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Abstract
Single image dehazing is a technique used to remove the effect of haze from an image captured in poor weather conditions. 
Due to the scattering of particles, a captured image suffers from low visibility and contrast. Besides, scattering also adds 
nonlinear noise to the captured image. Existing image dehazing methods improve the visibility of the hazy image. However, 
these methods significantly generate artifacts such as halo at the depth discontinuities, blocking, and color aliasing in the 
sky regions. Some methods addressed this problem, but these methods introduce other issues such as loss of details, blurring 
effects, and oversaturation in the dehazed image. This paper proposes a method using superpixels and ensemble nonlinear 
regression to estimate the transmission that improves the visibility of a hazy image without any artifact. Conventional machine 
learning methods require a vast amount of haze-free and hazy images of different haze concentrations to train the model. The 
use of superpixels offers less number of training examples and also helps in reducing halo artifacts. The ensemble nonlinear 
regression predicts the transmission for a superpixel in such a way that the recovered image looks more natural, especially 
in the sky regions. The proposed method is evaluated by the various distortion parameters on real-world challenging and 
synthetic hazy images. The qualitative and quantitative analysis in experimental results proves that the proposed method is 
superior to that of state-of-the-art dehazing methods.
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1  Introduction

Haze represents one of the atmospheric phenomena in which 
various particles (e.g., dust, smoke, and water droplets) 
severely degrade the quality of an image. There are many 
sources by which haze particles are generated. Some of 
them are traffic, industry, farming, and wildfires [1]. These 
particles scatter and absorb the light. Therefore, captured 
images suffer from several problems such as low visibil-
ity and poor contrast. Moreover, nonlinear and additional 
noises are introduced in the captured image due to scattering 
of atmospheric particles [2]. Many of the computer vision 
applications used in remote sensing, driver assistance sys-
tem, and surveillance systems demand high-quality input 

images to work flawlessly [3]. Therefore, to ensure working 
of these dehazing algorithms perfectly, removal of the haze 
effect is essential from captured images.

Several research works focus on removing the haze from 
an image. Most of the dehazing methods [4–9] depend on 
the physical model of haze imaging. In order to find haze-
free image, the physical model requires two parameters to 
compute: atmospheric light and transmission map.

In these dehazing methods, the transmission is estimated 
upon certain assumptions or priors. The state-of-the-art 
dehazing methods usually enhance the visibility of the image 
quite satisfactory. However, if these assumptions/priors are 
violated, a dehazing method may distort the quality of the 
recovered image and may lead to many issues such as color 
distortions or halo artifacts. Moreover, the captured images 
have additional noises in the sky regions which are unno-
ticeable in the input image due to heavy haze; a dehazing 
method also increases these noises which results in visual 
artifacts in the sky regions.

Remarkably, very few methods have paid attention to 
remove the visual artifacts while restoring an image. These 
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methods are managed to remove the visual artifacts in the 
sky regions in the dehazed image. However, some of them 
introduce blurring effects and loss of details in the dehazed 
image [10, 11]. The method in [12] handles only blocking 
artifacts, and other artifacts remain unresolved. The other 
methods [13, 14] are not able to remove haze completely. 
Furthermore, the methods in [15, 16] lead to oversatura-
tion. Moreover, existing machine learning-based methods 
require a huge number of examples to train the model [17, 
18]. Therefore, the estimation of accurate transmission is 
still an open area of research.

None of the method in the state-of-the-art image dehaz-
ing is able to handle three types of distortions (saturation, 
artifacts, and blur) simultaneously in the dehazed image. 
Therefore, we introduced a machine learning-based dehaz-
ing technique based on the concept of superpixels that over-
comes the limitations of previous work as follows:

(1)	 The proposed method estimates the transmission of a 
superpixel rather than a pixel or patch that makes the 
proposed method fast.

(2)	 Instead of directly supplying local patches of the hazy 
and haze-free images for the training, we extract the 
haze relevant features from the hazy images for super-
pixels that reduce the size of a feature vector and as 
well as of training examples.

(3)	 A nonlinear regression using ensemble neural net-
works is used to estimate the robust transmission of a 
superpixel which avoids the problem of overfitting and 
improve generalization of a network in the presence of 
noisy data.

(4)	 The proposed method handles all distortions (artifacts, 
blur, and saturation) of an image simultaneously.

This paper is structured as follows: Sect. 2 describes 
the process of image formation in hazy weather conditions 
and the most popular methods in the field of single image 
dehazing. The steps of the proposed method are discussed 
in Sect. 3. Section 4 presents an extensive evaluation of the 
proposed method on various real-world and synthetic hazy 
images. Finally, conclusions and future work are presented 
in Sect. 5.

2 � Related work

Currently, state-of-the-art dehazing methods can be divided 
into three groups: (1) restoration-based methods; (2) image 
enhancement-based method; (3) machine learning-based 
methods.

Image restoration-based methods consider the degrada-
tion mechanism to restore the hazy image. These methods 

use the physical model of haze imaging [19, 20] to obtain 
the haze-free image, given as follows:

where c ∈ [r, g, b] represents the color components of an 
RGB image, Ic

h
 is the captured hazy image in color compo-

nent c, and Jc
nh

 is the haze-free image in color component c. 
x is the pixel coordinate, tr is the transmission map, repre-
senting the portion of light directly reaching to the camera 
without scattering. tr is an exponential function of distance, 
ranging in [0, 1], where tr(x) = e−�d(x) , � is the atmospheric 
scattering coefficient, and d is the distance between the cam-
era and the object. A large value of � and d will attenuate the 
transmission and result in a high impact of haze.

Due to the ill-posed nature of single image dehazing, 
restoration-based methods estimate the transmission based 
on some assumptions or priors. The success of a method 
depends on how strong the assumption is.

