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Abstract
The human attention mechanism inspires salient object detection. Most of the saliency methods work on 2D perception
mechanisms, while human attention systems work on 3D perception mechanisms. This proposed method makes use of depth
information from RGBD to robustly and correctly detect the salient object in a complex and clutter background. The saliency
of regions related to object border increases in Poisson probabilistic contrast spacewhile distinguishing the conspicuous object
in a complex and clutter background. This process produces a global concave reference surface. This global reference plane
integrated with intra-regional spatial, structural, color, and depth information detects the salient object correctly. Background
estimation and central saliency integration thoroughly remove the background. This algorithm generates a robust conspicuous
object. The experimental result presented here shows that the proposed method performs better in comparison to the recent,
highly referenced and closely related fourteen state-of-the-art methods, and the three publicly available complex RGBD
datasets and six evaluation parameters.

Keywords Salient object detection · Poisson probabilistic modeling · Probabilistic contrast · Background elimination ·
Global saliency · Regional saliency · Depth saliency

1 Introduction

Visual saliency can be defined as the highlighting of the most
prominent object from the cluttered and complicated back-
grounds. Initially, the problem of saliency originated from
the field of neuroscience, psychology and computer vision
applications. The applications of salient object detection are
diverse and applicable in attention of neurobiology [1], auto-
matic action recognition [2], saliency-aware video object
segmentation [3,4], video salient object detection [5,6], cor-
ner detection [7], etc.

The computational model of saliency is mainly catego-
rized into three domains. The initial computational model
is based on a bottom-up and low-level feature without any
training and learning. And the most dominating feature
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in this model is contrast, which is defined as pixel-level
contrast [8], patch-level contrast [9], region-level contrast
[10], multi-scale contrast [11], center-surround contrast [12]
color contrast and spatial contrast [13], etc. However, there
are some other highly reported features in recent literature
like center prior [14], background connectivity [15], sur-
roundness [16], depth [17,18], superpixel-based [19] and
abjectness [20,21].

The second computational model is top-down learning-
based and dependent on high level semantic [22], contextual
[23,24] and structural features [25]. These features are used in
training and learning with manually annotated ground-truth
data. The next recent computation model is a hybrid model
that integrates the low level and high-level features. Most of
the models vary on proposing the integration strategies to
increase the robustness in saliency detection.

In particular, we define three challenges in the model of
saliency computation: (1) interior saliency discrepancy, (2)
exterior saliency discrepancy and (3) object border discrep-
ancy. Next, we discuss these challenges and our motivation
to mitigate these challenges in holistic integration-based
approaches. Interior saliency discrepancy is defined as
removing the saliency of the salient region, which is simi-
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Fig. 1 Saliency detection in
complex and clutter background
with minimizing discrepancies
in the interior, exterior and
border regions saliency

lar to the background regions. Exterior saliency discrepancy
is explained as increasing the saliency of non-salient regions,
which are identical to prominent object regions. Object bor-
der discrepancy is defined as destroying the structure of the
object border regions.

The global contrast and other low-level features-based
saliency models [12,13,26,27] are computationally efficient
and produce full-length saliency. This model generates inte-
rior, exterior and border region saliency discrepancies. Most
of the models fail in complex and clutter background. The
central saliency-based cellular automata are optimal and
highly referenced in the literature, which minimizes the inte-
rior saliency. In contrast, these models produce exterior as
well as border region discrepancy. Therefore, this model
is used in the saliency enhancement stage in the proposed
method. Some other recent saliency models measure the
backgrounds to remove the exterior saliency discrepancy.
These approaches minimize the exterior saliency but do not
reduce the interior and border saliency discrepancy (Fig. 1).

All these 2-D models generally fail in low depth images.
The depth clues in RGBD saliency give an extra space to
increase the saliency in low depth 3D images. However, it
has discriminative power against the complex and clutter
background. Therefore, to capture the low depth features,
the RGBD saliency model is used. RGBD saliency model
captures low-level depth information but is itself not suf-
ficient for salient object detection. Therefore, Cheng et.al
[17] used color and structural-based regional saliencies [13]
to exploit the regional features. But this model produces
saliency, which minimizes exterior saliency discrepancy and
improves the interior saliency discrepancy but fails in bor-
der region discrepancy. Zhu et al. [28] used dark channel,
central channel and other purifying saliency features along
with depth features. Thismodel produces better saliency than
other RGBDmodel. This model minimizes both interior and
exterior saliency discrepancy, although this model fails in
border region discrepancy.

