information
flow during the training phase. We adopt LSTM network for
human action recognition because it is beneficial to model
sequential data in computer vision challenges. First, it allows
the end-to-end fine-tuning in straightforward structure. Sec-
ond, when manipulated with sequential data such as video
sequences, LSTM is not closed to a fixed-length data of the
network architecture. Figure 3 (right) demonstrates a basic
structure of LSTM unit. An LSTM neuron is able to select at
each time step, the type of operation (read, write or reset) that
will be applied to the memory cell through the mechanism
of gates, and the latter are used to control the information
received by the cell. This technique helps LSTM to retrieve
and retain the information over many time steps. An LSTM
unit accommodates an input gate it , an output gate ot , amem-
ory cell ct and a forget gate ft . For each time step t, LSTM
performs thememory cell update by the following equations:

it = δ(Wxi xt + Whiht−1 + bi ) (4)

ft = δ(Wx f xt + Whf ht−1 + b f ) (5)

ot = δ(Wxoxt + Whoht−1 + bo) (6)

gt = δ(Wxcxt + Whcht−1 + bc) (7)

ct = ft ⊗ ct−1 + it ⊗ gt (8)

zt = ht = ot ⊗ tanh(ct ) (9)

xt , ht , ct and zt refers to the input vector, the hidden state,
the cell state and the output at the tth state, severally. The
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Fig. 3 Architecture of the temporal stream network (left). The LSTM layer is consisting of LSTM cells. Each LSTM cell is structured as (right)

output zt is dependent on the hidden state ht , whereas ht is
decided by the cell state ct , and its prior state ht−1. W and
b are the LSTM network parameters’ corresponding to the
input vector’ weights and the bias, respectively. δ(x) denotes
a sigmoid function defined as δ(x) = (1 + e−x )−1, tanh is
known as an activation function and ⊗ is specifying the ele-
ment wise for the multiplication operation. The cell memory
state ct−1 and the output zt are assessed iteratively to extract
the long-range dependencies between sequential frames. xt
is the new representation of the spatial feature vector after
transformation, which is employed as input to the LSTM
network. The forget gate ft rubs out less significant infor-
mation from the cell memory ct−1, and the output gate ot
determines the amount of information from the cell memory
ct to be transmitted to the hidden state ht . gt is a function of
the actual input frame and the precedent hidden sate ht−1.
The hidden state is calculated using the memory cell ct and
the activation function tanh.

3.3.3 Temporal feature extraction

Our DTR-HARmodel works by processing each input frame
Frt on a feature transformation ϕ parametrized by � to cre-
ate a fixed-length vector representation ϕt as shown in this
equation:

ϕt = ϕ�(Frt ) (10)

This vector will be considered as input for the LSTM net-
work. Furthermore, each visual input framemust be encoded
function as the residual CNN output features to generate
new encoded feature representation that will be fed into
LSTM to extract temporal features needed for the activ-

ity prediction. This step consists to transform an input
data Xt to a corresponding activation h for the last spe-
cific fully connected layer “fc” of the trained convolutional
residual network explained in details in Sect. 3.3.1. Since
the obtained matrices are multi-dimensional, we flattened
them into one-dimensional vector by concatenating allmatrix
weights to obtain a new feature vector that will be fed to the
LSTM which collects the temporal dependencies informa-
tion’s between all frames of the sequence video. Differently
from the previously used CNN model, the actually consid-
ered LSTM model is composed of a single layer where the
number of neurons corresponds to the number of features
extracted by CNN and transformed by the ϕ function as pre-
sented the equation 10. Generally, the LSTM is parametrized
by the weights and biases corresponding to W and b of the
input and the hidden layers generating an output yt of the
input xt and the anterior time step hidden state ht−1 in a way
that each output is inferred by the previous helping to update
the current hidden state ht at each time step. Finally, the
output of the LSTM was considered as input to a fully con-
nected layer with a softmax activation function to predict the
activity performed in the sequence video. This softmax layer
is employed to attain the class scores for the given video.
The prediction distribution P(Yt ) at the current time step t
is achieved by calculating the average of the probabilities
scores inferring the class activity, following Eq. 11:

P(Y ϑ
t = 1) = softmax(Yt ) = softmax(Wyt + bt ) (11)

where W and bt stand for the trained parameters design-
ing weights and biases of the LSTM model and ϑ ∈ ∨ is
designing the prediction. The developed model is considered
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advantageous by its flexibility and its independence from the
length of the video sequence to be processed.

4 Implementation details

Base architecture Our spatial residual ConvNet stream is
based on ResNet101 architecture. More specifically, our
model takes clips with a size of 224× 224×3, and 224 is the
height and width of input frame. We chose such input res-
olution to facilitate the reuse of existing pre-trained image
classification network models without requiring to retrain
the network from scratch. This prevents the relatively used
small datasets from overfitting. The spatial stream (resid-
ual CNN) is pre-trained on a classification training subset of
the ImageNet, i.e., the large visual database is designed for
use in visual recognition issues [50]. The resulting 2048-
dimensional features generated from the average pooling
layer “pool5” with 1× 1× 2048 activation are used as input
to the fully connected layer “fc” with 1× 1×NbreInputVideo
activation. A spatial feature vector of size NbreInputVideo ×
2048 is resulting from the last fully connected layer.

For the temporal stream, each video sequence has been
split into frames which are in turn divided into train and test
sets. Activations are applied to each video sequence subset
using the last fully connected layer of the spatial residual
convNet of size NbreInputVideo× 2048. New representations
of each video sequence frames are collected into a single vec-
tor which is considered as input for LSTM model to extract
temporal features by sequencing them taking into account the
temporal dependencies of activities in the frame sequences
and to finally output the activity class of each video. Since
the used action recognition datasets are considerably small
for the training which increases the risk of overfitting, data
augmentation operators detailed in Sect. 3.1 are applied in
the training stage to improve the performance of our net-
work architecture in such a way that the training dataset was
artificially augmented at each iteration. Each sequence video
from the datasets needs to be split, and the obtained video
frames are required to be processed. Therefore, N individ-
ual frames are inputted into the residual ConvNet network
which are then connected to temporal network composed
of one single-layer LSTM with the number of hidden units
corresponding to the number of features reproduced by the
residual ConvNet model.
Hyper-parameter optimization Our spatial residual Con-
vNet model is strongly initialized with ImageNet pre-trained
weights for faster training. The spatial network is trained
end to end by optimizing the crossentropy cost function
using “stochastic gradient descent” (SGD) and backpropa-
gation. We used a learning rate of 0.0001 and a mini batch
size of 50, and the network is trained for 6 epochs for
two used datasets. Our residual ConvNet model is trained

for more than 16000 iterations for three days. The net-
work parameters converged after around 1000 iterations with
one epoch. For the temporal stream, we employed “Adam”
parameter update algorithm for optimization. For MSRDai-
lyActivity3D dataset, the learning rate factor is set to 0.001
to fine-tune parameters’ network along 100 epochs and the
batch size were set to 32. For CAD-60, the network was
trained for 300 epochs with learning rate factor set to 0.001
and a mini batch size of 16. For both two networks, the
momentum is set to 0.9. The temporal model is trained for
more than1000 iterations for onehour.OurDTR-HARmodel
was conducted on a 2.6 GHzmachine (Intel Core i7-6700HQ
CPU) with 8GB of DDR4 RAM using MATLAB 2018a. We
trained and tested our model on a NVIDIA GeForce GTX
960M with 4GB GDDR5 GPU machine.