Tan et al. [4] proposed a method based on two assump-
tions: (1) Haze-free image must have better contrast com-
pared to hazy image. (2) Airlight is a continuous function of 
distance. Based on the first prior, the contrast maximization 
concept is used. For the second prior, airlight is obtained 
through Markov random fields (MRFs). However, dehazed 
image suffers from the “halo” effects due to sudden change 
of depth and color oversaturation. Fattal [5] proposed a 
method with the assumption that transmission function and 
object surface shading are uncorrelated. This approach mod-
els the haze-free image as a product of object surface reflec-
tance coefficient (R) and a shadowing factor (l). However, 
it cannot restore the image with heavy fog or insufficient 
signal-to-noise ratio and may lead to oversaturation. Tarel 
et al. [6] proposed a fast and filtering-based approach for vis-
ibility restoration. Before visibility restoration, this method 
performs white balancing. Instead of estimating depth, 
atmospheric veil function is estimated using a median filter. 
However, depth edge information is lost due to the median 
filter. Adjusting of many parameters makes it inappropriate.

Later, He et al. [7] proposed a most popular dark chan-
nel prior. It is based on the assumption that every haze-free 
image, except for sky regions, has some pixels of low inten-
sity or even close to 0 in at least one color channel. Based 
on these dark patches, the transmission is estimated. This 
method produces an excellent result and improves the vis-
ibility of a hazy image. However, this method is unable to 
handle halo artifact at depth change due to local patch and 
not valid for images having large sky regions. Furthermore, 
when the image contains white objects, over-dehazing prob-
lem occurs due to the underestimation of the transmission. 
Meng et al. [8] improved the DCP method and proposed 
a boundary constraint for the DCP. The transmission is 
refined using contextual regularization. This method greatly 

(1)Ic
h
(x) = Jc

nh
(x) tr(x) + Ac

t

(
1 − tr(x)

)
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enhances the visibility of the image. However, the dehazed 
image contains a color aliasing effect in the sky regions.

Till now, all dehazing methods estimate the transmission 
based on local patch. Berman et al. [15] proposed a method 
using non-local prior. A haze-free image is represented using 
a few distinct hundreds of color clusters. In the presence of 
haze, these clusters are changed and form a haze-line. This 
method significantly improves the visibility of the image. 
However, this method fails when the intensity of atmos-
pheric light is more than the intensity of the image. In this 
situation, the direction of most of the pixels will be the same 
and it is very difficult to find haze-lines. Therefore, estimated 
incorrect transmission causes saturation or color distortions 
in the dehazed image. Bui and Kim [9] proposed a color 
ellipsoid prior in which hazy pixels clusters are statistically 
fitted in RGB space. This method is fast and enhances the 
details of the hazy image; however, few color artifacts can 
be seen in sky regions. Recently, Raikwar et al. [21] claimed 
to propose an accurate transmission that preserves the struc-
ture of a hazy image in a dehazed image. To compute the 
transmission map, this method considers the difference of 
minimum color channel of hazy and haze-free image. The 
transmission is refined by contextual regularization. This 
work is able to maintain the structure of a hazy image; how-
ever, recovered images have less contrast. Later, Raikwar 
et al. [22] proposed a tight lower bound on the transmission, 
computed from the minimum color channel of a hazy image.

Few methods to handle artifacts exist in the literature. 
Chen et al. [11] presented a dehazing method that works in 
two steps. In the first step, DCP method is used to estimate 
the transmission. Artifacts-free image is obtained in the sec-
ond step by minimizing the gradient residual between the 
input and output image. This method is managed to remove 
the artifacts in the restored image. However, it introduces a 
blurring effect and sometimes heavy oversaturation in the 
dehazed image. Moreover, due to ambiguity between arti-
facts and details of the object, it is unable to enhance the 
visibility in long-range regions. Li et al. [12] proposed an 
image enhancement-based method that decomposes a hazy 
image into low-frequency and high-frequency components. 
Dehazing is performed in low frequencies, and finally, a 
dehazed image is obtained by combining these two compo-
nents. However, this method removes only blocking artifacts 
and unable to handle other artifacts such as color artifacts 
in sky regions.

To address the problem of artifacts, several machine 
learning-based methods also came into existence. Zhu 
et al. [10] proposed a linear model based on color attenu-
ation prior (CAP) to compute depth map. This method 
assumes that the haze effect is correlated with a difference 
of saturation and brightness. It does not consider any addi-
tional step to suppress visual artifacts like method [11]. 

Visual artifacts are handled by the estimated depth itself. 
However, it requires a number of parameters to learn the 
linear model that relies on training data. Additionally, this 
method also blurs the detail of a dehazed image.

Recently, a super pixel-based dehazing technique is 
proposed in [16]. It is based on the assumption that the 
transmission of an image is locally constant; therefore, 
the groups of pixels that are similar in colors, textures, 
or brightness can be clustered into the superpixels. The 
method proposed a two-layer Gaussian process. It used 
three methods [5, 7, 23] to compute the transmission of 
a superpixel for training purpose. In the first layer, the 
rough transmission of a superpixel is computed and refined 
using neighboring pixels in the second layer. Haze filter-
ing, introduced to reduce the artifacts in the sky regions, 
leads to loss of important details in sky regions. Addition-
ally, it also has a problem of saturation in dehazed image.

Salazar-Colores et al. [13] proposed a multilayer per-
ceptron to compute the transmission. It estimates the trans-
mission by the minimum channel of a hazy image. This 
method prevents artifacts and saturation in the dehazed 
image. However, it requires post-processing operation 
(contrast stretching) to obtain a final haze-free image, and 
also, it is unable to remove the haze effect completely.