To address the limitations as mentioned above, the global
concave topographical saliency is used as a reference surface

in the proposed method. This surface is used as a reference
surface forminimizing all these said discrepancies. Themain
contributions of the proposed method for addressing the dis-
crepancies mentioned above are as follows:

• We are proposing for the first time a global concave
saliency-based reference plane in RGBD saliency com-
putation.

• In this paper, a novel global concave reference surface
is proposed by the addition of DoG-based contour and
improved probabilistic contrast (IPC)-based saliency to
minimize the border region discrepancies.

• The integration of spatial, regional, color and depth
saliencies into a global concave reference surface is pro-
posed to minimize the interior saliency discrepancy.

• The integration of spatial, regional, color and depth
saliencies into Gaussian-based background elimination
model is proposed to minimize exterior saliency.

Global concave-based saliency is vital in providing a refer-
ence plane for regional saliencies integration, because this
reference surface has enhanced saliency on object boundary
through the DoG based contour. This enhanced boundary
with improved probabilistic contrast preserves the border
region saliency during regional saliency integration. This
integration proves the discriminating characteristics through
the results obtained. This novelty has added a different space
attention rule for salient object detection.

This paper is divided into six sections. The detailed survey
of closely related literature is studied in Sect. 2. In Sect. 3, the
proposed method is adequately defined and explained. The
experiments and result analysis with state-of-the-art methods
are demonstrated in Sect. 4. The conclusion and the future
scope are presented in Sect. 5. The theoretical principle for
normalization of global probabilistic contrast is presented in
Sect. 6.
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2 Related works

Recently, a significant advancement in the saliency compu-
tation model to predict the salient object accurately has been
witnessed. Various saliency computation models have been
reported in the literature. These models have a significant
contribution toward accuracy and robustness. In these mod-
els, global prior, central prior, background prior, connectivity
prior and depth prior are highly reported features to enhance
the saliency computation. The global prior ismainly designed
by pixel-level contrast method [12,29,30]. There are some
other global contrast-based methods like histogram-based
[13], region-based contrast [31], directional contrast-based
[27], distance-based model [28] which have been studied
and investigated.

There are various global contrast-based methods reported
in the literature review. But, here, we are going to use rele-
vant, recent and widely reference methods. A recent global
contrast-based method uses the color histogram HC [13] of
quantized color channels. In this method, global color con-
trast is computed in themost frequently used color in the form
of the histogram.This algorithmhas failed in complex images
where regions have a similar color histogram. This method
uses color-based regional saliency (RC) [13] to address this
issue. In many complex image sets, it increases the interior
as well as the exterior saliency discrepancy simultaneously.
Therefore, this method used a saliency cut algorithm based
on a computationally expensive graph cut algorithm for the
segmentation. These methods have common limitation to
produce saliency with backgrounds. Hang et al. [27] pro-
posed the minimum directional global contrast based on
spatial distribution. Minimum directional contrast (MDC)
[27] is theminimumvalue of directional contrast (DC).Back-
ground region shows low MDC value, while the foreground
pixels represent the high MDC value. This method destroys
the border of a salient object in complex and clutter back-
grounds.

The major drawback of the above methods is that it has
failed in producing the saliency in an image having a salient
object that has multiple color regions and low depth fea-
ture. It has also failed in producing saliency where there
is a structural similarity between prominent and non-salient
regions. But, the main advantage of these methods is to pro-
duce a full-length global saliency. It uniformly distinguishes
the salient object from the background. To overcome these
limitations, most of the methods use some other supple-
mentary methods. MDC [27] uses boundary connectivity to
measure the background regions and differentiate it from the
foreground region, having a salient object. Background prior-
based methods minimized the exterior saliency discrepancy
while increasing interior saliency discrepancy. Some early
works use center prior [32] based on object size and loca-
tion similar to the Gaussian fall-off map. In this feature, the

central region assigns higher saliency gradually to other bor-
der regions. Usually, these cues are used as weights [33,34]
or a feature in learning-based methods [35]. These methods
reduce the interior saliency discrepancy while increasing the
exterior saliency discrepancy.

To overcome the limitation of low depth in sophisticated
image, recently depth features are being used to improve the
saliency computations. Cheng et al. [17] compute saliency by
the integration of using both color contrast and depth contrast
features. Peng et al. [36] use a fusion-based model to com-
bine the RGB saliency with depth-based saliency. Geng et al.
[37] proposed the salient object detection in the stereo images
based on depth-based saliency. Recently, depth cue is com-
bined by Zhu et al. [28] with regional saliency, dark saliency
and center saliency. In this method, the author uses the dark
channels prior, center and depth to increase the robustness.
As per these results, depth saliency is a valuable feature com-
pared to other visual features in improving the robustness of
saliency computation.

