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Abstract
Weber local descriptor (WLD) is applied for addressing the challenges in image/pattern problems, especially in computer
vision and pattern recognition domains. In this paper, we review literature on theories and applications of WLD. UsingWLD,
we address the different challenges of image analysis and recognition features with respect to illumination changes, contrast
differences, and geometrical transformations like rotation, scaling, translation, andmirroring. Further, the role of the classifiers
and experimental protocols used in the different applications are discussed. Applications include texture classification,medical
imaging, agricultural safety, fingerprint analysis, forgery analysis, and face recognition.
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1 Introduction

Extensive researches were done on image recognition, where
texture analysis-based local and global texture descriptors
were employed. Texture provides knowledge about spatial
distribution of color and intensities either from the whole
image or from a region-of-interest that can be based on the
point-based descriptors. Texture analysis also helps in seg-
menting images into meaningful regions and in classifying
them accordingly. Structural approaches reveal that texture
is a collection of primitive texels with patterns whereas sta-
tistical approaches extract the computable measure of the
intensity values in the image. Several texture descriptors
were proposed and applied on several different applications
viz. computer vision, pattern recognition, material classi-
fication, face recognition, emotion analysis, and medical
image analysis.Multiple texturemodels viz. statisticalmodel
(co-occurrence matrix, auto-correlation features etc.), geo-

B K. C. Santosh
santosh.kc@ieee.org

Arnab Banerjee
arnab.jdvu@yahoo.in

Nibaran Das
nibaran@gmail.com

1 Jadavpur University, Kolkata, West Bengal 700032, India

2 University of South Dakota, Vermillion, SD 57069, USA

metric models (structural model, Voronoi tessellation etc.),
model-based random fields (fractal approach, random field
model etc.), and signal processing-based models (Gabor and
wavelet method, spatial domain filters, etc.) exist in the liter-
ature. Due to robustness and improved execution time, local
descriptors are widely used in texture recognition. Further,
sparse and dense descriptors are commonly used to clas-
sify texture. Primarily, their difference lies in the way they
describe the image. Sparse descriptors detect key points to
sample a local region and dense descriptors extract local fea-
tures from all pixels.The feature transformation technique
with scale invariance (SIFT) [49] and rotational invariance
[44], Histogram of Oriented Gradients(HOG) are the key
sparse descriptors. If we see the dense descriptor, Gabor
Wavelet [84], LBP [57], LDP [36] Played an important role in
multiple application domains. In 2010, [13] proposed WLD
as an illumination and noise sensitive robust local descrip-
tor. Since then multiple modified versions of WLD came
into play. Some of the popular modified WLD versions are
Memetically optimized multiscale circular WLD [8], Weber
LBP [48], Gabor WLD [69], Log-Gabor WLD [45], deep
neural network-based WLD [5], quaternionic Weber Local
Descriptor [43], etc. For better understanding, the road map
of the development of WLD is presented in Fig. 1.

In the image recognition framework, the WLD has been
applied effectively in several areas, like classifying textures,
detecting faces, medical image classification, and agricul-
tural domain. Therefore, recognizing the importance of the
image recognition via the application of robust local fea-
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Fig. 1 Roadmap of the development of WLD

ture descriptor: WLD, in this survey, we explain the working
principle of WLD, addresses its different applications (plus
detailed algorithms) and the result that follows standard
datasets.

The remaining paper is arranged in the following manner:
the introduction of problem and motivation of this survey
is presented in Sect. 2. The principles of WLD, methods to
extract the features, and characteristics of WLD with exam-
ples are explained in Sect. 3. In Sect. 4, the applications of
WLD with the methods and results are presented. The con-
clusion of the work is given in Sect. 6.

2 Image classification

In image recognition, pixels are associated with the different
classes based on the selected features and the used learn-
ing technique. For learning/recognition, the system has to be
trainedwith sufficient data, and such techniques are under the
scope of supervised and unsupervised learning/classification.
Mathematically classification is a mapping from pixels to a
class or label f (I ) : I → c,where C = c1, c2, . . . , cn , and
the function f (.)maps an image to a label ci where ciεC and
1 ≤ i ≤ n.
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2.1 Problem overview

Figure 2 shows the overview of an image recognition/
classification system having three components: preprocess-
ing, feature extraction and classification. In preprocessing,
among various techniques, noise removal, gray scaling is
very common since not all feature extractors are robust
to noise and scaling. Some of the descriptors are having
inherent preprocessing capabilities. In feature extraction, dis-
tinguished features are extracted. In classification, all the
above phases are applied to the unknown image instance
and the classifier will give the label of the unknown image,
taking the help of the trained image features. The classifier
plays a crucial role in image recognition. The performance
of the classifiers depends largely on the configuration and, of
course, the parameters applied. Therefore, proper selection
of features and classifier(s) is required since they vary from
one application to another.

2.2 Motivation

After the introduction of WLD by [13], several modifica-
tions were made to solve various problems under the scope
of pattern recognition. Due to rotation, translation, scaling,
and other issues, such as illumination changes, occlusions,
and degradation, image recognition is not trivial. Modified
WLDs were successfully applied to solve aforementioned
inherent problems in image recognition. Though the per-
formances of WLDs are compelling than the other local
descriptor, such as LBP, LTP, and SIFT, no survey on WLD
has not yet been reported in the literature. The encouraging
performances of traditionalWLD and its variants in different
fields of image/pattern recognition motivate us to write this
extensive survey that includes basic theories behind WLD
in addition to its modifications. It also covers application
domains, where the use of different classifiers (with per-
formance on standard datasets) are addressed.In a nutshell,
it is composed of WLD’s definition, its modified versions
(application-motivated), and its application domains. In 3,
the theory, principal, and characteristics of contemporary
WLD will be explained.

