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Abstract
The problem of registering nonrigid point sets, with the aim of estimating the correspondences and learning the transforma-
tion between two given sets of points, often arises in computer vision tasks. This paper proposes a novel method for perform-
ing nonrigid point set registration on data with various types of degradation, in which the registration problem is formulated 
as a Gaussian mixture model (GMM)-based density estimation problem. Specifically, two complementary constraints are 
jointly considered for optimization in a GMM probabilistic framework. The first is a thin-plate spline-based regularization 
constraint that maintains global spatial motion consistency, and the second is a spectral graph-based regularization constraint 
that preserves the intrinsic structure of a point set. Moreover, the correspondences and the transformation are alternately 
optimized using the expectation maximization algorithm to obtain a closed-form solution. We first utilize local descriptors 
to construct the initial correspondences and then estimate the underlying transformation under the GMM-based framework. 
Experimental results on contour images and real images show the effectiveness and robustness of the proposed method.

Keywords Nonrigid point set registration · Gaussian mixture model · Thin-plate spline · Graph Laplacian regularization · 
Expectation maximization

1 Introduction

Point set registration [1–4] is a fundamental topic and plays 
a significant role in machine learning and data mining, and 
it frequently arises in science tasks, such as augmented 
reality [5, 6], image mosaicking [7, 8], pattern recognition 
[9–11], and image fusion [12]. These feature-based image 
registration tasks work with point features extracted from 
image pairs, where such a point feature implies some geo-
metric invariance between the images. Image registration 
can thereby be reduced to a feature point-based registration 
problem that involves both estimating reliable correspond-
ences and recovering the optimal transformation parameters.

Based on the type of spatial transformations considered, 
point set registration problems can be divided into prob-
lems of rigid registration and nonrigid registration. Rigid 

registration usually involves rotation, translation, and scal-
ing, and excellent performance has been achieved for this 
type of registration (e.g., [13–15]). By contrast, nonrigid 
registration addresses data with various types of degrada-
tion (deformation, noise, occlusion, and outliers). It is more 
challenging because the correspondences between the two 
point sets are more difficult to establish, and the underlying 
nonrigid spatial transformations are complicated. However, 
nonrigid registration arises in many practical engineering, 
including criminal detection based on palmprint recognition 
[16], facial expression recognition [17], visual navigation 
[18], etc. In this paper, we focus on nonrigid registration 
problem.

A primary challenge in nonrigid registration is how to 
construct the initial correspondences from the degraded 
point sets. Here, reliable correspondences are used to refine 
the optimal spatial transformation, and vice versa. The ini-
tial correspondences are usually established based on only 
local descriptors, e.g., SIFT [19] or shape context (SC) [20], 
which are inherently sensitive to degradation and hence will 
give rise to some uncertain correspondences. In brief, the 
initial correspondences are contaminated by outliers (incor-
rect correspondences). The goal of transformation estimation 
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is to partition the initial correspondences into inliers (cor-
rect correspondences) and outliers in accordance with the 
data points’ similarities. However, the existence of outli-
ers makes the registration problem more difficult because 
spatial transformation learning is a nonlinear registration 
problem that cannot be modeled in a simple parametric man-
ner. Thus, additional constraints are needed to preserve the 
global structure and intrinsic geometric structure of the point 
sets during registration.

To address the above problems, we propose an innova-
tive method for nonrigid point set registration in which the 
registration problem is converted into a Gaussian mixture 
model (GMM)-based probability density estimation prob-
lem. This method is specifically designed to find an optimal 
alignment between two given point sets. More precisely, 
we first construct the initial correspondences using local 
descriptors. Then, we develop a flexible and robust registra-
tion framework for distinguishing inliers from outliers. The 
key idea of the framework is to employ two complementary 
constraints in a unified GMM-based optimization frame-
work. One is a thin-plate spline (TPS)-based regularization 
constraint, which is used to maintain global smoothness 
during the estimation of the underlying transformation. The 
other constraint is an intrinsic structure-based geometrical 
constraint, which is applied to preserve the intrinsic geom-
etry of the transformed set. A joint iterative optimization 
process that links these two constraints under a GMM-based 
framework is achieved by using the expectation maximiza-
tion (EM) [21] algorithm to automatically identify inliers. 
Moreover, the TPS approach [22] is used to parameterize the 
spatial transformation, the spline tool TPS has a close-form 
solution which can be decomposed into affine and nonaffine 
subspaces. It can produces a smooth functional mapping in 
the context of supervised learning and has no free param-
eters that need manual tuning. To generate a smooth spatial 
mapping between two given point sets with one-to-one cor-
respondences, we choose the TPS for parameterization.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews related works and the problem we address. 
Section 3 describes our method in detail. Section 4 presents 
experimental results and performance comparisons between 
our approach and other approaches, followed by a conclu-
sion in Sect. 5.

2  Related work

Feature-based image registration is a classical problem that 
has attracted considerable attention and has been under devel-
opment for a long time. As mentioned earlier, a feature point-
based approach is typically applied in which a local descrip-
tor is used to construct initial corresponding point pairs, and 
the underlying transformation is then solved for to remove 

outliers. Here, several theories will be briefly reviewed, and 
our contributions will be mentioned afterward.

In local descriptor-based methods, a set of initial fea-
ture correspondences is built for the extracted point sets by 
using local neighborhood information. The commonly used 
descriptors include SIFT, SC, and FPFH [23], the appli-
cation of which to construct feature correspondences has 
already been demonstrated. In addition, Hauagge and Sna-
vely [24] presented a technique for finding correspondences 
between difficult image pairs that are rich in symmetries. 
Mikolajczyk and Schmid [25] evaluated the performance of 
a variety of descriptors for local regions of interest and pro-
posed an extension of the SIFT descriptor. However, these 
local descriptors consider only local neighborhood informa-
tion, and the initial correspondences usually are either too 
sparse or contain unavoidable outliers because of ambiguity.

Feature point-based registration is used to align two point 
sets together and determine the inliers from the initial cor-
respondences. One of most popular registration methods is 
the iterative closest point (ICP) method [13], which itera-
tively assigns correspondences between two surface patches 
under Euclidean transformation. However, as an iterative 
method, the ICP method itself requires coarse prealignment, 
without which the method may tend to become trapped in 
local minima. More critically, such an adequate set of initial 
poses is no longer valid for nonlinear registration. To alle-
viate the issue of local minima, various improvements and 
variants of the standard ICP method have been presented 
[26–29]. Although these methods can improve the conver-
gence properties of the standard ICP method, they still do 
not achieve high robustness. Furthermore, a robust feature 
point-based registration framework based on modeling the 
transformation with thin-plate spline robust point matching 
(TPS-RPM) has been presented [30], in which deterministic 
annealing and soft-assignment techniques are used to learn 
the transformation. Although the TPS-RPM method is more 
robust than the ICP method, it has a higher computational 
complexity. Under this same framework, Tsin and Kanade 
[31] proposed another trick for point set registration. The 
kernel correlation (KC) method, also called multiply linked 
ICP, considers the proportional correlation of two kernel 
density functions. A later improved approach presented by 
Jian and Vemuri [32] is based on the KC method; it attempts 
to model each point set as a mixture of Gaussians and then 
estimate the transformation by minimizing the discrepancy 
between the two Gaussian mixtures. However, it is sensi-
tive to outliers. Based on motion coherence theory (MCT) 
[33, 34], the coherence point drift (CPD) method [35] was 
introduced and later improved in [36]. In this method, the 
registration problem is formulated as a maximum likeli-
hood GMM estimation problem with a regularization term 
for preserving the global topological structure. However, for 
the CPD method, it is necessary to estimate the underlying 
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number of Gaussian components, and this method is still 
sensitive to outliers and noise.