Addressing the above-described limitations related to
global, regional as well as background prior, a global con-
cave topographical reference surface is used to initialize the
saliency computation. This surface improves saliency in bor-
der regions. The intra-regional distance-based saliency and
spatially weighted saliency are integrated into the global ref-
erence surface to increase the interior saliency. The regional
color saliency and depth saliency are integrated using Gaus-
sian function into a well-defined global reference plane
to enhance the object’s interior region saliency and mini-
mizes the exterior saliency. Further integration of the center
saliency uniformly removes the background and highlights
the prominent object in complex and challenging images.

Recently, deep learning-based methods exploit the learn-
ing concept from CNNs to improve the results at the next
level. The representative model of CNN in RGBD saliency
is proposed by Liangqiong et. al [38]. In this deep fusion
DF [38] model, CNN is used to integrate different low-level
features into hierarchical saliency. A adaptive fusion AF-
Net-based [39] saliency model is used to combine the results
of two-stream CNN by using switch maps. In this adaptive
fusion, the loss function is composed of three different com-
ponents like saliency supervision, switch map supervision
and edge-preserving constraints. These loss functions guided
the training of the network in an end-to-end manner. But
this model is failed in the complex and cluttered background
image. A conditional variational autoencoder (VAE)-based
probabilistic RGBD model UC-Net [40] is proposed to pro-
duce multiple saliency maps for each input image. This
model adds different dimensions to improve the performance
of salient object detection methods. In JL-DCF [41] pro-
posed the joint learning (JL) and a densely cooperative fusion
(DCF) based on a shared Siamese backbone network. DCF
module is used to find the complementary feature among
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RGB and depth features, while the JLmodule is used to learn
saliency features from coarse deep level to final image lev-
els. This model uses the middle fusion strategy. This model
produces better saliencymaps in complex and cluttered back-
ground images. InD3Net [42], three-streamseparate network
for RGBNet, RGBDNet and DepthNet is proposed with a
depth, depurator unit to learn the modalities specific infor-
mation. This unit identified and removed the low-quality
depth maps, and it is used for effective multi-modal fusion
to achieve robust SOD and improved the performance.

The next representative module ICNet [43] is proposed
interactive and adaptive model to learn high-level features
between RGB and depth modalities. A cross-modal depth-
weighted combination block is used to enhance the saliency.
This network exploits the complementarity cross modalities
to improve the performance. A recent region-wise attention
is proposed as complementary interaction module SSF [44]
to supplement rich boundary information for each modality
to learn and fuse cross-modal features. The main objective
of proposed model SSF is to effectively find the complemen-
tarity features in cross-modal while minimizing the negative
effects introduced by low-quality depth maps to enhance the
performance.

3 The proposedmethod

3.1 Initialization through global concave surface
(GCS)

The global concave surface is used to initialize saliency
computation. This surface is composed of improved Pois-
son probabilistic contrast (IPC) and DoG-based contour-
enhanced global surface.

3.1.1 Improved Poisson probabilistic contrast (IPC)

Poisson probabilistic modeling is used as pd f of the image
plane. This pd f is used to compute the probabilistic contrast.
Generalized Poisson distribution is a better choice because it
has characteristics of convergence of information divergence
into a concave shape topographical surface. The probabilistic
distribution φ with mean μ is defined over color planes c =
[l, a, b] for input original image I0 in CIE-LAB space. It is
defined as:

φc(I0, μ) = e−μμI c

I c! (1)

The improved Poisson probabilistic contrast (IPC) is the
addition of contour enhanced global surface with Poisson
probabilistic contrast [45]. It is Poisson-based global con-
trast with normalized likelihood surround symmetry. The

improved Poisson probabilistic contrast (IPC) is formulated
using color chrominance channel c = [a, b] and luminance
channel l in C I E − L AB space for input image I0 . It is
defined as follows:

SIPC =
∑

c∈a,b

∥∥I c0 − φc I c0
∥∥

︸ ︷︷ ︸
Chrominance Contrast

+
∥∥∥I l0 − φl I l0

∥∥∥
︸ ︷︷ ︸

Luminance Contrast

(2)

where NCoff is called the normalization coefficient. This
coefficient is used to normalize the Poisson probabilistic
luminance contrast. It is defined as:

NCoff =
(
1

2
p2k + 1

6
p3k + 1

3
p4k

)
∗ γ (3)

where γ = √
Rσ − √

Rμ is formulated to approximate
the divergence effect of uneven luminance into chrominance
planes. Rσ is the relative contrast of variance between the
luminance plane and chrominance plane. Rμ is the mea-
sure of the relative mean contrast between luminance mean,
and chrominance mean. Pk is the kth point probability in
Poisson probabilistic space. NCoff is visualized as the region
of uneven distribution of luminance. The mathematical for-
mulation of NCoff and corresponding proof are properly
described in Sect. 6.