5 Experimental results

This section describes the experimental setup of the train-
ing process and the experimental results of our proposed
method. We have carried out several experiments in order to
be able tomake a good comparison of the performances of the
method proposed in this work and those of the two state-of-
the-art datasets are evaluated using the proposed deep neural
network-based model for activity recognition, namely CAD-
60 [52] and MSRDailyActivity3D [53] datasets.

5.1 Dataset description

Cornell activity dataset CAD-60 [52] is an activities dataset
recorded by aMicrosoft Kinect sensor. It contains 60 RGB-D
videos with 12 different actions performed by 4 subjects. The
performed actions are: “rinsing mouth,” “brushing teeth,”
“wearing contact lens,” “talking on the phone,” “drink-
ing water,” “opening pill container,” “cooking (chopping),”
“cooking (stirring),” “talking on couch,” “relaxing on couch,”
“writing on whiteboard” and “working on computer.” Each
video is describedwithRGB, depth and skeletonsmodalities.
MSRDailyActivity3D dataset [53] This dataset was captured
by a Kinect sensor, to deliver depth maps, RGB video and
skeletons modalities. In total, it contains 320 RGB-D video
samples of 16 daily activities executed by 10 different sub-
jects. All activities are performed in the living room, those
are: “Drink,” “Eat,” “Call cellphone,” “Read book,” “Use lap-
top,” “Use vacuum cleaner,” “Write on a paper,” “Sit still,”
“Toss paper,” “Play game,” “Cheer up,” “Lay down on sofa,”
“Play guitar,” “walking,” “Play guitar,” “Stand up” and “Sit
down.” Each activity is executed twice by the same person:
one in the standing and the other in the sitting position.
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5.2 Comparisons analysis

For analysis purpose, many evaluation parameters are cal-
culated such as accuracy, precision, recall and F-score are
calculated using the following mathematical equations:

Accuracy = TP + TN

TP + TN + FP + FN
(12)

Precision = TP

TP + FP
(13)

Recall = TP

TP + FN
(14)

F-measure = 2 × Precision × Recall

Precision + Recall
× 100 (15)

In general, positive means identified and negative means
rejected. So, in the above-stated equations, TP (true posi-
tive) corresponds to instances correctly identified, FP (false
positive) for instances incorrectly identified, TN (true nega-
tive) for instances correctly rejected and FN (false negative)
for incorrectly rejected instances. To evaluate the perfor-
mance of our proposed DTR-HAR approach, we compare it
with different existing state-of-the-art human activity recog-
nition methods. The activity recognition performance of the
proposed DTR-HAR approach and the competing methods
on CAD-60 and MSRDailyActivity3D datasets are summa-
rized in Table 3, in which the overall accuracy’ results of
all the competing methods are selected from the correspond-
ing publications. Table 3 shows that the proposed DTR-HAR
approach achieves competitive results compared to all recent
state-of-the-art methods on both CAD-60 and MSRDaily-
Activity3D datasets, thus justifying the effectiveness and the
good generalization of the proposed model. Datasets were
considered to involve daily living activities performed by
different persons. We have split each dataset to training and
test subsets to evaluate the performance of our approach and,
so, the quality of our model by calculating the corresponding
accuracy value. Each video was sampled into frames which
serves as input to the residual ConvNet network. The pre-
trained ResNet-101 was used to learn spatial features and to
fine-tune hyper-parameters.

5.2.1 CAD-60 dataset results

In Table 3, our deep temporal residual (DTR-HAR) model is
compared to different state-of-the-art methods. The 5-CNN
streams approach [54] is lower than our proposal for 1.18
points, although it is a multimodal approach involving RGB,
depth and skeleton as inputmodalities, whereas our proposed
model use only RGB frames as input modality. This confirms
that our proposedmodelworks considerablywell onCAD-60
dataset.

The confusion matrix represented in Fig. 4 entails the
accuracy of each action class; i.e., each row corresponds to
the predicted class and each column designs the actual class.
More than half of the activities, (especially, cook (chopping),
Open container, Open pill container, Relax, Rinsing, still,
talking couch, talk phone, wear lens, wear cont lenses and
work computer) were 100% correctly classified and the other
are classified with a high level of confidence, which proves
the efficacy and the robustness of our proposal.