Recently, several methods have been proposed for the 
detection of outliers through the embedding of spatial con-
straints and restriction of the solution space. Yang et al. [37] 
proposed a flexible method called global and local mixture 
distance with TPS (GLMDTPS), which treats global and 
local structural differences as a linear assignment problem. 
The performance of this method which consider only the geo-
metric structure is limited by the assumption that correspond-
ing points have similar structure. Ma et al. [38] proposed a 
new approach for vector field learning with application to 
mismatch removing. The SC descriptor was used as local 
descriptor to assign the membership probabilities, and the 
EM method was used to solve the regularized mixture model. 
Yang et al. [39] proposed using the standrad TPS regulariza-
tion term as prior knowledge to preserve the global topol-
ogy. However, this approach ignores the intrinsic geometry 
of the point sets. Wang et al. [40] presented a spatially con-
strained Gaussian fields (SCGF) method for nonrigid point 
set registration. They utilized the inner distance shape con-
text (IDSC) [41] to construct the correspondences and used 
graph Laplacian regularization to constrain the geometric 
structure of the input space. However, when facing a large 
degree of degradation, this method is highly time consuming 
and can easily become trapped in a local minimum. Ma et al. 
[42, 43] presented an efficient approach based on manifold 
regularization for the nonrigid registration of shape patterns. 
However, their method is not robust when confronted with 
some degree of noise and outlier degradation. Wang et al. 
[44] formulated the retinal image registration problem as a 
probabilistic model, which can be used to learn a Gaussian 
field estimator to achieve robust estimation. Ge and Fan [45, 
46] designed a joint optimization approach that combines 
the CPD constraint and a local linear embedding (LLE) 
constraint in a GMM-based framework to cope with highly 
articulated nonrigid deformations, although this method can 
utilize local structural features more efficiently, the extension 
performs poorly on data with inhomogeneous density and it 
more sensitive to outliers because outliers would seriously 
affect the descriptions of local structures. Thus, their perfor-
mance degrades in complicated registration problems.

In addition, Ma et al. [47] introduced a simple method 
for robust feature registration for remote sensing images, 
called guided locality preserving matching (GLPM), which 
utilizes the neighborhood structures of potential inliers 
between the pair images to be registered. Ma et al. [48] intro-
duced a learnable match classifier called LMR for mismatch 
removal. The classifier constructs match representation for 
putative matches based on the consensus of local neighbor-
hood structures. Sedaghat and Mohammadi [49] proposed 
a robust local feature-based registration approach for high-
resolution images that is based on the improved SURF 

detector and localized graph transformation matching. Ma 
et al. [50] proposed a robust feature guided GMM for image 
matching which can handle both rigid and nonrigid trans-
formation robustly. Jiang et al. [51] proposed an approach 
called RFM-SCAN for feature matching, this paper casts the 
feature matching as a spatial clustering problem with outliers 
exploiting machine learning techniques. Lati [8] proposed 
an image mosaicking method for unmanned aerial vehicle 
images based on random sampling consensus (RANSAC) 
and bidirectional approaches with a fuzzy inference system.

In summary, the previously mentioned methods have 
made notable contributions to the field of point set registra-
tion, but few of these approaches can achieve good perfor-
mance when confronted with some degree of degradation. In 
contrast to the above methods, our proposed method is more 
robust to degradation than previous methods. The major con-
tributions of the approach proposed in this paper are listed 
as follows. (1) Global and intrinsic geometric constraints 
are jointly encoded in a GMM-based registration framework 
with the aim of preserving the topological structure of the 
image information. (2) An alternating optimization strategy 
is used to update the transformation parameters and effi-
ciently eliminate outliers. (3) When this method is applied 
to contour images and real-world images, the experimental 
results demonstrate that the method can successfully handle 
multiple types of degradation.

3  Method

This section elaborates on our method for nonrigid point set 
registration, which aims to estimate reliable correspond-
ences and learn the underlying transformation between two 
given point sets subject to ordering information for the 
model point set X = {xi}

N
i=1

∈ ℝ
N×D and the scene point set 

Y = {yj}
M
j=1

∈ ℝ
M×D , where M and N denote the number of 

points in each point set, respectively, and D is the dimension 
of the points. The model point set is typically perturbed by 
deformation, noise, occlusion, and outliers; the hope is that 
the inliers will still show the maximum pointwise overlap 
with the scene set. In the context, we consider the global 
connectivity and intrinsic geometry between two given point 
sets and propose an efficient nonrigid registration method 
that tries to identify the inliers among initial correspond-
ences. Specifically, we incorporate two complementary con-
straints into a GMM-based probabilistic framework. The first 
constraint is a TPS-based global motion coherence con-
straint, and the second constraint is a spectral graph-based 
constraint for intrinsic manifold structure preservation. We 
can solve the registration problem by minimizing the objec-
tive function deduced from the GMM-based problem formu-
lation and these two topological constraints.
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3.1  Correspondence estimation

The SC, as an effective descriptor for a point set, is a meas-
ure of the distribution of the relative positions of neighbor-
ing points. This distribution is defined as a joint histogram 
in which each histogram axis represents a parameter in polar 
coordinates [52]. The SC descriptor can be used to search 
for matches in both 2D and 3D cases.

Furthermore, the local relationship among the neigh-
boring points is well preserved, thus making the matching 
problem tractable. Logarithmic distance and polar angle 
bins are used to capture the coarse location information, 
and these bins are uniform in log-polar space, which makes 
this feature descriptor more sensitive to the positions of 
neighborhood points than to those of points farther away 
[53]. By applying this strategy to establish point correspond-
ences, we can obtain a set S = {xl, yl}

L
l=1

 of putative corre-
spondences between the model and scene point sets, where 
L ≤ min{M,N} is the number of correspondences.

3.2  GMM‑based nonrigid registration framework

The putative correspondence set S =
{
xl, yl

}L

l=1
 will inevi-

tably include mismatches with some unknown outliers. Let 
X̃ = {xl}

L
l=1

 and Ỹ = {yl}
L
l=1

 . The task is to align X̃ with Ỹ 
(e.g., yl = T(xl) ) and identify inliers, where T is the optimal 
transformation function.

In this paper, we focus on identifying as many inliers as 
possible while achieving satisfactory precision. To this end, 
we consider a probabilistic mixture model for nonrigid regis-
tration. We suppose that the inliers are subject to a multivari-
ate Gaussian distribution with equal isotropic covariances 
�2I and that the outliers satisfy a uniform distribution 1∕a 
with a positive constant a . Then, we associate a latent vari-
able zl ∈ {0, 1} with the l-th corresponding point pair, where 
zl = 1 for inliers and zl = 0 for outliers. We use homogene-
ous coordinates for each point, e.g., xl = [xl|1]1×3 , where 1 
denotes a matrix element. Thus, the joint probabilistic model 
can be written as:

where � = {T,�, �2} is a set of unknown latent variables 
and � ∈ [0, 1] is the mixing coefficient. In accordance with 
Bayes’ theorem, we consider the maximum a posteriori 
estimate of � , i.e., 𝜃∗ = argmax𝜃 p(Ỹ|X̃, 𝜃) , which can be 
determined by minimizing the following energy function:

(1)

p(Ỹ|X̃, 𝜃) =

L∏

l=1

∑

zl

p(yl, zl|xl, 𝜃)

=

L∏

l=1

[
1 − 𝜔

a
+

𝜔

2𝜋𝜎2
e
−

||yl−T(xl )||2

2𝜎2

]

Following the EM algorithm [21], an alternating iterative 
strategy is considered to address the latent variables. We can 
find the complete-data logarithm likelihood function of (2) 
(E step) as follows:

where pl = p(zl = 1|xl, yl, �old) is a posterior probability 
indicating the degree to which (xl, yl) is an inlier. Based on 
Bayes’ rule, this probability can be obtained by using the old 
transformation variables as follows:

Here, we define a threshold � for identifying inliers 
(pl > 𝜍)L

l=1
 after the EM algorithm converges or reaches some 

termination condition.
The variables are re-estimated, �new = argmax� Q(�, �old) , 

on the basis of the current pl . Taking the derivatives of 
Eq. (3) with respect to �2 and � and setting them equal to 
zero yields the following (M step):

where tr( ⋅ ) denotes the trace and P = diag(p1,⋯ , pL) and 
T(X̃) = (T(x1),⋯ , T(xL))