Deep learning-based method is also recently introduced 
in the dehazing and successfully implemented. In paper 
[24], Engin et al. proposed a convolution neural network 
(CNN)-based method called cycle-dehaze. This method 
directly enhances the quality of a hazy image by consider-
ing cycle consistency and perceptual loss in training the 
model. This method improves the visibility of the image. 
However, a lot of distortions appear in the recovered image 
due to downsampling and upsampling of the image. San-
tra et al. [25] proposed patch quality comparator-based 
method to dehaze an image. This method estimates the 
transmission by comparing the various output patches with 
the input hazy image using binary search and selects the 
best one. Ren et al. [26] utilized CNN for the removal 
of haze from videos. This method assumes that transmis-
sion is highly correlated in adjacent frames of the video. 
It also uses semantic information to restore a haze-free 
image. Later, Ren et al. [27] proposed a multi-scale CNN 
and holistic edge guided network for refinement of edges. 
This method achieves good dehazing capability in terms 
of speed and quality. Zhang et al. [28] proposed a method 
that estimates the transmission by jointly learning of clear 
image details and transmission map.

Machine learning-based methods directly supply a vast 
amount of hazy and their corresponding haze-free images 
of different haze concentrations to train the model. The 
high number of pixels in an image prevents an algorithm 
from being computationally feasible.
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3 � The proposed methodology

The proposed method consists of six steps: superpixel seg-
mentation, feature extraction, train the model, non-linear 
regression, atmospheric light estimation, and recovery of 
a haze-free image, as shown in Fig. 1. In the first step, the 
hazy image is segmented using superpixels by SLIC algo-
rithm. The second step extracts multi-scale haze-related 
features from the hazy images, and then, these features are 
arranged superpixelwise. The training step prepares the 
data to train the model. These data include a feature vector 
of all superpixels extracted from hazy images along with 
their target transmission. Nonlinear regression step predicts 
the transmission by ensemble neural network of segmented 
superpixels for a test hazy image. After refinement of the 
transmission, the subsequent tasks in haze removal such 
as atmospheric light estimation and scene recovery are 
performed.

3.1 � The superpixel segmentation

The superpixel groups a set of pixels that are homogeneous in 
color, texture, and brightness. Due to the high number of pixels 

in an image, to speed up the task, many vision algorithms 
such as object classification [29], depth recovery [30], and 
semantic segmentation [31] take advantage of superpixels. A 
superpixel can be replaced by a fixed size patch to reduce the 
halo artifacts. According to the state-of-the-art of superpixels 
algorithm, such as graph-based, density-based, and clustering-
based, it is found that simple linear iterative clustering (SLIC) 
algorithm [32] is fast and can be implemented in real time.

The SLIC offers on controlling of the number of superpix-
els extraction from an image, and generated superpixels are 
compact in shape. Therefore, we select the SLIC algorithm 
to extract haze relevant features of a superpixel. The center 
of a superpixel is represented in the 5D space as {l, a, b, x, 
y}, where {l, a, b} represents the color of a pixel in CIELAB 
color space and (x, y) is the coordinates of a pixel. It uses the 
following distance measure:

(2)
distlab =

√
(l(u) − l(v))2 + (a(u) − a(v))2 + (b(u) − b(v))2

(3)distxy =
√
(x(u) − x(v))2 + (y(u) − y(v))2

(4)distS = distlab +
m

S
distxy

Fig. 1   The framework of the proposed method
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where distlab is the color distance, distxy represents the spatial 
distance, and u and v are the two pixels. distS is the sum of 
color distance and spatial distance, normalized by a grid 
interval S, where S =

√
P∕Q . P is the number of pixels in 

an image, and Q is the number of superpixels. m is a control-
ling parameter used to control the compactness of a super-
pixel. The SLIC algorithm shows good adherence to image 
boundaries; therefore, it can be utilized in image dehazing 
to reduce the halo artifacts at depth discontinuities. The 
comparison of SLIC with other two superpixel approaches: 
graph based [33] and path based [34] is shown in Fig. 2 
along with zoomed part for the object inside the black rec-
tangle. This figure shows that SLIC has better adherence at 
image boundaries as compared to these methods.

3.2 � Features extraction from superpixel

In the second step, we extract haze relevant multi-scale 
features from a hazy image. These features are hue dispar-
ity (hd) [35], dark channel ( Darks ) [7], local max contrast 
( Cons ) [4] and local max saturation ( Sats ) [23], as shown 
in Fig. 3.

3.2.1 � Hue disparity

Hue disparity is used to find the presence of haze in hazy 
image. It is defined as the difference of hue between a hazy 
image and its semi-inverse image, whereas the semi-inverse 

image is the maximum of hazy image and inverse of the hazy 
image, given as follows:

where Ic is the hazy image in color channel c, Ic
semi

 is the 
semi-inverse image in color channel c, h represents the 
hue of the image, and x is the position of a pixel. Figure 3b 
shows the hue disparity hd, which clearly shows the strong 
correlation with the haze in the image.

3.2.2 � Dark channel

The DCP is highly correlated with the haze and used to esti-
mate the transmission. It is defined as a minimum of color 
channel in a local patch. It is given by:

where Ωs is the local patch, centered at x with size s*s. 
s affects the performance of the dark channel. Accord-
ing to this feature, a small value of s will result in over-
dehazing, while a large s will result in halo artifacts. Thus, 
we apply a multi-scale dark channel feature in the pro-
posed work. We used four scales in the proposed work: 
Darks =

[
Dark1, Dark4, Dark7, Dark10

]
 . Figure  3c and d 

shows the visual analysis of dark channel feature for scale 1 
and 10. As we can see, the dark channel is highly correlated 
with the amount of haze in the image. The dark channel 
becomes darker for the higher value of s.