Most of the activities are correctly classified with a high
confidence level. As illustrated in Table 3, our proposed
model performed well and achieved superior accuracy with
similar state-of-the-art approaches, which is highlighted in
bold text.

The action class brush teeth is misclassified by 25% as
shown in Fig. 4. It was sometimes recognized as Rins-
ing action class. This misclassification is explained by the
similarity of both fine-grained actions with subtle motion
variations tacking place in the same background, which are
describing a person carrying an object in his hand, in the
direction of his mouth. Figure 5a shows a person who is
brushing his teeth, and Fig. 5b shows a person who is rinsing
his mouth. The object that was not clearly distinguished in
both frames is the toothbrush in the brush teeth action class
and the glass in the rinsing action class. In addition, both
activities have the same hand movement, thus inducing con-
fusion between the two classes of action. A similar comment
applies to the action class Drink which is misclassified by
25% and is confused with the action class talk phone. This
misclassification is due to the similarity of the two actions
which involve a person taking an object in his hand and the
position of the hand is raised toward his head. For the action
class Random, it was misclassified by 25% and is confused
with Write board. This can be explained by the presence of a
white board behind the person performing the action, frames
involving a person very close to the white board are then
classified as White board action. Figure 6a shows a person
who is performing a Random action, and Fig. 6b illustrates
the case of a person who is writing on a white board. Frames
of the two actions which involve a person in front of a white
board aremaking the confusion, because of their repetition in
both actions within Random andwhite board. In addition, the
cook stirring action class is confused with -work computer-,
since in both action classes the person doing the action is in
front of a table and he is manipulating an object using his
hands.

We evaluate the performance of our system by exploit-
ing various evaluation metrics for each activity separately.
The obtained results are presented in Fig. 7 which is in fact
a histogram illustrating the precision (in blue), Recall (in
orange), F1-score (in gray) and accuracy (in yellow) for each
activity of CAD-60 dataset. The majority of activities have
been correctly classified (with precision, recall, F1-score and
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Table 3 Results on CAD-60
and MSRDailyActivity3D
datasets using RGB videos

Dataset Method Accuracy (%)

CAD-60 STIP [55] 62.50

MEMM-HOG* [52] 64.20

Multi-level depth fusion* [56] 67.40

Actionlet ensemble+ [53] 74.70

Object affordance+ [57] 71.40

MSLF+ [58] 80.36

JOULE-SVM+ [59] 84.10

4-stream CNN [60] 89.05

5-CNN streams [54] 90.00

DTR-HAR (ours) 91.18

MSRDailyActivity3D CNN-LSTM+ [61] 63.10

RGB + CS-Mltp + SVM [62] 65.63

Pose-driven attention [63] 76.64

IPM [64] 83.30

DSCF+ [65] 83.60

P-CNN + kinect + pose machine*+ [66] 84.37

RGGP + fusion+ [67] 85.60

Actionlet ensemble+ [53] 85.80

MSLF* [58] 85.95

BHIM [68] 86.88

IPM + joints [64] 89.30

DTR-HAR (ours) 91.56

Bold indicates the results of our method for each evaluation metric of performance
*Corresponds to methods requiring depth modality. +Corresponds to methods requiring skeleton modality

Fig. 4 Confusion matrix of DTR-HAR evaluation on CAD-60 dataset
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Fig. 5 a A brushing teeth person from frames set of class brush teeth, b a rinsing mouth person from frames set of class Rinsing

Fig. 6 a A random person from action class Random, b a writing board person from action class white board

Fig. 7 Performance evaluation metrics by activity in CAD-60 dataset
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Table 4 Precision and recall of
the DTR-HAR model on
CAD-60 dataset