T . Clearly, we can consider only the 
relevance of the transformation T and simplify the function 
(3) to obtain a weighted least squares error functional:

Function (7) is similar to the moving least square method 
[54], which can be used to solve for the rigid-body trans-
formation T . However, for correlates of coherent visual 
motion such as changes in facial expression and multi-
view image sequences, for which the feature points are 
extracted in the presence of degradations, the principle of 

(2)E(𝜃) = −p(Ỹ|X̃, 𝜃) = −

L∑

l=1

ln
∑

zl

p(yl, zl|xl, 𝜃)

(3)

Q(�, �old) = −
1

2�2

L∑

l=1

pl||yl − T(xl)||2

− ln �2

L∑

l=1

pl + ln�

L∑

l=1

pl

+ ln(1 − �)

L∑

l=1

(1 − pl)

(4)pl =
exp

(
−

||yl−T(xl)||2

2�2

)

exp
(
−

||yl−T(xl)||2
2�2

)
+

2��2(1−�)

�a

(5)𝜎2 =
tr[(Ỹ − T(X̃))TP(Ỹ − T(X̃))]

2 ⋅ tr(P)

(6)� =
tr(P)

N

(7)Q(T) =
1

2�2

L∑

l=1

pl||yl − T(xl)||2
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as-rigid-as-possible image registration may not work well. 
The nonrigid registration problem is essentially a regression 
problem. It may turn out that the problem of directly solving 
for the transformation T in (7) is ill-posed since no unique 
solution is available. Regularization techniques, which usu-
ally operate in a reproducing kernel Hilbert space (RKHS), 
are often used to produce reasonable solutions to ill-posed 
problems.

3.3  Global structure preservation

In order to complete the transformation estimation for the 
nonrigid registration, we convert the formulation into the 
nonrigid case by applying regularization theory and the 
optimal nonrigid transformation T can then be estimated 
by minimizing a weighted regularized least squares error 
functional:

where � ≥ 0 is a fixed regularization parameter that controls 
the trade-off and �(T) is the registration term. The transfor-
mation T is a vector-valued function that lies in a RKHS. 
Thus, the functional � has the form �(T) = ||T||2

H
 , where H 

is the RKHS and || ⋅ ||H denotes the norm H.
To complete the least squares estimation of the transfor-

mation, we consider a nonrigid transformation function of a 
specific form, namely a TPS to generate a smooth mapping 
fitting. A TPS is a general purpose spline tool for repre-
senting a flexible nonrigid transformation, which has the 
advantages of free parameters and a closed-form solution. 
We model the transformation T using the TPS approach, in 
which the resulting transformation can be decomposed into 
a global affine transformation and a local nonaffine warping 
component:

where H is defined as a 3 × 3 global affine matrix, C is a 
L × 3 nonaffine coefficient matrix, and the radial basis func-
tion k(xl, x) is a 1 × L vector defined by the TPS kernel for 
each point, i.e., k(xl, x) = ||xl − x||2 log ||xl − x|| . The TPS 
kernel matrix KL×L is defined, with each element expressed 
as Klp = k(xl, xp) = ||xl − xp||2 log ||xl − xp|| , where xp is a 
point in X̃.

In motion perception, the concept of motion coherence 
[33, 34] is applied to intuitively interpret points close to 
one another as tending to move coherently in space. Motion 
coherence is a particular way of imposing smoothness on a 
spatial transformation. We can regularize the local nonaffine 
component k(xl, x) ⋅ C to enhance the motion coherence and 
preserve the global structure; then, the regularization term 
has the form:

(8)E(T) =
1

2�2

L∑

l=1

pl||yl − T(xl)||2 +
�

2
�(T)

(9)T(xl) = xl ⋅ H + k(xl, x) ⋅ C

Substituting Eq. (10) into Eq. (8), we can obtain a TPS 
energy function as follows:

where the second term is the standard TPS regularization 
term, which is used to maintain the overall spatial relation-
ship of the point sets during registration. It is solely depend-
ent on the nonaffine subspace.

The transformation learning method applied here is a 
dimension reduction technique on the complete subspace, 
which aims to produce a smooth function T . However, it fails 
to discover the underlying intrinsic geometry of the marginal 
space X , which is essential in real applications.

3.4  Intrinsic structure preservation

The main aim of nonrigid registration is to estimate a trans-
formation that maintains the global connectivity and asso-
ciativity of the entire point set and preserves the intrinsic 
manifold structure during the transformation. In most non-
rigid registration tasks, the success of registration learning 
for some number of the total set of point pairs (i.e., L ≤ N ) 
can be plausibly achieved through the effective use of the 
labeled point pairs {xl, yl}Ll=1 . However, the remaining N − L 
unlabeled point pairs may contain additional structure infor-
mation, which can impose smoothness conditions on pos-
sible solutions. To preserve the intrinsic geometry of the 
data space, leveraging recent advances in spectral graph 
theory, we attempt to extend the energy function in Eq. (11) 
by incorporating ensemble graph Laplacian regularization, 
thereby ensuring that the transformation is smooth with 
respect to both the RKHS H and the marginal distribution.

Motivated by the manifold assumption [55], if two fea-
ture points xi and xj are close in the intrinsic geometry of 
the marginal distribution on the entire set of transformation 
data T(X) = (T(x1),⋯ , T(xN))

T , then the representations of 
these two points in the new basis should also be close when 
the Laplacian regularization term is minimized. The graph 
Laplacian [56] can be used to discretely approximate the 
manifold Laplacian ||T||2

M
 , which measures the smoothness 

of T  along the data manifold on the model point set X.
Consider a graph that is conventionally defined as 

G = {T, r,W} , where T  is a set of vertices that can be written 
in matrix form as T = XH + KC , where KN×N is the Gram 
matrix and Kij = k(xi, xj) , CN×3 is the matrix of coefficients; 

(10)

��T��2
H
=

�
L�

l=1

k(xl, x)C,

L�

l=1

k(xl, x)C

�

H

=

L�

l=1

⟨k(xl, xl)C, C⟩ = tr(CTKC)

(11)E(H, C) =
1

2𝜎2
||P1∕ 2

(
Ỹ − X̃H −KC

)
||2 + 𝛾

2
tr(CTKC)
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r , which is a constant parameter, is used to compute the 
weights of the edges of the graph, and W is an edge-weight 
matrix, with Wij being the weight of the edge connecting 
vertices T(xi) and T(xj):

where the neighborhood N(T(xj)) is the set of vertices con-
nected to vertex T(xi) by edges. According to W , the graph 
Laplacian is a real symmetric matrix, and it has a com-
plete set of orthonormal eigenvectors that can be defined 
as A = D −W , where D is a diagonal matrix with elements 
Dii =

∑N

i=1
Wij . Thus, the data manifold Laplacian can be 

preserved by minimizing the following:

As seen from Eq. (13), which is defined on the basis of a 
nonnormalized graph Laplacian that is sensitive to the ver-
tex degree of the graph, it is reasonable to use the normal-
ized graph Laplacian Ã = D−1∕ 2AD−1∕ 2 instead of A in all 
formulas.