3.2.3 � Local max contrast

Due to haze, the contrast of the hazy image is reduced. 
Therefore, Tan et al. [4] proposed a method to improve the 
contrast of the image by maximizing the local contrast. In 
the proposed method, it is defined by taking the difference 
of maximum and minimum intensity in a local patch Ωs , 
centered at x.

(5)hd (x) =
|||I

h(x) − Ih
semi

(x)
|||

(6)Ic
semi

(x) = max
c∈{r,g,b}

(Ic(x), (1 − Ic(x)))

(7)Darks(x) = min
y∈Ωs(x)

(
min

c∈{r,g,b}
(Ic(y))

)

Fig. 2   Comparison of superpixel approaches for boundary adherence 
on a hazy image. a Hazy image, b Ren et al. [33], c Tang et al. [34], 
d SLIC [32]

Fig. 3   Feature extraction from a hazy image. a Hazy image, b hue 
disparity (hd), c dark channel at scale 1(Dark1), d dark channel at 
scale 10 (Dark10), e local max contrast at scale 1 (Con1), f local max 

contrast at scale 10 (Con10), g local max saturation at scale 1(Sat1), h 
local max saturation at scale 10 (Sat10)
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Again, we take four scales Cons =
[
Con

1
, Con

4
, Con

7
,

Con
10
]
 in the proposed work. Figure 3e and f represents the 

local max contrast of a hazy image for the scale of 1 and 10. 
It can be observed in the figures that the haze-free pixels 
have higher contrast as compared to hazy pixels, although 
this feature is not as powerful as a dark channel.

3.2.4 � Local max saturation

Similar to image contrast, image saturation is also reduced 
by haze effect. Local max saturation is defined on a local 
patch Ωs by considering the maximum of pixel wise satura-
tion. It is given as follows:

Similar to the image contrast feature, we take four scales 
for local max saturation as Sats =

[
Sat1, Sat4, Sat7, Sat10

]
 . 

Visual analysis of this feature is shown in Fig. 3g and 3h. 
As we can notice in the figure, saturation is reduced in the 
presence of haze.

For each image, we extract thirteen haze relevant features. 
The feature vector includes hue disparity, dark channel with 
four scales, local max contrast with four scales, and local 
max saturation with four scales. The work [22] constructs 
a 325D feature vector at every pixel in a 5 × ← 5 patch. The 
size of the feature vector is reduced to 37D in the recent 
work [16] using superpixel. This work includes a Gabor fil-
ter with 3 scales and 8 orientations. We do not consider it 
because it does not characterize the hazy image. Therefore, 
the size of the feature vector is reduced from 37 to 13D. We 
use the average feature vector within the superpixel to train 
the model because all the pixels within a superpixel repre-
sent the same characteristics. Hence, the feature vector is 
represented as follows:

where f (x) =
[
hd, D̃ark

s
, C̃on

s
, S̃at

s]

where fs is the average feature vector consisting of average 
of four features: hue disparity, dark channel, local max con-
trast, and local max saturation. n is the number of the pixels 

(8)

Cons(x) = max
y∈Ωs(x)

(
max

c∈{r,g,b}
(Ic(y))

)
− min

y∈Ωs(x)

(
min

c∈{r,g,b}
(Ic(y))

)

(9)Sats(x) = max
y∈Ωs(x)

⎛⎜⎜⎝
1 −

min
c∈{r,g,b}

(Ic(y))

max
c∈{r,g,b}

(Ic(y))

⎞⎟⎟⎠

(10)fs =
1

n

∑
x∈si

(f (x))

D̃ark
s
=
[
Dark1, Dark4, Dark7, Dark10

]

C̃on
s
=
[
Con1, Con4, Con7, Con10

]

S̃at
s
=
[
Sat1, Sat4, Sat7, Sat10

]

belonging to a superpixel Si. D̃ark
s
, C̃ons, and S̃ats represent 

superpixelwise average feature of the dark channel, max 
contrast, and max saturation, respectively.

Hue disparity is calculated for the entire image; the other 
three features are calculated in four scales. The averaging 
process transforms the feature vector from imagewise to 
superpixelwise.

3.3 � The training phase

The training phase requires the transmission of a hazy image. 
Fan et al. [16] rely on existing methods to generate target 
transmission. They used three different methods to gener-
ate transmission. Since this method is dependent on other 
methods for the transmission, failure of assumption/priors 
may lead to failure of this method. Therefore, we obtain the 
actual transmission from the synthetic hazy images, whose 
depth images are available. The NYU depth dataset [36] 
contains ground truth images and their corresponding depth 
images. To generate hazy images, the atmospheric scattering 
model is utilized. First, for each image, the transmission is 
determined using the depth d and scattering coefficient � . � 
is set to 1, 2, 3, and 4 to generate hazy images of different 
haze concentrations. Furthermore, the atmospheric light A 
is assumed to be pure white. Figure 4 shows the hazy images 
along with their transmissions for different values of � . We 
generate the hazy image according to the following equation:

3.4 � Nonlinear regression by ensemble neural 
network

Nonlinear regression is a good choice for nonlinear problems 
such as estimating the transmission of a hazy image, where 
haze effect depends on the distance and scattering of par-
ticles also adds nonlinear noises to the image. The 13 haze 
relevant features extracted from the hazy image act as inputs 
to a neural network, and the transmission is the target. The 
neural network is trained on these 13 features of each super-
pixel whose transmission is already known, as discussed in 
the training section, and it will produce the transmission as 
an output for each superpixel of unknown hazy image. We 
used two-layer (hidden layer and output layer) feed-forward 
network for learning the transmission on superpixels. We 
have taken 10 neurons in the hidden layer and used nonlinear 
activation function (hyperbolic tangent sigmoid) and linear 
activation function in the hidden layer and an output layer, 
respectively. The Levenberg–Marquardt (LM) [37] is used 
as a training algorithm.