Activity Precision (%) Recall (%) F1-score (%)

Brush teeth 100.00 75.00 86.00

Cook (chopping) 100.00 100.00 100.00

Cook (stirring) 100.00 75.00 86.00

Drink 100.00 75.00 86.00

Open container 100.00 100.00 100.00

Open container 100.00 75.00 86.00

Open pill container 80.00 100.00 89.00

Random 75.00 75.00 75.00

Relax 100.00 100.00 100.00

Rinsing mouth 80.00 100.00 89.00

Still 100.00 100.00 100.00

Talk couch 100.00 100.00 100.00

Talk phone 100.00 100.00 89.00

Wear lenses 80.00 100.00 100.00

Wear contact lenses 100.00 100.00 100.00

Work computer 100.00 100.00 89.00

Write board 75.00 75.00 75.00

Overall average 92.00 91.00 91.00

Bold indicates the results of our method for each evaluation metric of performance

accuracy are at 100%). Only the writing board and Random
are the worst in their classifications, with evaluation metrics
not lower than 75% (which are still acceptable). This mis-
classification is explained by their great similarity in many
details when carrying out the action.

Precision, Recall and F1-score are calculated and sum-
marized in Table 4, proving the good results achieved by the
DTR-HAR model on CAD-60 dataset, detailing the perfor-
mance attained for each activity class. This can be explained
by the good ability to discriminate between the four persons
realizing the actions and confirms that our DTR-HARmodel
is able to treat temporal patterns in order to predict actions.

5.2.2 MSRDailyActivity3D dataset results

Table 3 displays the performance comparison of our DTR-
HAR framework with state-of-the-art approaches on MSR-
DailyActivity3D dataset. Although the DTR-HAR frame-
work involves only the RGB modality type, we can guar-
antee that our model outperforms the other state-of-the-art
approaches whether or not combining multiple modalities.
This demonstrates that the learned representations can gen-
eralize across domains. The work of [61] has obtained bad
results in this dataset although it was based on the combina-
tion of two deep neural networks that was CNN combined
with LSTM; however, the used CNN is not based on transfer
learning concept. Learning the model and fine-tune hyper-
parameters on a large-scale dataset is very efficient to obtain
high performance level on a small one.

Based on the confusion matrix results in Fig. 8, the major-
ity of the activities were correctly predicted since they were
highly discriminated. Nevertheless, in some cases, some
actions were confused with each other due to the similar-
ity of fine-grained actions with subtle variations in the same
background. Indeed, a person can exist in similar positions
during the realization of two different activities, such as with
drink and call cellphone action classes. The action class drink
is confused with call cellphone by 5.0%. This confusion is
explained by the fact that the person performing the two
actions holds an object in the hand by bringing it closer to
his head to perform the desired action, once the action is per-
formed, he lowers his hand. Here, the object handled for the
two fine-grained actions was not correctly detected for the
two similar actions drink and call cellphone.

Figure 9 displays a person carrying a glass in his hand to
drink, when finished, he lowers his hand down and Fig. 10
illustrates the case of a person holding a phone in his hand
to call, when finished, he lowers down his hand. The first
and last frames of the two actions which present a person
raising his hand to the head and lowering his hand down,
respectively, are making the confusion, because of their
reduplication in the two cases of actions within drink and
call phone. Otherwise, the person performing each action
is doing the same steps except that, the object handled in
his hand, changes. Here, the differentiation between some
actions when interacting with objects by hands becomes a
keydistinguishing factor for recognition.Limitedby the pres-
ence of static actions like call cellphone, sit still, read book
and so on in MSRDailyActivity3D, it does not allow LSTM
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Fig. 8 Confusion matrix of DTR-HAR approach on MSRDailyActivity3D dataset

Fig. 9 Frame samples representing the action class drink. a A person raising his hand while holding a glass from picture set of class drink, b a
drinking person from picture set of class drink so the glass is very close to his head, c a person lowering his hand after drinking from picture set of
class drink