3.5  Global‑intrinsic structure preservation

We assume that X̃ and Ỹ are in the putative point set S and 
correspond to the first L rows of the given point sets X and 
Y , respectively. Based on the TPS energy function (11) and 
the given graph Laplacian regularization term, the trans-
formation parameters can be estimated by minimizing the 
following function:

where JL×N = (IL×L, 0L×(N−L)) , with I being a unit matrix and 
the rest of the elements being 0. Solving for the parameter 
pair H and C by applying an iterative updating method in 
which we take the derivatives of (14) with respect to H and 
C and set them equal to zero, which leads to the following 
linear system:

(12)
Wij =

{
e−

1

r
||T(xi)−T(xj)||2 if ||T(xi) − T(xj)||2 ≤ r

0 otherwise

s.t. T(xj) ∈ N(T(xi))

(13)||T||2
M

=
1

2

N∑

i=1

N∑

j=1

Wij||T(xi) − T(xj)||2 = tr(T T
AT)

(14)
E(H,C) =

1

2𝜎2
||P1∕2(Ỹ − X̃H − JKC)||2

+
𝛾
1

2
tr(CT

J
TKJC) +

𝛾
2

2
tr(T T

ÃT)

(15)
(X̃

T
PX̃+𝛾2𝜎

2XTÃX)H

= (X̃
T
PỸ − X̃

T
PJKC − 𝛾2𝜎

2XTÃKC)

(16)
(KTJTPJK + 𝛾1𝜎

2JTKJ + 𝛾2𝜎
2KTÃK + �̃�I)C

= (KTJTPỸ − KTJTPX̃H − 𝛾2𝜎
2KTÃXH)

where �̃�I control the stability of the numerical value. Thus, 
we obtain a stable solution for T  in Eq. (14).

3.6  Fast implementation

The kernel matrix scales poorly for high-dimensional nonrigid 
registration, which may pose a serious problem because of 
high computational complexity in time and space. To address 
this problem, we provide an approximation method as the 
basis for a fast implementation, with the aim of reducing the 
computational complexity, based on Ref. [57]. Give a subset 
{x̂q}

Q

q=1
(Q ≪ L) drawn from the putative point set X̃ at ran-

dom without replacement. Then, we consider replacing T  in 
Eq. (14) by searching for a solution that allows only the coef-
ficients Ĉ to be nonzero. With slightly different notation, we 
seek a solution that has the following approximate solution:

where k(x̂q, x̂) is a 1 × Q vector, Ĥ is a 3 × 3 matrix and Ĉ is 
an Q × 3 matrix. We obtain the optimal coefficients Ĥ and Ĉ 
from the following linear system:

where U is the TPS kernel matrix U ∈ ℝ
N×Q with elements 

Uiq = k(xi, x̂q) and G ∈ ℝ
Q×Q with elements Uij = k(x̂i, x̂q) . 

Compared to the linear system in Eq. (16), the time com-
plexity of computing the coefficients in Eq. (19) is reduced 
from O(N3) to O(MN2) . The spatial complexity of our fast 
implementation can be considered to be O(N2) due to the 
memory requirements for storing the graph Laplacian matrix 
Ã.

3.7  Implementation details

The registration performance of our method typically depends 
on the homogeneous coordinate system, in which the coordi-
nates of the points in both sets have zero mean and unit variance.

Parameter settings: There are six main parameters in our 
method, and all six parameters are set on the basis of experi-
mental evaluations. The regularization parameters include �1 
and �2 , which are used to control the effects of the global and 
intrinsic topological constraints, respectively, on the trans-
formation T  ; we fix them to values of �1 = 5 and �2 = 0.05 . 
The parameter a of the uniform distribution is set to a = 10 . 
For the inlier ratio � of the Gaussian distribution, we adopt 
the initial assumption that this parameter has a fixed value of 

(17)T(x̂q) = x̂q ⋅ Ĥ+k(x̂q, x̂) ⋅ Ĉ

(18)
(X̃

T
PX̃+𝛾2𝜎

2XTÃX)Ĥ

= (X̃
T
PỸ − X̃

T
PJUĈ − 𝛾2𝜎

2XTÃUĈ)

(19)
(UTJTPJU + 𝛾1𝜎

2G + 𝛾2𝜎
2UTÃU + �̃�I)Ĉ

= (UTJTPỸ − UTJTPX̃Ĥ − 𝛾2𝜎
2UTÃXĤ)
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0.9. The parameter � , which is used to identify the reliability 
of the inliers, is fixed to 0.75. The parameter r , which is used 

to construct the edge-weight matrix, is empirically set to 
0.05. We summarize our approach in algorithm 1.
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4  Experiments and analysis

In this section, we evaluate the performance of our proposed 
method on both contour images and real-world images for 
comparison with other state-of-the-art methods: GLTP [45, 
46], EM-TPS [39], MR-RPM [41, 42], GMMREG [32], and 
CPD [35]. All tests were run directly in the MATLAB envi-
ronment on a standard PC with an Intel i5 3.4 GHz CPU.

We consider the registration error to evaluate the perfor-
mance of the registration methods. The error is defined as 
the root mean square error, which directly characterizes the 
registration performance; it is calculated as follows:

where Ntotal denotes the total number of true correspond-
ences and yk is the ground truth correspondence with xk.

4.1  Overall performance on contour images

The contour images considered here [30] are based on two 
category shape models: a fish and a Chinese character. The 
fish and Chinese character datasets contain 98 and 105 
points, respectively. For each shape model, four groups of 
point sets with different types of degradation, including 
deformation, noise, occlusion, and outliers, are designed to 
test the performance of various registration methods. For 
the fish and Chinese character datasets, there are five or six 

(20)Error =

√√√√ 1

Ntotal

Ntotal∑

k=1

(yk − T(xk))
2

levels of degradation, and 100 samples are generated for 
each degradation level.

4.1.1  Nonrigid fish point set registration

The registration results obtained on the fish shape model are 
illustrated in Fig. 1 for the largest degree of degradation in 
each category, such as deformation level to 0.08, noise level 
to 0.05, occlusion ration to 0.5, and outlier ratio to 2. As 
shown in these results, MR-RPM and our method perform 
well for nonrigid deformation. In the noise experiment, we 
see that EM-TPS can align the two point sets. However, it 
fail to generate the correct correspondence. In the occlu-
sion and outlier tests, our method gets superior registration 
results.

To further explore the registration performance, we 
consider the error bars of the registration results to evalu-
ate the performance of the registration methods. The 
error bars represent the means and standard deviations of 
the registration errors on all 100 samples for each level 
of the various types of degradation. We summarize the 
experimental results in Fig. 2. According to Fig. 2a, we 
observe that our method and MR-RPM perform better due 
to adopting the intrinsic topological constraints. In Fig. 2b, 
there is no winner when the model point set is disturbed 
by the white Gaussian noise. Nevertheless, our method 
can achieve quite satisfactory results, followed by MR-
RPM. Figure 2c and d show the results for the cases of 
occlusion and outliers. Our method performs bests because 
of constructing correspondences for contour points under 

Point set GLTP EM-TPS GMMREG MR-RPM CPD Ours

Fig. 1  Point set registration results for fish shape samples with the 
largest degradations, from the top row to the bottom row: deformation 
(0.08), noise (0.05), occlusion (0.5), and outliers (2). The leftmost 
column shows the model point set (blue pluses) and the scene point 

set (red circles). The goal is to align the model point set with the 
scene point set. In the second column from the left to the rightmost 
column, the registration of GLTP, EM-TPS, GMMREG, MR-RPM, 
CPD, and our method, respectively, is presented



611A robust nonrigid point set registration framework based on global and intrinsic topological…

1 3

Fig. 2  Comparison of the 
performance of the registration 
methods for point sets based on 
the fish shape model with dif-
ferent levels of degradation. a, 
e: Deformation test. b, f: Noise 
test. c, g: Occlusion test. d, h: 
Outlier test
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an ordering constraint and integrating two topologically 
complementary constraints into a unified optimization 
framework. Figure 2e–h separately show the average time 
consumptions of the different registration methods at the 
different degradation levels. We can see GLTP spend more 
time under deformation, noise, and occlusion test. Mean-
while, in the outlier test, the more time consumption of 
EM-TPS, MR-RPM and our proposed method when the 
outlier level becomes relatively high, such as 1.5 or 2.