(11)Ic
h
(x) = Jc

nh
(x) ⋅ e−�d(x) + Ac

t

(
1 −

(
e−�d(x)

))
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However, this algorithm takes more memory, but it is 
computationally efficient; therefore, training time is reduced.

A neuron takes M inputs with approximate weight w. The 
output of a neuron can be expressed as a sum of weighted 
inputs and bias to the transfer function. The net input to 
neuron k in layer i + 1 is expressed as follows:

The output of the neuron k is expressed as follows:

or output of a neuron in matrix form can be expressed as 
follows:

where ai represents a feature vector x of size m*s, m is 
the number of features, and s is the number of superpixels 
generated by all hazy images. i = 0,1,2,…L − 1 represents 
layers, k = 1, 2, 3…N represents the number of neurons in 
each layer, and f is the activation function. The most popular 
choice of the activation function for nonlinear regression is 
logistic sigmoid (LS) and hyperbolic tangent (HT). We have 
used the HT activation function as it is a rescaled version of 
LS and more powerful than LS, given as follows:

and its derivative is given by

To adjust network weight and bias values, a cost function 
is required. The objective of the cost function is to minimize 
the difference between the actual and predicated transmis-
sion of a superpixel. This is achieved through mean square 
error (MSE) as follows:

(12)ni+1(k) =

M∑
j=1

wi+1(k, j)ai(j) + bi+1(k)

(13)oi+1(k) = f i+1
(
ni+1(k)

)

(14)oi+1 = f i+1
(
wi+1ai + bi+1

)

(15)f i+1(x) =
ex − e−x

ex + e−x
=

e2x − 1

e2x + 1

(16)f �i+1(x) = 1 −
(
f i+1(x)

)2

where M is the number of observations or training exam-
ples, i.e., number of superpixels of all hazy images used for 
training, ti is the actual transmission, and pi is the predicted 
transmission of a superpixel i.

The LM algorithm is an approximation to Newton’s 
method and optimizes the performance. It computes gra-
dients and Jacobians through backpropagation algorithm. 
It achieves second-order training speed without calculating 
the Hessian matrix (H). It can be approximated as follows:

and the gradient is computed as follows:

where J is the Jacobians matrix and e is a vector of errors. 
Jacobians matrix contains first-order partial derivatives of 
the network error. These derivatives are with respect to 
weights and biases. It is given as follows:

The LM algorithm uses the approximations to the Hessian 
matrix in the following Newton-like update:

� is decreased after each successful step. It stops automati-
cally when generalization stops improving, reflected in terms 
of increasing MSE.

The performance of NN depends on training data, and it 
may have varying set of weights each time when they are 

(17)C(x) =
1

M

M∑
i=1

(ei)
2 =

1

M

M∑
i=1

(ti − pi)
2

(18)H = JTJ

(19)g = JTe

(20)J =

⎡⎢⎢⎢⎢⎢⎢⎣

�e1(x)

�x1

�e1(x)

�x2
⋯

�e1(x)

�xm
�e2(x)

�x1

�e2(x)

�x2
⋯

�e2(x)

�xm

⋅ ⋅ ⋅

⋅ ⋅ ⋅

�eM (x)

�x1

�eM (x)

�x2
⋯

�eM (x)

�xm

⎤⎥⎥⎥⎥⎥⎥⎦

(21)Yk+1 = Yk −
[
JTJ + �I

]−1
JTe

Fig. 4   Generation of hazy images and their corresponding transmis-
sions on two hazy images. a The first row in this figure shows the 
ground truth image along with depth image, b the second row shows 

the different hazy images using � = 1, � = 2, � = 3, and � = 4, c the 
third row shows the transmission map of the corresponding hazy 
images
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trained. Therefore, single NN is having high variance in pre-
dictions. To avoid the problem of overfitting and to improve 
generalization of a network, we used multiple neural networks 
[38, 39] and average their outputs, as shown in Fig. 1. This 
network is generally used when there is a less volume of data 
and it is noisy too. We trained using 10 NNs and their MSEs 
are compared to MSE of their average. Average transmission 
is calculated as follows:

where ti is the output transmission estimated by an indi-
vidual neural network.

After this step, transmission of all superpixels is estimated 
by nonlinear regression. The obtained transmission is super-
pixelwise; therefore, it requires refinement. For the refinement 
of transmission, the proposed method uses Guided filtering 
[40]. It produced good results in less time as compared to soft 
matting in [7].

3.5 � The estimation of atmospheric light

Many methods have been proposed in the past to estimate the 
atmospheric light. Tan et al. [4] select the brightest pixel in the 
image. However, this method is not suitable, if there are white 
objects in the image. Kim et al. [41] and Wang et al. [42] use 
the concept of quad-tree subdivision based on a threshold. He 
et al. [7] select the top 0.1% brightest pixels in the dark channel 
and their corresponding pixels from the hazy image. We use 
the same method [7] to obtain atmospheric light. However, 
transmission generated by nonlinear regression for sky regions 
is more accurate than DCP [7].

3.6 � The recovery of scene radiance

The transmission and atmospheric light are estimated; they 
are plugged into the following equation to achieve haze-free 
image as follows:

where c ∈ {r, g, b} represents color channels, Jc
nh
 is the haze-

free image in channel c, Ic
h
 is the hazy image in channel c, 

and Ac

t
 is the atmospheric light. max () is applied to avoid 

divide by zero exception.