3.1.2 Contour-based global surface

The DoG filter efficiently approximates the Laplacian of
Gaussian. This edge detection method is widely reported
in the literature [46,47]. The global concave topographi-
cal surface is computed by the addition of contour based
global surface and improved Poisson probabilistic. This
contour-based surface is defined by difference of Gaussian
DoG(x, y) of the input image I0(x, y), as defined in Eqs. 4
and 5. Here, σ1 and σ2 are the standard deviation, where
σ1 > σ2. The DoG(x, y) is defined as follows:

DoG (x, y) = 1

2π

[
1

σ 2
1

e
− (x2+y2)

2σ21 − 1

σ 2
2

e
− (x2+y2)

2σ22

]

= G(x, y, σ1) − G(x, y, σ2)

(4)

This contoured surface is generated by the integration of
multiple edges. For integration of the range of edges, let
ϕ = σ1/σ2. So, all the edges over DoGwill have the standard
deviations in the ratio ϕ. It is defined as:

SES =
N−1∑

i=0

G
(
x, y, ϕi+1, σ

)
− G

(
x, y, ϕi , σ

)
(5)
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This SES surface integrates a N − 1 number of edge surfaces
into the first edge surface to enrich the boundary of the object.
The initialGCS is a simple addition of edge-enhanced global
contour surface and enhanced Poisson probabilistic contrast
surface. This surface has characteristics of enriched object
boundary [7,48]. Therefore, it is used as a reference plane for
other saliencies integration and background removal, which
is defined as follows:

SGCS = SIPC + SES. (6)

3.2 Regional contrast integration into GCS

Initial GCS, global concave topographical saliency, is used as
a reference plane. It maximizes the information of the object
and reduces the saliency of background regions.

3.3 Regional saliency integration with GCS

The regional features are integrated using the region descrip-
tor based on the K-mean algorithm in the initial image
plane I0. This process uses K color-based region. The same
regional descriptor is used for all regional saliencies into ini-
tialGCS topographical saliency. The spatial regional saliency
SSi is defined as regional density. It is defined as a ratio of
number of pixel(NOP) in the region i and total pixels(TP) in
image as SS(i) = NOP(ri )/T P . The spatial depth saliency
into depth Id space is defined as follows:

SSD(rk) =
K∑

i=1,i �=k

SSi e
Dis0(rk ,ri )

σ2 Disd(rk, ri ) (7)

where Disd(rk, ri ) = |rk, ri |, |−| is the Euclidean distance
between region i with central region k in depth space. Simi-
larly, regional color saliency in color space is defined as:

Scolor(rk) =
K∑

i=1,i �=k

SSi e
Dis0(rk ,ri )

σ2 Discolor (rk, ri ) (8)

where Dis0(rk, ri ) is the spatial saliency and σ is controlling
parameter while Discolor (rk, ri ) is regional color saliency
based on the Euclidean distance between central region kth
and i th region in L ∗ a ∗ b color space. Similarly, regional
probabilistic contrast in GCS space is defined as:

SGC(rk) =
K∑

i=1,i �=k

SSi e
Dis0(rk ,ri )

σ2 DisGCS(rk, ri ) (9)

Disd(rk, ri ),Discolor(rk, ri ) andDisGCS(rk, ri ) are depth,
color and probabilistic contrast-based regional saliencies,
respectively. These saliencies minimize the interior discrep-
ancywith regionalweightingparameter like SSi ,Dis0(rk, r j ),
Disd(rk, ri ), Discolor(rk, ri ) and DisGCS(rk, ri ). These
regional saliencies integrations into GCS space increase
some background saliency also. In this integrations, the exte-
rior saliency discrepancy increases, which removes in next
background estimation model.