In summary, the registration performance of all methods 
gradually declines as the degree of degradation increases. 
Our method performs more desirably in general because of 
integrating global and intrinsic topological constraints into 
a GMM-based framework and modeling the transformation 
using the TPS approach. GLTP performs wells in the defor-
mation and noise tests. However, it is sensitive to occlusion 
and outliers because the LLE constraints are less reliable 
when the point sets are sparse or nonuniform. The EM-TPS 
method performs poorly in most cases, and its registration 
error shows strong fluctuations because it only consider the 
global distribution of the model point set. The MR-RPM 
method achieves good performance in deformation and noise 
tests because of the manifold regularization technique. How-
ever, it is vulnerable to occlusion and outliers, because the 
initial correspondences are likely inaccurate. GMMREG is 
not robust in most cases, especially when the data point set 
is badly degraded. The alignment performance of CPD is 
relatively good in deformation and noise tests and spends 

less time than others in all tests, but it is still sensitive to 
occlusion and outliers due to the impossibility of capturing 
the true distributions of the point sets.

4.1.2  Nonrigid the Chinese character point set registration

The performance in the Chinese character experiment is 
displayed in Fig. 3 for the highest level of each type of deg-
radation. Our method and MR-RPM perform better than the 
other four methods in the deformation test. In the noise test 
results, we observe that the model point set is distorted by 
Gaussian noise, which disturbs the neighborhood structures 
in the model point set. It is extremely difficult for all meth-
ods to achieve accurate alignment. When there are missing 
points or outliers in the model point set, we observe that our 
method gives the best registration results.

Quantitative comparative experiment results on the Chi-
nese character dataset under four degradation scenarios are 
shown in Fig. 4. In Fig. 4a, the average error of all methods 
gets larger as the level of degradation goes up. The growth 
rate of the average error is much slower for MR-RPM and 
our method than for the other methods. In Fig. 4b, all meth-
ods except EM-TPS can obtain satisfactory results, our pro-
posed method performs slightly better than the other tested 
methods with the noise level ranging from 0 to 0.05. Fig-
ure 4c and d present the registration results of all methods in 
the presence of occlusion and outliers, respectively. GLTP, 
EM-TPS, GMMREG, MR-RPM, and CPD are not robust to 

Point set GLTP EM-TPS GMMREG MR-RPM CPD Ours

Fig. 3  Point set registration results for Chinese character samples 
with the largest degradations, from the top row to the bottom row: 
deformation (0.08), noise (0.05), occlusion (0.5), and outliers (2). 
The leftmost column shows the model point set (blue pluses) and the 

scene point set (red circles). The goal is to align the model point set 
with the scene point set. In the second column from the left to the 
rightmost column, the registration of GLTP, EM-TPS, GMMREG, 
MR-RPM, CPD, and our method, respectively, is presented



613A robust nonrigid point set registration framework based on global and intrinsic topological…

1 3

Fig. 4  Comparison of the 
performance of the registration 
methods for point sets based 
on the Chinese character shape 
model with different levels of 
degradation. a, e: Deformation 
test. b, f: Noise test. c, g: Occlu-
sion test. d, h: Outlier test
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occlusion and outliers and are easily confused at a relatively 
high degradation level. This is the result of their failure to 
establish reliable correspondences. In contrast, our proposed 
method obtain the best registration results because of the 
correspondences are established subject to the ordering 
information of the contour points using local descriptors. 
Figure 4e–h show the average time consumptions for dif-
ferent degradation types and degradation levels. Compared 
to the fish shape, the contour points of the Chinese char-
acter model are more spread out around the shape, and the 
shape structure is more complex. Consequently, more time 
is consumed on the Chinese character dataset than on the 
fish dataset. We see that all methods achieve similar time 
performance on both the fish and Chinese character datasets, 
although they need less time to accomplish the registration 
for each degradation level and each type of degradation in 
the former case.

In summary, the overall trend of error bars on the Chinese 
character dataset is similar to that on the fish dataset. Our 
proposed method obtains better assignments in almost all 
cases under all four degradation scenarios. Both the fish and 
Chinese character results show that our proposed method is 
effective for the nonrigid registration of 2D point sets.

4.2  Experimental and analysis on real‑world image 
data

In this subsection, to test and compare the performance of 
our proposed method on real-world images, we conducted 
experiments on the Tarragona palmprint [58] and CASIA 
fingerprint image databases [59]. We collect two groups of 
image sequences with nonrigid transformation form each 
database. Here, each sequence contains a series of five 
homologous images. We randomly choose an image of each 
sequence is used as the model image, and the others are 
treated as scene images; thus, we can obtain 4 image pairs 
from each sequence.

In this experiment, we first constructed the model and 
scene point sets (150 point pairs) between each pairs of 
images based on the open source VLFeat toolbox [60], and 
then the initial correspondences were detected by means of 
nearest neighbor strategy between the model and scene point 
sets. Note that due to the limitations of this strategy, not all 
estimated initial correspondences will be correct. Finally, 
we aligned the model point set with the scene point set to 
partition the initial correspondences into inliers and outliers 
and capture the visual correspondences between the model 
and scene point sets.

We select several commonly used metrics, namely the 
accuracy, precision, and recall to evaluate the performance. 

The accuracy is the proportion of true results among the 
total number of point pairs. The precision is the proportion 
of true inliers among the total number of identified inliers. 
The recall is the proportion of true inliers among the total 
number of initial correspondences. Specifically, the accu-
racy, precision, and recall, which are used to evaluate the 
feature registration results, are defined as:

where the terms TP , FP , TN , and FN denote true posi-
tives, false positives, true negatives, and false negatives, 
respectively.

Under the assumption that the initial correspondences 
are the ground truth, Fig. 5 and Fig. 6 show the qualitative 
results of our proposed approach based on the palmprint 
and fingerprint image databases. Clearly, almost all of the 
inliers ( TP ) and outliers ( FN ) among the initial correspond-
ences are correctly distinguished, and the inliers (TP + FP) 
between the model and scene point sets can also be estab-
lished using our approach. According to the experimental 
results, the performance of our method is better than that of 
the nearest neighbor strategy. Tables 1, 2, 3, and 4 show the 
accuracy, precision, and recall for every image sequence, 
and we see that our method achieves higher accuracy and 
precision values in most cases, indicating its strong abil-
ity to identify inliers. Meanwhile, we note that our method 
achieves a low recall value on most test image pairs, which 
means that many outliers are falsely captured among the 
initial correspondences by the nearest neighbor strategy, and 
our method can effectively identify outliers in the initial set 
for each image pair.

Next, we present a quantitative comparison, including 
the total numbers of identified inliers ( TP + FN ) and the 
corresponding average errors between the model and scene 
point sets. The results are illustrated in Fig. 7. EM-TPS has 
a better average error than the other methods, followed by 
our method and MR-RPM; these findings illustrate that these 
methods achieve more robust results in identifying inliers. 
However, EM-TPS ignores the importance of preserving 
the intrinsic geometrical structure information among the 
point sets and balancing the intrinsic and global constraints 
during the transformation, which forces disruption of the 
local structure of the point sets during registration. Thus, the 
registration results do not generate satisfactory alignments 

(21)Accuracy =
TP + TN

TP + TN + FP + FN

(22)Precision = TP∕(TP + FP)

(23)Recall = TP∕(TP + FN)
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because some outliers may be falsely identified as inliers, as 
shown in Fig. 8. Our method and MR-RPM identify similar 
numbers of inliers. However, considering both accuracy and 
precision, our method shows slightly better performance.

In addition, the corresponding correct match ratios for 
every dataset are shown in Figs. 9 and 10. The correct 
match ratio is the proportion of identified inliers among 
the total number of point pairs (150 point pairs). As 
depicted in these two figures, the experimental results 
of EM-TPS are stable or vary only slightly as the dis-
tance level increases. Intuitively, it appears to perform 
the best due to assigning point matches that capture only 

the global distributions without considering the intrin-
sic geometrical structure information, which disturbs the 
local neighborhood structures of the input data and forces 
some point pairs between the model and scene point sets 
achieve accurate alignments. However, the feature corre-
spondences in this method are usually established based 
on only global spatial relationship, and hence some 
unknown false matched will be introduced which degrade 
the homing performance; therefore, this method cannot 
meet the needs of a real engineering environment.