(22)tr =

Q∑
i=1

ti

(23)Jc
nh
(x) =

Ic
h
(x) − Ac

t

max(tr(x), .01)
+ Ac

t

4 � Experimental results and analysis

The effectiveness of the proposed method is evaluated 
by comparing it with the latest and popular state-of-the-
art dehazing methods. These methods are: robust arti-
facts suppression (RASD) [11], color attenuation prior 
(CAP) [10], non-local dehazing (NLD) [15], dark chan-
nel prior (DCP) [7], multilayer perceptron (MLP) [13], 
and two-layer Gaussian (TLG) [16]. These prevailing 
dehazing methods are compared and evaluated on chal-
lenging real-world hazy images. Besides, performance 
on synthetic hazy images is compared with CNN-based 
methods including patch quality comparator (PQC) [25] 
and cycle-dehaze (CD) [24] and latest method nonlinear 
bounding function (LBF) [21]. We have conducted the 
experiments on two datasets: Waterloo IVC dataset [43] 
and RESIDE dataset [44]. To prove the capability of the 
proposed method, qualitative and quantitative comparisons 
are performed.

4.1 � Dehazing on real‑world hazy images

We have selected the hazy images for comparison from 
Waterloo IVC dataset [43]. The hazy images are partitioned 
into hazy images with large sky regions and without sky 
regions. Moreover, a qualitative and quantitative comparison 
is conducted on these images.

4.1.1 � Qualitative analysis

Figure 5 represents the hazy images with large sky regions. 
The challenge of these images is to remove the effect of the 
haze without color distortions and artifacts in the sky region. 
Without sky region images are shown in Fig. 6. These hazy 
images are containing white objects, nighttime haze (head-
light similar to atmospheric light), mild haze, long scenery, 
and abrupt depth regions. The dehazed image must not suffer 
from color distortions or halo artifacts.

To better understand the dehazing capability of the 
proposed method and the other methods, some important 
regions of the image are marked with rectangles of differ-
ent colors. We are considering four types of distortion in 
the restored image. These problems are artifacts, oversatu-
ration/color distortions, blurring effect, and visibility/loss 
of details. The red rectangle represents the area with the 
problem of artifacts, blue rectangle indicates the region with 
the problem of blurring effect, the area with the problem of 
oversaturation or color distortions is marked with the green 
rectangle, and yellow rectangle denotes the region with the 
problem of either incomplete haze removal or loss of details 
in the highlighted portion.
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Fig. 5   Visual comparison with existing methods on hazy images with sky regions. a Hazy image, b RASD [11], c CAP [10], d NLD [15], e 
DCP [7], f TLG [16], g MLP [13], h the proposed method

Fig. 6   Visual comparison with existing methods on hazy images without sky regions. a Hazy image, b RASD [11], c CAP [10], d NLD [15], e 
DCP [7], f TLG [16], g MLP [13], h the proposed method
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Figures 5 and 6 show that RASD method produces 
dehazed result without artifacts. However, it is unable to 
prevent oversaturation and blurring effects. The blurring 
effect is introduced at the cost of artifacts suppression by 
gradient residual minimization, and inaccurate estimation 
of transmission leads to oversaturation. The problems 
encountered in the restored images are marked with rec-
tangles of blue and green colors only, as shown in Figs. 5b 
and 6b.

The CAP method restores image without artifacts. How-
ever, it also introduces blurring effect and color distortions 
in the dehazed image as indicated by the blue and green 
rectangles. Sometimes, the dehazed image lost the details, 
as marked with yellow rectangles (see the fifth image of 
Fig. 5c and the second image of Fig. 6c, unable to preserve 
the structure of headlight).

The restored images using NLD are shown in Figs. 5d and 
6d. The details are visible in the dehazed images. However, 
dehazed images are too brightened and suffer from color 
distortions or oversaturation. Most of the time, results are 
marked with green rectangles, except one image where it 
produces the color artifacts in the sky region, marked with a 
red rectangle (see the fourth image of Fig. 5d).

The DCP method works very well for non-sky images. 
However, for sky regions image, its performance is unsatis-
factory. We can observe the dehazed images in Figs. 5e and 
6e. In all images of Fig. 5e, it produces the color artifacts 
in the sky regions, marked with red rectangles. It produces 
halo artifacts at the depth discontinuities due to patch-based 
estimation of transmission (see the fifth image of Fig. 6e) 
and color distortion for white objects (see the first image 
of Fig. 6e).

The results of two machine learning methods TLG and 
MLP are shown in Figs. 5f, g and 6f, g, respectively. We can 
observe in these figures that the performance of these two 
methods is not consistent. These two methods are unable to 
serve the main purpose of dehazing, i.e., they are unable to 
increase the contrast or visibility of the hazy image, as indi-
cated by the yellow rectangles. However, the performance 
of the TLG is satisfactory as compared to MLP in terms of 
haze removal. Otherwise, the performance of MLP in distor-
tion parameters is better as compared to TLG. Sometimes, 
the dehazed images by these two methods suffer from the 
problem of saturation, as indicated by green rectangles.

In comparison with all dehazing methods, the proposed 
method better recovers the hazy image with increased vis-
ibility without distortions in the image. The dehazed images 
are free from artifacts, saturation, and blur. The results are 
shown in Figs. 5h and 6h.

Furthermore, we have tested the robustness of the pro-
posed method on a noisy image, as shown in Fig. 7. We have 
added Gaussian noise with mean 0 and standard deviation 
0.01.

Figure 7 shows that the dehazed result of existing meth-
ods DCP [7] and NLD [15] suffers from the significant 
amplification of noise. The proposed method restores the 
visibility of a noisy hazy image with reduced noise amplifi-
cation as compared to existing methods.

Moreover, the performance of the proposed method 
is evaluated with two latest methods [45, 46]. These two 
methods also provide hardware implementation using very 
large-scale integration architecture (VLSI). Kumar [45] uti-
lized infrared images to refine the transmission map and 
to enhance the visibility of the hazy images. It can be used 
with existing dehazing approaches, such as [7, 10, 14]. The 
qualitative analysis with [45] on two RGB-NIR hazy images 
is shown in Fig. 8.