3.3.1 Background estimation model

In the saliency computation domain, it is the assumption of
center prior and background prior hypothesis [17] that the
salient object is mostly located in the center of the image.
So, the integrating factor of these regional saliencies assigns
more weight to the central regions and less weight to the
border regions. This background estimation is approximated
with the normalized Gaussian function. Let Posk define
kth region and Posc define central region respectively. The
weight-based integrating factor (WFc) is calculated as:

WFc(rk) = Gaussian(Disd(Posk − Posc)

Nk
GW (Dk) (10)

where Nk , denotes the number of pixels in kth region. In
this equation, Disd is the distance in Euclidean space and
GW (Dk) is depth weight, which is calculated as:

GW (Dk) = max(D − Dk)
1

(max(D)−minD) (11)

Finally, the normalized Gaussian function is used to inte-
grate color, depth, spatial and probabilistic saliencies. This
integration increases the interior saliency and minimizes the
background saliency, which is defined as:

SG = Gaussian(SGD(rk) + Scolor(rk) + SGC(rk))WFc. (12)

3.4 Saliency enhancement

The hypothesis of biologically plausible architecture [49]
describes the phenomena of centralization of the object
always towards the center of the image. The center prior is
also preferred because of the mindset characteristics of the
photographer. Central bias is preferred in saliency detection
and enhancement [50,51]. Therefore, SCen is used in saliency
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enhancement, which is based on the central saliency BSA
[32] algorithm. This algorithm is used to remove the edge
effect and minimize the exterior saliency discrepancy while
enriching the interior saliency. Final saliency is the simple
addition of central saliency SCen and SG

S = (SG + SCen). (13)

3.5 The proposed algorithm

The proposed method is summarized in the following algo-
rithm. The two algorithms, Algorithms 1 and 2, are used to
describe the sequential steps as follows.

Algorithm 1: To generate the global concave reference
plane using improved Poisson-based probabilistic con-
trast (IPC) and Gaussian-based contour
Input : Input original image I0 = {l, a, b} in CIE-LAB color

format. φ is Poisson-based PDF , μ is mean of
respective color planes, and σ is variance.

Output: Global concave topographical reference saliency
surface SGCS

1 Compute δa ← tan−1 (σa/σl )

2 Compute δb ← tan−1 (σb/σl )

3 Compute γ ← ∣∣√Rσ − √
Rμ

∣∣
4 Compute pk ← tan(450 − δa)tan(450 − δb) // for kth

image

5 Compute NCof f = ( 1
2 p

2
k + 1

6 p
3
k + 1

3 p
4
k

) ∗ γ

6 Compute

SI PC ← (
I l0 − φl I l0

)2
NCof f + (

I a0 − φa I a0
)2 + (

I b0 − φb I b0
)2

7 Compute SES = ∑N−1
i=0 G

(
x, y, ϕi+1, σ

) − G
(
x, y, ϕi , σ

)

8 Finally Compute SGCS ← SI PC + SES

Algorithm 2: Regional depth, color and spatial salien-
cies integration in global concave topographical saliency
SGCS

Input : Input initial global concave saliency SGCS and original
input color image I0 into CIE-LAB space

Output: Final saliency S
1 for k ← 1 to K color region do
2 Compute the regional depth saliency SSD(rk) by Eq. 7
3 Compute the regional color saliency Scolor (rk) by Eq. 8
4 Compute the regional spatial saliency SGC (rk) by Eq. 9
5 Compute the regional Gaussian background elimination

weight WFc(rk) by Eq. 10
6 Integrate all regional saliency

SG = Gaussian(SGD(rk) + Scolor (rk) + SGC (rk))WFc by
Eq. 12

7 end
8 Compute the central saliency SCen
9 Compute final saliency S ← (SCen + SG) by Eq. 13

4 Experiment and result analysis

4.1 Dataset

The proposed method is extensively evaluated on three pub-
licly available complex datasets for salient object detection.
The first dataset, RGBD-1000 or NLPR [36], contains 1000
images, which includes a complex background, very similar
to the conspicuous object. Each image has a resolution of
640× 480. The second dataset is PU-80 or SSD [28], which
contains low depth images having multiple similar objects
and confusing backgrounds with a resolution of 960× 1080.
This dataset is designed with a complex scene to make it
a computational challenge for salient object detection. Next
most preferred dataset isNJUD-1985 [52]. It has 1985 stereo-
image pairs. These images have been collected from different
sources like some from the internet and some from 3D
movies.

4.2 Evaluationmetrics

To evaluate the performance of the proposed method with
other state-of-the-art methods, we used six performancemet-
rics (1) F-measure (2), precision–recall curve (PR curve),
(3) receiver operating characteristic (ROC curve), (4) mean
absolute error (MAE), (5) E-measure (Eψ) and (6) S-
measure.

4.2.1 F-measure

The comprehensive evaluation of the proposed method is
demonstrated with F-measure. This metric is used to com-
pute the relevancy of parameters like precision and recall. In
this metric, precision and recall are combined as weighted
harmonic, which is defined as follows:

F-measure = (1 + β2) × Precision × Recall

β2 × Precision × Recall
(14)

We use β2 = 0.3 in Eq. 20 F-measure for uniform com-
parison because the same value is preferred in the majority
of saliency methods.