In some cases, the correct match rates of GLTP indi-
cate that the desired results can be obtained in a distance 

Fig. 5  Qualitative results on right palmprint image pairs (first two 
columns) and left palmprint image pairs (last two columns) obtained 
using our method. From the top row to the bottom row, the registra-
tion performance is shown for image pairs ‘1 and 2’ to ‘1 and 5’. The 
feature point alignment is shown within each set of experiments (the 
model point set: blue pluses, the scene point set: red circles). The 

lines indicate the matching results, where the blue (TP) and yellow 
lines (FN) denote the preserved inliers and removed outliers among 
the initial correspondences, respectively, and the blue (TP) and red 
lines (FP) codenote the identified inliers between the model and scene 
point sets
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Fig. 6  Qualitative results on right fingerprint image pairs (first two 
columns) and left fingerprint image pairs (last two columns) obtained 
using our method. From the top row to the bottom row, the registra-
tion performance is shown for image pairs ‘1 and 2’ to ‘1 and 5’. The 
feature point alignment is shown within each set of experiments (the 
model point set: blue pluses, the scene point set: red circles). The 

lines indicate the matching results, where the blue (TP) and yellow 
lines (FN) denote the preserved inliers and removed outliers among 
the initial correspondences, respectively, and the blue (TP) and red 
lines (FP) codenote the identified inliers between the model and scene 
point sets

Table 1  Comparison of 
registration results on right 
palmprint image datasets in 
terms of accuracy, precision, 
and recall (Em: evaluation 
metric)

Dataset Em GLTP EM-TPS GMMREG MR-RPM CPD Ours

1 and 2 Accuracy 0.4733 0.6133 0.4667 0.6133 0.4333 0.6467
Precision 0.4312 0.5300 0.4412 0.5385 0.4295 0.5733
Recall 0.7344 0.8281 0.9375 0.6563 1.0000 0.6719

1 and 3 Accuracy 0.3533 0.6200 0.3533 0.6733 0.3000 0.6800
Precision 0.2589 0.4125 0.3043 0.4559 0.2877 0.4603
Recall 0.6744 0.7674 0.9767 0.7209 0.9767 0.6744

1 and 4 Accuracy 0.5267 0.5733 0.4200 0.6800 0.3600 0.6600
Precision 0.4022 0.4396 0.3786 0.5397 0.3557 0.5152
Recall 0.6981 0.7547 1.0000 0.6415 1.0000 0.6415

1 and 5 Accuracy 0.5267 0.5933 0.4000 0.7133 0.3600 0.7333
Precision 0.4100 0.4556 0.3630 0.5735 0.3537 0.6140
Recall 0.7736 0.7736 0.9245 0.7358 0.9811 0.6604



617A robust nonrigid point set registration framework based on global and intrinsic topological…

1 3

Table 2  Comparison of 
registration results on left 
palmprint image datasets in 
terms of accuracy, precision, 
and recall (Em: evaluation 
metric)

Dataset Em GLTP EM-TPS GMMREG MR-RPM CPD Ours

1 and 2 Accuracy 0.4933 0.6267 0.6067 0.6267 0.5333 0.6733
Precision 0.5047 0.5981 0.5682 0.6180 0.5238 0.6489
Recall 0.7013 0.8312 0.9740 0.7143 1.0000 0.7922

1 and 3 Accuracy 0.5667 0.6467 0.5667 0.6733 0.4733 0.6867
Precision 0.5263 0.5818 0.5231 0.6100 0.4733 0.6224
Recall 0.8451 0.9014 0.9577 0.8592 1.0000 0.8592

1 and 4 Accuracy 0.5400 0.5733 0.5067 0.6067 0.4533 0.6133
Precision 0.4862 0.5102 0.4697 0.5376 0.4459 0.5444
Recall 0.8030 0.7576 0.9394 0.7576 1.0000 0.7424

1 and 5 Accuracy 0.4600 0.5733 0.4267 0.6200 0.4200 0.6133
Precision 0.4018 0.4747 0.3969 0.5114 0.4041 0.5059
Recall 0.7627 0.7966 0.8814 0.7627 1.0000 0.7288

Table 3  Comparison of 
registration results on right 
fingerprint image datasets in 
terms of accuracy, precision, 
and recall (Em: evaluation 
metric)

Dataset Em GLTP EM-TPS GMMREG MR-RPM CPD Ours

1 and 2 Accuracy 0.4000 0.5400 0.4067 0.6067 0.3200 0.6467
Precision 0.3190 0.3636 0.3411 0.3721 0.3200 0.4419
Recall 0.7708 0.5833 0.9167 0.3333 1.0000 0.3958

1 and 3 Accuracy 0.4533 0.5067 0.3867 0.6000 0.3800 0.6200
Precision 0.3832 0.4190 0.3704 0.4815 0.3784 0.5000
Recall 0.7193 0.7719 0.8772 0.6842 0.9825 0.6491

1 and 4 Accuracy 0.5467 0.6467 0.6133 0.7267 0.6133 0.7333
Precision 0.5946 0.6343 0.6069 0.7308 0.6131 0.7379
Recall 0.7416 0.9551 0.9888 0.8539 0.9438 0.8539

1 and 5 Accuracy 0.63.33 0.6533 0.5800 0.7133 0.5400 0.7200
Precision 0.5794 0.5943 0.5344 0.6629 0.5106 0.6667
Recall 0.8611 0.8750 0.9722 0.8194 1.0000 0.8333

Table 4  Comparison of 
registration results on left 
fingerprint image datasets in 
terms of accuracy, precision, 
and recall (Em: evaluation 
metric)

Dataset Em GLTP EM-TPS GMMREG MR-RPM CPD Ours

1 and 2 Accuracy 0.5538 0.6154 0.6154 0.6923 0.4923 0.6769
Precision 0.5349 0.5854 0.5686 0.6667 0.4923 0.6486
Recall 0.7188 0.7500 0.9063 0.7500 1.0000 0.7500

1 and 3 Accuracy 0.5244 0.6341 0.4634 0.6463 0.4634 0.6585
Precision 0.4808 0.5614 0.4478 0.6111 0.4557 0.6154
Recall 0.6757 0.8649 0.8108 0.5946 0.9730 0.6486

1 and 4 Accuracy 0.6400 0.7500 0.7700 0.7600 0.7500 0.7800
Precision 0.7183 0.7500 0.7558 0.7867 0.7561 0.7922
Recall 0.7612 0.9403 0.9701 0.8806 0.9254 0.9104

1 and 5 Accuracy 0.4638 0.5362 0.5797 0.6232 0.4928 0.6812
Precision 0.4694 0.5200 0.5490 0.6111 0.4928 0.6667
Recall 0.6765 0.7647 0.8235 0.6471 1.0000 0.7059
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range of 0–4. However, there are fewer captured corre-
spondences as the distance between the corresponding 
features increases. The GMMREG and CPD methods fail 
due to the input data are contaminated by outliers. In con-
trast, MR-RPM and our method achieve better objective 
performance among the compared approaches. Overall, 
they can establish more reliable correspondences than the 
other methods.

5  Conclusion

In this paper, we propose a novel approach for non-
rigid point set registration, in which the registration 
problem is formulated as a probabilistic model that is 
solved using an iterative EM method. A key charac-
teristic of our approach is that it incorporates a TPS-
based constraint and a spectral graph-based constraint 
into a unified GMM-based framework to preserve the 
global and intrinsic topological characteristics of the 
point sets after transformation. In addition, the spa-
tial transformation related to the model point sets 
is parameterized using the TPS approach, allowing 
the transformation to be decomposed into affine and 
nonaffine components. This TPS-based minimization 
framework has the advantages of free parameters and 
closed-form solutions in the cases of different deg-
radations. We experimentally tested our approach on 
contour image and real image datasets and compared 
it to GLTP, EM-TPS, GMMREG, MR-RPM, and CPD, 
and the results demonstrate the superiority of our pro-
posed approach in most scenarios.