The method [46] presents a VLSI architecture-based 
dehazing method which can be utilized in a resource con-
strained environment. Figure 9 shows a visual comparison 
with this method on two hazy images.

The dehazed images in Fig. 8b and c have color distor-
tions problem in the sky region as the color of the sky is 
much darker. This happens due to the limitation of the base 
methods. However, dehazed result using [14] in Fig. 8d pro-
duces a satisfactory result in the sky region. The proposed 
method in Fig. 8e has better dehazed image as compared to 
result obtained in Fig. 8b–d.

The comparison of the dehazed result with method [46] 
is shown in Fig. 9 on two hazy images from the D-Hazy 

Fig. 7   Visual comparison with existing methods on a noisy hazy 
image. a Hazy image, b DCP [7], c NLD [15], d the proposed method

Fig. 8   Comparison with method [45] on two hazy RGB-NIR images. 
a Hazy image, b the method [45] using [7], c the method [45] using 
[10], d the method [45] using [14], e the proposed method
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dataset. The method [46] in Fig. 9c produces over enhanced 
result in some regions, marked by red rectangles. The recov-
ered images by the proposed method in Fig. 9d are compa-
rable to ground truth images in Fig. 9b.

4.1.2 � Quantitative analysis

Besides the subjective qualitative assessment, the quantita-
tive analysis also plays an important role to test the capabil-
ity of dehazing methods. We have considered the three types 
of distortions in the dehazed image: halo artifacts, saturation 
of pixels, and blurring effect.

Therefore, we have used three referenceless metrics, i.e., 
the blur metric [47], blocking artifacts and luminance change 
(BALC) [48], and the saturated pixel ratio [49] as illustrated 
in Table 1.

Blur metric is a no-reference metric ranging from 0 to 
1. A value of 0 represents the best quality and 1 represents 
the worst quality of the image in terms of blur perceptions.

Zhan et al. [48] proposed a non-reference metric that pro-
vides the quality score of an image based on distortions such 
as blocking artifacts and blurring effect. It divides the image 
into 8*8 block non-overlapping blocks. Afterward, for each 
block, it predicts the quality by considering blockiness and 
luminance change. These two obtained scores are combined 
into a single quality score as follows:

where Bimg represents the blockiness of the image and Limg 
indicates the luminance change or blurring effect. � ≥ 0 is 
used to adjust the relative importance of two parameters. It 
is usually taken as 0.215.

A higher value of BALC is an indication of a lower qual-
ity image, having more blocking artifacts and blurring effect.

(24)BALC = Bimg ∗ L−�
img

Saturated pixel ratio ( � ) is an indication of saturation. 
Saturation turns the pixels into black or white in the restored 
image. The value of � must be small for good dehazing 
performance.

Table 1 illustrates the values of three metrics: blur metric, 
BALC, and � for hazy images shown in Figs. 5 and 6 using 
different methods.

Compared with other methods, the RASD and CAP 
methods obtain a large mean value of blur, indicating that 
dehazed images suffer from the blurring effects. The remain-
ing methods are performing average.

If we observe the values of the BALC metric in percep-
tion of artifacts in dehazed image, the DCP method achieved 
the highest mean BALC value. The high value of BALC 
is indicating that the DCP method is not suitable for hazy 
images with large sky regions and produces the artifacts. 
NLD method is in the second place in the poor performance, 
and it also produces color artifacts in the sky regions. The 
performance of other methods is average.

Moreover, � value is shown in Table 1. Most of the meth-
ods have achieved high � values except for the DCP and the 
proposed method. The high value of � indicates that existing 
methods suffer from the problem of oversaturation and color 
distortions.

By analysis of Table 1, the proposed method achieves the 
smallest value of blur, BALC, and � metric among all the 
methods in the comparison. The analysis from Table 1 indi-
cates that the proposed method produces a distortion-free 
dehazed image. Moreover, the quantitative analysis proves 
the validity of the qualitative analysis.

Table 2 illustrates the mean value of these metrics on 
Waterloo IVC dataset [43]. The RASD method achieves sec-
ond highest value of BALC, indicating that dehazed images 
are artifacts-free. However, this method suffers from the 
problem of saturation (high value of � ) and blurring effect 
(high value of blur). The machine learning methods [13, 16] 
produce satisfactory result. The proposed method achieves 
lowest mean values of blur, BALC, and � . These values in 
this table prove that the proposed method restores the vis-
ibility of a hazy image without introducing any distortion.

4.2 � Comparison on hazy images when ground truth 
image is available

In addition to real-world hazy image, we have also evaluated 
the proposed method on the synthetic hazy images from the 
RESIDE dataset. Figure 10 shows some example images 
from this dataset. In this section, we have compared the 
proposed methods with recent state-of-the-art technologies, 
including PQC [25], CD [24], and LBF [21].

Again, the assessment is done qualitatively and 
quantitatively.

Fig. 9   Comparison with method [46] on two hazy images from 
D-Hazy dataset. a Hazy image, b the ground truth image, c the 
method [46], e the proposed method
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4.2.1 � Qualitative analysis

The visual comparison with three methods PQC [25], CD 
[24], and LBF [21] is shown in Fig. 10. These images are 

taken from the RESIDE dataset. Figure 10 shows the hazy 
images along with their ground truth images. It can be 
observed in the figure that the PCQ methods suffer from 
the problem of over enhancement (dark color) (see the sky 

Table 1   Comparison of values 
of blur, BALC, and � metric on 
hazy images shown in Figs. 5 
and 6

Bold values indicate the best performance of a method on a specified metric

Metric RASD [11] CAP [10] NLD [15] DCP [7] TLG [16] MLP [13] The 
proposed 
method