4.2.2 Precision–recall curve (PR curve)

The most widely used metric in saliency is precision and
recall curve for a fair evaluation. The precision describes
the correct prediction of salient points. The recall represents
the accurate detection of the percentage of the salient pixels.
We use Smap, and corresponding binary masks Bmask, in the
saliency evaluation. Precision and recall are defined as:
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Fig. 2 Visual demonstration of
the contribution of each step in
the proposed algorithm

Precision =
∣∣Smap ∩ Bmask

∣∣
∣∣Smap

∣∣ (15)

Recall =
∣∣Smap ∩ Bmask

∣∣
|Bmask| (16)

In Eqs. 15 and 16, |−| represents the intersection between
binary mask Bmask and saliency map Smap . For the accu-
rate analysis of these metrics, bipartite saliency Smap is used.
In this evaluation, multiple fixed thresholds are used, which
change from 0 to 255. Precision and recall are computed on
each threshold and are combined to form a precision–recall
(PR) curve.

4.2.3 Receiver operating characteristic (ROC curve)

The ROC curve demonstrates the graphical representation
between true positive rate (TPR) and false positive rate
(FPR). In this computation, multiple fixed thresholds are
used, which range from 0 to 255.

TPR =
∣∣Smap ∩ Bmask

∣∣
∣∣Smap

∣∣ (17)

FPR =
∣∣Smap ∩ Bmask

∣∣
∣∣Smap ∩ Bmask

∣∣ + ∣∣Smap ∩ Bmask
∣∣ (18)

In Eqs. 17 and 18, Smap, Bmask, Smap and Bmask repre-
sent true salient points, true ground-truth points, false salient
points and false ground-truth points, respectively.

4.2.4 Mean absolute error (MAE)

The mean absolute error (MAE) is the preferred metric in
successive steps validation and demonstration of successive
steps contribution.MAE is defined in normalized range [0, 1]
saliency map Smap and the ground-truth binary mask Bmask,

which is defined as follows:

MAE = 1

n

∑

k∈n
(Smap(k) − Bmask(k)). (19)

4.2.5 E-measure (EÃ)

E-measure is recently defined as enhanced alignment mea-
sure, and the detailed definition and formulation are available
here [53]. Thismeasure is basedon cognitive vision studies. It
uses image-level statistics (mean) and local level pixelmatch-
ing information. To demonstrate a comprehensive evaluation,
we use maximum value of E-measure.

4.2.6 S-measure

S-measure [54] is a recent metric which is used to com-
pare the structural similarity and dissimilarity. This metric
computes region-aware Sr and object-aware So structural
similarity between computed saliency map and ground-truth
map. This metric is defined as:

Smeasure = αSo + (1 − α)Sr (20)

where α ∈ [0, 1] is set to 0.5.

4.3 Parameters and constraints selection

A set of extensive experiments are performed to evaluate the
final value of the various parameters and constraints. These
experiments are performed on RGB-1000 and PU-80 or SSD
dataset. These extensive experiments have been done to final-
ize the value and range of the following parameters. The outer
border of the salient object is enclosed with reference con-
tour by combining the result of applying several DoG base
edges. The range of σ1 and σ2 varies to keep the value of
ϕ = σ1/σ2 constant at 1.6. The controlling parameter σ 2 is
0.4 in Eqs. 4 and 5.
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Table 1 Stepwise mean absolute error in the proposed method—GCS

Data − Set I ni tial SGCS Final SG SCen S

PU-80 0.5875 0.3605 0.1593 0.0716

RGBD-1000 0.3540 0.2451 0.1097 0.0581

Fig. 3 Comparison of probabilistic contrast-based method using PR
curve on (1) PU-80 (2) RGB-1000 dataset, respectively

4.4 Successive steps validation

Successive steps of the proposed method GCS are validated
on the publicly available complex image dataset PU-80 or
SSD and RGBD-1000 or NLPR having depth information.
Validation of each step is essential to demonstrate the con-
tributions in saliency. In complex and clutter background
images, the salient object cannot be separable by a single-
stage algorithm.The visual contribution of each step is shown
in Fig. 2. The validation of effectiveness is measured through
MAE (mean absolute error), which is shown in Table 1 and
PR curve in Fig. 3. The result is shown in Table 1, which val-
idates each step of GCS on PU-80 and RGBD-1000 datasets.
This result demonstrates the effectiveness of each step.