Fig. 7  Comparison of results on real image datasets. The total numbers of identified inliers are shown on the histogram end caps, and the aver-
age errors are plotted

Fig. 8  Qualitative results on left palmprint image pairs ‘1 and 2’ (top 
row) and left fingerprint image pairs ‘1 and 2’ (bottom row) obtained 
using EM-TPS
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Fig. 9  Performance of all tested methods on right palmprint (right column) and left palmprint (left column) datasets in terms of the correct 
match ratio
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Fig. 10  Performance of all tested methods on right fingerprint (right column) and left fingerprint (left column) datasets in terms of the correct 
match ratio



621A robust nonrigid point set registration framework based on global and intrinsic topological…

1 3

Acknowledgments This work was supported in part by the Science and 
Technology Innovation Foundation of Dalian (2018J12GX057) and in 
part by the National Natural Science Foundation of China (51979034).

Compliance with ethical standards 

Conflict of interest All authors declare that they have no conflict of 
interest.

References

 1. De Vos, B.D., Berendsen, F.F., Viergever, M.A., Sokooti, H., 
Staring, M., Isgum, I.: A deep learning framework for unsu-
pervised affine and deformable image registration. Med. Image 
Anal. 52, 128–143 (2019)

 2. Ma, J., Zhao, J., Jiang, J., Zhou, H., Guo, X.: Locality preserv-
ing matching. Int. J. Comput. Vis. 127(5), 512–531 (2019)

 3. Hu, L., Xiao, J., Wang, Y.: An automatic 3D registration method 
for rock mass point clouds based on plane detection and polygon 
matching. Vis. Comput. 36, 669–691 (2020)

 4. Krishnakumar, K., Gandhi, S.I.: Video stitching based on multi-
view spatiotemporal feature points and grid-based matching. 
Vis. Comput. 36, 1837–1846 (2020)

 5. Kan, P., Kaufmann, H.: Deeplight: light source estimation for 
augmented reality using deep learning. Vis. Comput. 35(6–8), 
873–883 (2019)

 6. Choi, J., Son, M.G., Lee, Y.Y., Lee, K.H., Park, J.P., Yeo, C.H., 
Park, J.S., Choi, S.G., Kim, W.D., Kang, T.W., Ko, K.H.: Posi-
tion-based augmented reality platform for aiding construction 
and inspection of offshore plants. Vis. Comput. (2020). https ://
doi.org/10.1007/s0037 1-020-01902 -9

 7. De Lima, R., Cabreraponce, A.A., Martinezcarranza, J.: Parallel 
hashing-based matching for real-time aerial image mosaicing. J. 
Real-time Image Process. (2020). https ://doi.org/10.1007/s1155 
4-020-00959 -y

 8. Lati, A., Belhocine, M., Achour, N.: Robust aerial image mosa-
icing algorithm based on fuzzy outliers rejection. Evolv. Syst. 
(2019). https ://doi.org/10.1007/s1253 0-019-09279 -4

 9. Choy, C., Lee, J., Ranftl, R., Park, J., Koltun, V.: High-dimen-
sional convolutional networks for geometric pattern recogni-
tion. In: Proceedings of the IEEE/CVF Conference on Computer 
Vision and Pattern Recognition, pp. 11227–11236 (2020)

 10. Hammouda, G., Sellami, D., Hammouda, A.: Pattern recogni-
tion based on compound complex shape-invariant Radon trans-
form. Vis. Comput. 36(2), 279–290 (2020)

 11. Ullah, K., Mahmood, T., Ali, Z., Jan, N.: On some distance 
measures of complex Pythagorean fuzzy sets and their applica-
tions in pattern recognition. Complex Intell. Syst. 6(1), 15–27 
(2020)

 12. Yang, C., Feng, H., Xu, Z., Li, Q., Chen, Y.: Correction of overex-
posure utilizing haze removal model and image fusion technique. 
Vis. Comput. 35(5), 695–705 (2019)

 13. Besl, P.J., Mckay, H.D.: A method for registration of 3-D shape. 
IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)

 14. Brown, L.G.: A survey of image registration techniques. ACM 
Comput. Surv. (CSUR) 24(4), 325–376 (1992)

 15. Makadia, A., Patterson, A., Daniilidis, K.: Fully automatic reg-
istration of 3D point clouds. In: IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition, pp. 1297–1304 
(2006)

 16. Zhang, S., Wang, H., Huang, W.: Palmprint identification combin-
ing hierarchical multi-scale complete LBP and weighted SRC. 
Soft. Comput. 24(6), 4041–4053 (2020)

 17. An, F., Liu, Z.: Facial expression recognition algorithm based on 
parameter adaptive initialization of CNN and LSTM. Vis. Com-
put. 36(3), 483–498 (2020)

 18. Krejsa, J., Vechet, S.: Evaluation of visual markers detection used 
for autonomous mobile robot docking navigation. In: International 
Conference Mechatronics, pp. 229–236 (2019)

 19. Lowe, D.G.: Distinctive image features from scale-invariant key-
points. Int. J. Comput. Vis. 60(2), 91–110 (2004)

 20. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object 
recognition using shape contexts. IEEE Trans. Pattern Anal. 
Mach. Intell. 24(4), 509–522 (2002)

 21. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood 
from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. 
b-Methodol. 39(1), 1–22 (1977)

 22. Wahba, G.: Spline models for observational data. Siam (1990)
 23. Rusu, R. B., Blodow, N., Beetz, M.: Fast point feature histograms 

(FPFH) for 3D registration. In: IEEE International Conference on 
Robotics and Automation, pp. 3212–3217 (2009)

 24. Hauagge, D.C., Snavely, N.: Image matching using local symme-
try features. In: IEEE Conference on Computer Vision and Pattern 
Recognition, pp. 206–213 (2012)

 25. Mikolajczyk, K., Schmid, C.: A performance evaluation of local 
descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–
1630 (2005)

 26. Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algo-
rithm. In: Proceedings Third International Conference on 3-D 
Digital Imaging and Modeling, pp. 145–152 (2001)

 27. Amberg, B., Romdhani, S., Vetter, T.: Optimal step nonrigid ICP 
algorithms for surface registration. In: IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 1–8 (2007)

 28. Zhu, J., Du, S., Yuan, Z., Liu, Y., Ma, L.: Robust affine iterative 
closest point algorithm with bidirectional distance. IET Comput. 
Vis. 6(3), 252–261 (2012)

 29. Pomerleau, F., Colas, F., Siegwart, R., Magnenat, S.: Compar-
ing ICP variants on real-world data sets. Auton. Robots. 34(3), 
133–148 (2013)

 30. Chui, H., Rangarajan, A.: A new point matching algorithm for 
non-rigid registration. Comput. Vis. Image Underst. 89(2), 114–
141 (2003)

 31. Tsin, Y., Kanade, T.: A correlation-based approach to robust point 
set registration. In: European Conference on Computer Vision, pp. 
558–569 (2004)

 32. Jian, B., Vemuri, B.C.: A robust algorithm for point set registra-
tion using mixture of Gaussians. In: International Conference on 
Computer Vision, pp. 1246–1251 (2005)

 33. Yuille, A.L., Grzywacz, N.M.: The motion coherence theory. In: 
International Conference on Computer Vision, pp. 344–353 
(1988)

 34. Yuille, A.L., Grzywacz, N.M.: A mathematical analysis of the 
motion coherence theory. Int. J. Comput. Vis. 3(2), 155–175 
(1989)

 35. Myronenko, A., Song, X., Carreiraperpinan, M.A.: Non-rigid 
point set registration: coherent point drift. In: Advances in Neural 
Information Processing Systems, pp. 1009–1016 (2007)

 36. Myronenko, A., Song, X.: Point set registration: coherent point 
drift. IEEE Trans. Pattern Anal. Mach. Intell. 32(12), 2262–2275 
(2010)