Blur 0.236 0.298 0.214 0.222 0.209 0.218 0.210
0.302 0.281 0.261 0.269 0.262 0.265 0.251
0.345 0.229 0.208 0.213 0.223 0.213 0.205
0.320 0.223 0.226 0.230 0.219 0.225 0.213
0.215 0.191 0.192 0.198 0.195 0.193 0.192
0.371 0.336 0.319 0.319 0.324 0.317 0.312
0.367 0.307 0.301 0.304 0.312 0.314 0.303
0.448 0.370 0.365 0.362 0.363 0.362 0.366
0.249 0.231 0.213 0.220 0.222 0.217 0.208
0.224 0.213 0.197 0.212 0.198 0.200 0.204

Mean blur values 0.308 0.268 0.249 0.255 0.253 0.252 0.246
BALC 1.631 1.835 1.299 1.704 1.375 1.428 1.377

1.430 1.580 1.713 1.786 1.552 1.460 1.455
1.056 1.424 1.643 1.859 1.286 1.268 1.242
1.849 2.038 4.077 4.207 2.247 3.230 1.798
1.171 0.941 0.723 0.987 0.806 0.528 0.511
1.825 1.880 1.830 1.868 1.929 1.703 1.798
1.502 1.531 1.425 1.516 1.558 1.414 1.412
1.469 1.560 1.442 1.467 1.566 1.384 1.460
1.970 1.536 1.184 1.441 1.965 1.442 1.580
1.748 1.851 1.134 1.554 1.598 1.149 1.221

Mean BALC values 1.565 1.618 1.647 1.839 1.588 1.501 1.385
σ 0.011 0.207 1.258 0.003 0.651 0.031 0.007

0.000 0.000 0.118 0.000 0.000 0.011 0.000
30.804 0.001 0.142 0.015 0.002 0.028 0.000

0.766 0.000 0.008 0.000 0.001 0.000 0.000
0.001 0.000 0.128 0.030 0.487 0.035 0.005
0.000 0.000 0.017 0.000 0.000 0.006 0.000
0.737 5.751 0.271 0.174 1.196 0.226 0.184
0.000 0.000 0.004 0.000 0.001 0.038 0.009
0.000 0.000 0.005 0.000 0.000 0.000 0.000
0.000 0.000 0.008 0.000 0.002 0.005 0.000

Mean σ values 3.232 0.596 0.196 0.022 0.234 0.038 0.020

Table 2   Comparison of mean 
values of blur, BALC, and 
� metrics on Waterloo IVC 
dataset [43]

Method/metric RASD [11] CAP [10] NLD [15] DCP [7] TLG [16] MLP [13] The 
proposed 
method

Mean Blur 0.384 0.352 0.323 0.367 0.355 0.351 0.323
Mean BALC 1.575 1.761 1.823 2.11 1.722 1.714 1.454
Mean σ 2.754 0.525 0.187 0.017 0.215 0.041 0.012
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regions in the third, fourth, and fifth image of Fig. 10c). 
The CD method generates distorted images (see Fig. 10d) 
because it enhances the image quality without considering 
the degradation mechanism, i.e., the physical model of haze 
imaging. The LBF method maintains the structure of the 
recovered image. However, it is unable to increase the con-
trast of the hazy image (see the third, fourth, and fifth image 
of Fig. 10e).

The dehazed images obtained by the proposed method 
are presented in Fig. 10f. In comparison with other methods, 
the proposed method restores the image similar to ground 
truth images.

4.2.2 � Quantitative analysis

Furthermore, we perform the quantitative analysis of the 
hazy images presented in Fig. 10. We used two metrics: 
peak signal-to-noise ratio (PSNR) and structure similarity 
index measure (SSIM) [3]. The PSNR measures the dis-
tortion between haze-free image and ground truth image, 
while SSIM checks the similarity of two images in terms 
of structure. For good dehazing performance, both values 
must be high.

Table 3 shows the PSNR and SSIM values for images 
presented in Fig. 10. The CD method has the lowest mean 
value of PSNR and SSIM value, indicating poor quality 
of the dehazed image. The proposed method has achieved 
the highest mean PSNR value than PC, LBF, and CD. It 

Fig. 10   Synthetic hazy images from RESIDE dataset. a Hazy image, b GT, c PQC [25], d CD [24], e LBF [21], f the proposed method
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also obtained the SSIM values higher than PC and CD. 
However, it has less SSIM value as compared to LBF.

Table 4 illustrates the mean values of PSNR and SSIM 
on D-Hazy dataset [36]. The high values of these metrics 
indicate that the proposed method outperforms existing 
methods in terms of visibility, contrast, structure and is 
comparable to ground truth images.

5 � Conclusions and future work

In this paper, we have proposed an image dehazing method 
that improves the visibility of the hazy image without any 
distortion in the recovered image. The proposed method 
used superpixels and ensemble neural network. The super-
pixel groups a set of pixels that are homogeneous in color, 
texture, and brightness and offer fewer training examples. 
It also helps in reducing the halo artifacts which is a com-
mon problem in patch-based methods. The transmission is 
estimated by the ensemble network that works perfectly on 
a less volume of data.

This ensemble network avoids the problem of overfitting 
and improves the generalization of a network. Finally, the 
transmission from an individual network is averaged. The 
performance of the proposed method is tested on different 
challenging hazy images qualitatively and quantitatively. 
The experimental results demonstrate that the dehazed 
image by the proposed is free from various distortions such 
as artifacts, saturation, and blur. The proposed method 
works effectively in most of the cases, but sometimes the 
dehazed image has a over enhancement problem as shown 

in the experimental section (first image of Fig. 10f). The 
other limitation is that it is unable to increase the contrast 
in faraway regions for dense hazy images. The future work 
will focus on resolving these issues. We will also consider 
how the hardware implementation using very large-scale 
integration (VLSI) architecture of the proposed method can 
be taken place.
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