4.5 Comparative analysis

The extensive experiment is performed on using three RGBD
benchmark datasets having images with complex and clutter
background. This result analysis of the proposed method is
evaluated through a visual qualitative scale (Figs. 2, 4) and
quantitative scale (Figs. 3, 5, 6; Tables 1, 2. Our proposed
method is initialized with global probabilistic contrast and
difference of Gaussian-based contour model. Therefore, in
these evaluations, the top five global contrast-based methods
like MDC [27], HC [13], GC [10], MSS [26] and FT [12] are
selected.

These methods are selected in the result analysis are
based on highly referenced, computationally fast, recent
and closely related to our proposed method. The proposed

Fig. 4 Visual comparison of saliency of proposed method with other
state-of-the art methods

method GCS is also compared with efficient graphical model
GMR [55] and cellular automata-based central saliency
model BMS [32]. The proposed method is also compared
with top, efficient and recent RGBD-based models like
DCMC [56], LBE [57], CDS [28] and DES [17] and two
recent deep learning-based methods such as DF [38] and
AFNet [39] in Table 2 In this evaluation, some other state-
of-the art methods like GU [31], RC [13], RBD [15] and
MST [58] are also compared.

The qualitative analysis is demonstrated through the visual
saliency map, which is shown in Fig. 4. In this observa-
tion, the global contrast-based methods produce full-length
saliency. The global contrast-based techniques—FT, GC,
MDC, HC and MSS, highlight some background similar
to the salient regions and suppress some interior saliency,
which has similar characteristics. So, these methods produce
interior and exterior saliency discrepancy. To remove the
backgrounds, HC and RC used saliency cut, FT used mean
shift, MSS used graph-cut algorithm. However, these meth-
ods enhance the computation cost.MDCuses amarker-based
watershed segmentation algorithm to separate the salient
object. Thismethoddestroys some structural information like
shape and border regions, which is shown in Fig. 4.

Themarker-basedwatershed segmentation algorithm pro-
duces multiple markers, in which some are related to back-
ground and others to the objects.

Cellular automata-based central saliency creates a saliency
map with no interior saliency discrepancy. Therefore, this
algorithm used in saliency enhancement. All the abovemeth-
ods fail in producing saliency in low depth images. The
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Fig. 5 Quantitative comparison
of proposed method on RGBD
saliency map with PR curve and
ROC curve a RGBD-1000, b
PU-80

proposedmethod,GCS,minimizes the limitationsmentioned
above and builds a robust salient object, which reduces the
interior saliency discrepancy and altogether remove the back-
grounds in low depth and sophisticated image. Through
visual comparisons, the proposed method can detect single,
multiple and complex images precisely. Through all these
observations, our proposedmethodGCSperforms better than
other state-of-the-art methods.

The proposed method GCS is compared with fourteen
state-of-the-art top-performingmethods. Eleven state-of-the-
art methods are using PR curve, ROC curve and F-measure
(Figs. 5, 6), while the two deep-based learning methods and
four recent RGBD-based methods are compared using S-
measure, E-measure(Eψ ) andMAE in Table 2. The proposed
method outperforms on the recall axis while maintaining the
same level of precision, which is visible in PR curve in Figs. 3
and 5. These characteristics demonstrate the robustness of the

proposed method GCS with better saliency maps with other
state-of-the-art methods.

4.6 Comparison with RGBD deep learning-based
methods

The proposed method is based on a global topographical sur-
face. It is not related to the learning-based method. However,
the proposedmethod is compared with two published RGBD
deep learning-based methods, DF [38] and AFNet [39]. In
this evaluation, recent metrics like S-measure, E-measure
(Eψ ) and MAE have been used to compare the quantitative
performance. In this evaluation, we use the same learning and
testing pattern as used inDF [38]. This evaluation is shown in
Table 2. The deep learning-based methods improved the per-
formance significantly of SODs methods recently over non-
deep learning-based methods because deep learning-based
method learned the structures, semantic, object characteris-
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Fig. 6 Quantitative comparison of proposedmethod onRGBD saliency
map with F-measure a RGBD-1000, b PU-80

tics, low-level local features and high-level global features
to correctly identify the salient points. The proposed method
used probabilistic global contrast to generate the reference
surface for multiple integrations of regional saliency integra-
tion. Deep-based learning method used multi-stage, object
semantics-based learning to improve the performance. The
proposed method generates the saliency with comparable in
results with two recent deep learning-based methods to show
the robustness of the proposed method.