 37. Yang, Y., Ong, S.H., Foong, K.W.C.: A robust global and local 
mixture distance based non-rigid point set registration. Pattern 
Recognit. 48(1), 156–173 (2015)

https://doi.org/10.1007/s00371-020-01902-9
https://doi.org/10.1007/s00371-020-01902-9
https://doi.org/10.1007/s11554-020-00959-y
https://doi.org/10.1007/s11554-020-00959-y
https://doi.org/10.1007/s12530-019-09279-4


622 G. Yang et al.

1 3

 38. Ma, J., Zhao, J., Yuille, A.L.: Non-rigid point set registration by 
preserving global and local structures. IEEE Trans. Image Pro-
cess. 25(1), 53–64 (2016)

 39. Yang, C., Liu, Y., Jiang, X., Zhang, Z., Wei, L., Lai, T., Chen, R.: 
Non-rigid point set registration via adaptive weighted objective 
function. IEEE Access. 6, 75947–75960 (2018)

 40. Wang, G., Zhou, Q., Chen, Y.: Robust non-rigid point set regis-
tration using spatially constrained Gaussian fields. IEEE Trans. 
Image Process. 26(4), 1759–1769 (2017)

 41. Ling, H., Jacobs, D.W.: Shape classification using the inner-dis-
tance. IEEE Trans. Pattern Anal. Mach. Intell. 29(2), 286–299 
(2007)

 42. Ma, J., Zhao, J., Jiang, J., Zhou, H.: Non-rigid point set registra-
tion with robust transformation estimation under manifold regu-
larization. In: Thirty-First AAAI Conference on Artificial Intel-
ligence, pp. 4218–4224 (2017)

 43. Ma, J., Wu, J., Zhao, J., Jiang, J., Zhou, H., Sheng, Q.Z.: Non-
rigid point set registration with robust transformation learning 
under manifold regularization. IEEE Trans. Neural Netw. 30(12), 
3584–3597 (2019)

 44. Wang, J., Chen, J., Xu, H., Zhang, S., Mei, X., Huang, J., Ma, J.: 
Gaussian field estimator with manifold regularization for retinal 
image registration. Sig. Process. 157, 225–235 (2019)

 45. Ge, S., Fan, G.: Non-rigid articulated point set registration with 
local structure preservation. In: Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition Workshops, pp. 
126–133 (2015)

 46. Ge, S., Fan, G.: Topology-aware non-rigid point set registration 
via global-local topology preservation. Mach. Vis. Appl. 30(4), 
717–735 (2019)

 47. Ma, J., Jiang, J., Zhou, H., Zhao, J., Guo, X.: Guided locality 
preserving feature matching for remote sensing image registration. 
IEEE Trans. Geosci. Remote Sens. 56(8), 4435–4447 (2018)

 48. Ma, J., Jiang, X., Jiang, J., Zhao, J., Guo, X.: LMR: learning a 
two-class classifier for mismatch removal. IEEE Trans. Image 
Process. 28(8), 4045–4059 (2019)

 49. Sedaghat, A., Mohammadi, N.: High-resolution image registra-
tion based on improved SURF detector and localized GTM. Int. 
J. Remote Sens. 40(7), 2576–2601 (2019)

 50. Ma, J., Jiang, X., Jiang, J., Zhao, J., Guo, X.: Feature-guided 
Gaussian mixture model for image matching. Pattern Recognit. 
92, 231–245 (2019)

 51. Jiang, X., Ma, J., Jiang, J., Guo, X.: Robust feature matching using 
spatial clustering with heavy outliers. IEEE Trans. Image Process. 
29, 736–746 (2019)

 52. Xiao, D., Zahra, D., Bourgeat, P., Berghofer, P., Tamayo, O.A., 
Wimberley, C., Gregoire, M.C., Salvado, O.: An improved 3D 
shape context based non-rigid registration method and its applica-
tion to small animal skeletons registration. Comput. Med. Imaging 
Graph. 34(4), 321–332 (2010)

 53. Deng, W., Zou, H., Guo, F., Lei, L., Zhou, S., Luo, T.: A robust 
non-rigid point set registration method based on inhomogene-
ous Gaussian mixture models. Vis. Comput. 34(10), 1399–1414 
(2018)

 54. Schaefer, S., McPhail, T., Warren, J.: Image deformation using 
moving least squares. In: ACM SIGGRAPH 2006 Papers, pp. 
533–540 (2006)

 55. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral tech-
niques for embedding and clustering. In: Advances in Neural 
Information Processing Systems, pp. 585–591 (2002)

 56. Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: 
a geometric framework for learning from labeled and unlabeled 
examples. J. Mach. Learn. Res. 7(11), 2399–2434 (2006)

 57. Yang, G., Li, R., Liu, Y., Wang, J.: A unified framework for non-
rigid point set registration via coregularized least squares. IEEE 
Access 8, 130263–130280 (2020)

 58. Moreno-Garcia, C.F., Serratosa, F.: Correspondence consensus 
of two sets of correspondences through optimisation functions. 
Pattern Anal. Appl. 20(1), 201–213 (2017)

 59. Galbally, J., Alonso-Fernandez, F., Fierrez, J., Ortega-Garcia, J.: 
A high performance fingerprint liveness detection method based 
on quality related features. Future Generat. Comput. Syst. 28(1), 
311–321 (2012)

 60. Vedaldi, A., Fulkerson, B.: VLFeat: An open and portable library 
of computer vision algorithms. In: Proceedings of the 18th ACM 
International Conference on Multimedia, pp. 1469–1472 (2010)

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Guiqiang Yang received the B.E. 
degree in mechanical design 
manufacture and automation 
from Wuhan Textile University, 
Wuhan, China, in 2010 and the 
M.E. degree in design and con-
struction of naval architecture 
and ocean structure from JiMei 
University, Xiamen, China, in 
2013. He is currently working 
toward a Ph.D. degree in the 
School of Naval Architecture at 
Dalian University of Technology 
(DLUT), China. His main 
research directions are intelligent 
manufacturing, machine learning 

and data analysis, and robust model fitting. 

Rui Li received the B.E. and Ph.D. 
degrees in design and construc-
tion of naval architecture and 
ocean structure from Dalian Uni-
versity of Technology (DLUT), 
Dalian, China, in 2004 and 2010, 
respectively. Since 2015, he has 
been an Associate Professor and 
the M.E. Supervisor with the 
College of Shipbuilding Engi-
neering, Dalian University of 
Technology. He has published 
more than 30 papers. His 
research interests include intel-
ligent manufacturing, machine 
learning and data analysis, and 

data registration. 

Yujun Liu received the Ph.D. 
degree from Dalian University of 
Technology (DLUT), Dalian, 
China, in 1997. Since 1999, he 
has been a Professor in College 
of Shipbuilding Engineering, 
Dalian University of Technol-
ogy. He enjoyed the Special 
Allowance of the State Council 
in 2001. His current research 
interests include digital ship-
building, data analysis and visu-
alization, and data registration. 



623A robust nonrigid point set registration framework based on global and intrinsic topological…

1 3

Ji Wang received the B.E. and 
Ph.D. degrees in design and con-
struction of naval architecture 
and ocean structure from Dalian 
University of Technology 
(DLUT), Dalian, China, in 2000 
and 2007, respectively. He is 
currently a Professor with the 
College of Shipbuilding Engi-
neering, Dalian University of 
Technology. His research inter-
ests include digital shipbuilding, 
data analysis and processing, and 
intelligent manufacturing. 


	A robust nonrigid point set registration framework based on global and intrinsic topological constraints
	Abstract
	1 Introduction
	2 Related work
	3 Method
	3.1 Correspondence estimation
	3.2 GMM-based nonrigid registration framework
	3.3 Global structure preservation
	3.4 Intrinsic structure preservation
	3.5 Global-intrinsic structure preservation
	3.6 Fast implementation
	3.7 Implementation details

	4 Experiments and analysis
	4.1 Overall performance on contour images
	4.1.1 Nonrigid fish point set registration
	4.1.2 Nonrigid the Chinese character point set registration

	4.2 Experimental and analysis on real-world image data

	5 Conclusion
	Acknowledgments 
	References