Fig. 10 Frame samples representing the action class call phone. a A
person raising his hand while holding a phone from picture set of class
call phone, b a call phone person from picture set of class call phone so

the phone is very close to his head, c a person lowering his hand after
calling phone from picture set of class call phone
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Fig. 11 Performance evaluation metrics by activity in MSRDailyActivity3D dataset

Table 5 Precision and recall of
the DTR-HAR model on
MSRDailyActivity3D dataset

Activity Precision (%) Recall (%) F1-score (%)

Drink 94.00 85.00 89.00

Eat 100.00 90.00 95.00

Read book 85.00 85.00 85.00

Call cellphone 94.00 80.00 86.00

Write on paper 89.00 85.00 87.00

Use laptop 100.00 100.00 100.00

Use vacuum cleaner 100.00 95.00 97.00

Cheer up 86.00 95.00 90.00

Sit still 80.00 100.00 89.00

Toss paper 86.00 95.00 90.00

Play game 89.00 85.00 87.00

Lay down on sofa 83.00 100.00 91.00

Walking 100.00 100.00 89.00

Play guitar 80.00 100.00 100.00

Stand up 90.00 90.00 90.00

Sit down 100.00 85.00 92.00

Overall average 92.00 92.00 92.00

Bold indicates the results of our method for each evaluation metric of performance

to recognize the dynamic aspect of the activities, but we still
get considerably good performance.

We repeated the evaluation of our method performance on
MSRDailyActivity3D dataset. We have calculated precision,
recall, F1-score and accuracy for each activity separately.
Figure 11 shows the good classification of the majority of
the activities. These evaluation metrics prove the efficiency
of our system. The metric values shown in the Table 5
show that the DTR-HAR model achieves also good perfor-

mance on MSRDailyActivity3D dataset by discriminating
the activity classes of ten persons interacting in the scene.
The overall achieved precision and recall are 92.00% and
92.00%, respectively. When comparing these results with
those obtained on CAD-60, we noticed that the proposed
system performs better withMSRDailyActivity3D data. The
main cause is that the activities of CAD-60 dataset are more
complex in relation with the involved poses than those con-
tained in MSRDailyActivity3D. So, the estimation errors of
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Table 6 Computational
complexity comparison with
state of the art

Computational complexity AlexNet [8] GoogLeNet [9] ResNet50 [7] Our Model

Spatial (millions) 60M 4M 0.85M 1.7M

Temporal (flops) 1.5 × 109 1.5 × 109 3.8 × 109 7.6 × 109

Bold indicates the results of our method for each evaluation metric of performance

a single pose accumulate, causing less reliable recognition
process.
Computational complexity Introducing additional layers and
nodes to a neural network, makes it deeper. This is a critical
approach to improve its performance and in return increase
its computational complexity. Consequently, it is crucial and
interesting to resolve the problem of high computation cost
to realize real time and reliable human activity recognition
by deep learning models. Table 6 shows that our network
model converges well. It has fewer parameters than other
deep networks.

6 Conclusion

In this work, we proposed a deep temporal residual neural
network architecture which is used to model spatiotemporal
sequence video information in order to enhance the perfor-
mance facing the human activity recognition challenge. A
deep convolutional neural network-based residual network
model is used to extract discriminative visual spatial features
and a LSTM neural network to deal with the long-term tem-
poral dependencies whose order has a great influence on the
context of the performed action. In fact, we have exploited
residual spatial features to extract temporal features by apply-
ing activation to the last fully connected layer of the trained
convolutional residual network. Our approach was validated
on two benchmark datasets and have obtained competitive
results to the state-of-the-art performances. In the future, first,
we intend to incorporate different modalities such as optical
flow and depth maps to seek for the best architecture to fuse
them. Second, we want to combine with hand gesture to bet-
ter distinguish the object handled during the implementation
of the action.
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