5 Conclusion

This paper uses an additional parameter depth to increase
the robustness in saliency detection in complex and clut-
ter background. In this method, an innovative and robust
approach of global concave topographical surface (GCS)
is prepared for regional features integration. This surface
designs with the difference of Gaussian-based contours. So,
this reference plane is used to minimize the border region
discrepancies. This integration works efficiently and effec-
tively in regional saliencies integration to reduce the interior,
exterior and regional saliency discrepancies. The robustness
of GCS increases the preservation of the structure, shape
and border-related information in saliency estimation. These
regional saliencies integrations remove the interior saliencies
discrepancies. Gaussian weighted background estimation
and central saliency integration remove the exterior saliency
discrepancies. Finally, all these integrations into the global
concave surface increase robustness and help in achiev-
ing state-of-the-art results. The improvements in robustness
through adding some complimentary deep features can act
as a guiding beacon for future work on this framework.

6 Proof of theoretic principle for
normalization of global probabilistic
contrast

The normalization of luminance plane over chrominance
plane in Poisson distribution is defined as maximum like-
lihood estimation. The measure of uneven distribution is
defined in terms of the influence of region of surround sym-
metry. The characteristics of surround symmetry regions
and its information divergence are proved, formulated and
described by H.Perter [59]. In this paper, the topographical

Table 2 Quantitative
comparison of our proposed
method with state-of-the-art
RGBD deep learning-based
saliency methods, DF [38] and
AFNet [39], and traditional
methods, DES [17], LBE [57],
DCMC [56] and CDS [28], and
methods on three datasets

* RGBD-1000 or NLPR [36] NJU2K [52] PKU-80 or SSD [28]

Metric Sα ↑ MAE ↓ Em
ψ ↑ Sα ↑ MAE ↓ Em

ψ ↑ Sα ↑ MAE ↓ Em
ψ ↑

OWN 0.776 0.0581 0.877 0.758 0.137 0.732 0.946 0.076 0.976

AFNet [39] 0.779 0.058 0.879 0.775 0.100 0.853 0.714 0.118 0.807

DF [38] 0.802 0.085 0.880 0.763 0.141 0.864 0.747 0.142 0.828

CDS [28] 0.782 0.098 0.884 0.744 0.160 0.833 0.741 0.0958 0.801

DCMC [56] 0.802 0.085 0.880 0.763 0.141 0.864 0.704 0.169 0.786

LBE [57] 0.762 0.081 0.855 0.695 0.153 0.803 0.621 0.278 0.736

DES [17] 0.702 0.125 0.700 0.713 0.189 0.754 0.602 0.243 0.705
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concave surface lemma [59] is used to derive the normal-
ization coefficient. Suppose a pixel has Poisson probability
pi , then pi is approximate as probability measure for the
maximum-likelihood estimation. [45]. Hence, the maximum
bond of similarity of region or pixel’s symmetric surround is
approximated in terms of the total variation in Poisson distri-
bution [60]. This normalized likelihood luminance plane is
used to measure the global probabilistic contrast by subtract-
ing the maximum likelihood from image planes in CIE-LAB
space rather than mean of image planes.

Let us define the Poisson probability distribution φ (μ)

with mean μ. Let P and Q be probability measures on
{0, 1, 2, 3, . . . , N } with point probabilities as pi and qi in
terms of pixel values in CIE-LAB color image where i=
{0, 1, 2, 3, . . . , N } and N = 255. Then, the total variation
between the distributions is defined as:

‖P − Q‖ =
N∑

i=0

|pi − qi | (21)

The divergence of information or region of similarity for
creating the contrast is defined as:

D (P ‖ Q) =
N∑

i=0

pi log
pi
qi

(22)

Lemma 1 The bond of maximum divergence in total varia-
tion in Poisson distribution is used as normalization coeffi-
cient of luminance plane over chrominance plane.

Proof The bond of maximum divergence in total varia-
tion is defined as a region of influence of the uneven
distribution of luminance over chrominance planes around
the points in Poisson distribution space. Consider the
X1, X2, X3, . . . , XN is a sequence of image planes, defined
as independent Bernoulli probabilistic distribution, where
Pk = P(Xk = 1) and μ = ∑n pk .

D(Xk)= (1−pk) ln

(
1 − pk

exp (−pk)

)
+pkln

(
1 − pk

exp (−pk)

)

= (1−pk) ln (1 − pk) +pk

≤ (1 − pk)

(
−pk − p2k

2
− p3k

3

)
+ pk

=
(
1

2
p2k + 1

6
p3k + 1

3
p4k

)

(23)

�


Other characteristics to measure the divergence of informa-
tion in Poisson distribution are duly proved and discussed in
various lemmas and theorems by H.Perter [59].
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