3 Weber local descriptor: definition,
principle and characteristics

3.1 Overview

In the nineteenth century, Ernest Weber explored a constant
relationship between incremental threshold and background

intensity. Therefore, one must speak loudly in a crowded
environment to be heard while whisper works in peaceful
environment. This relationship can be described using the
Weber’s law, i.e., δ I/I = K , where δ I/I is called Weber
fraction. Since we can simplify it by δ I = K I , a linear
relation between δ I and I is established by the Weber’s law.

3.2 WLD

Using the two principle concepts WLD is formed (a) differ-
ential excitation (ψ) and (b) orientation (Θ). The Eqs. 1 to
6 are taken from [13].

(a) Differential Excitation: The micro-variation within an
image can be computed by taking into account the inten-
sity difference between the neighboring pixels. It can be
expressed as:

δ I =
i−1∑

x=0

δ I (px ) =
i−1∑

x=0

I (px ) − I (pc), (1)

where x th neighbors of pc is represented by px (x =
0, 1, . . . , i − 1) and i represents total number of neighbors
in a region. I (px ) presents the intensity of the neighbored
pixels, and I (pc) presents the intensity of current pixel. It
can be expressed as,

ψ(pc) = arctan

(
δ I

I

)
= arctan

(
i−1∑

x=0

(
I (px ) − I (pc)

I (px )

))
.

(2)

If ψ(pc) is positive, then center pixel is darker respect to the
neighbor pixels and if ψ(pc) is negative, then current pixel
is lighter respect to the neighbor pixels.

(b) Orientation: It determines the directional property of the
pixels. It can be computed as:

Θ(pc) = arctan

(
dIh
dIv

)
, (3)

where dIh = I (p7) − I (p3) and dIv = I (p5) − I (p1) is
calculated from the twofilters as in Fig. 3. Themapping of f :
Θ → Θ ′ can be expressed as, Θ ′ = arctan2(dIh, dIv) + π ,
and

f (a) =

⎧
⎪⎪⎨

⎪⎪⎩

Θ, dIh > 0 and dIv > 0
π − Θ, dIh > 0 and dIv < 0
Θ − π, dIh < 0 and dIv < 0
−Θ, dIh < 0 and dIv > 0,

(4)

Fig. 2 Image recognition
overview
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Fig. 3 Calculation of WLD [13]
on a sample skin image

whereΘ varies from−90◦ to 90◦. Further theΘ is quantized
into 0 to 2π .

3.2.1 Formation of WLD histogram

Using the above two principle components of WLD, we can
form the WLD histogram. TheWLD histogram can be taken
as the image descriptor for several image recognition tasks.
Figure 3 represents the calculation of differential excitation
(ψm) and orientation (Φn) of an input image. Next the, two-
dimensional histogram is createdWLD(ψm, Φn), where (m
varies from 0 to M −1) and (n varies from 0 to N −1). Here
M denotes image dimension and N denotes the total number
of dominant orientations.

In the 2D histogram, dominant orientation is represented
by each column and differential excitation is represented by
each row. Next N numbers of 1D histograms are formed by
decomposing the 2D histogram. Each dominant orientation
is referred by each 1D histogram. In each 1D histogram,
total s segments Hs , s varies from 0 to s − 1 are present. A
subset is formed by combining each row of 1D histogram.
The finalWLDhistogram is formed by concatenating all sub-
histograms H = Hs, s = 0, 1, . . . , S − 1. There are B bins
in each sub-histogram H(s,n) i.e.H(s,n) = H(s,n,b), b = 0, 1,
. . . , B − 1:

Hs,n,b =
∑

k

Ψ (Bk = B),

(
Bk =

⌊
ψk − γs,l
γs,u−γm,l

B

+ 1

2

⌋)
,

(5)

where s depends on the interval ψk belongs and n refers to
the quantized orientation index and Ψ (.) can be expressed

as:

Ψ (a) =
{
1, a is true
0, otherwise

(6)

3.2.2 Characteristics of the WLD

Inspired by the psychological law, the WLD can be com-
puted. It computes the features similar, as a human perceives
his/her surroundings. So, such descriptor has some inher-
ent capabilities of human sensing and application of such
descriptor has been very successful in several domains of
image recognition. This section will address the advantages
of usingWLD.We basically cover where it is robust to noise,
illumination, and rotation.

(a) Robust to Noise The derivation of differential excita-
tion and orientation makes the WLD noise redundant. WLD
inherently reduces the noises present in the image like the
smoothing operation in image processing. While calculating
differential excitation ψ(pc), first the intensity difference of
i −1 neighbors and center pixel is added up and then divided
by the current pixel intensity. Thus, it makes WLD robust
against multiplicative noise. Thus, theWLD is robust against
the multiplicative noise [13]. An example is presented in
Fig. 4.

In a 3 × 3 neighborhood, consider any pixel px where
0 ≤ x ≤ 7 and pc represents the current pixel. The multi-
plicative noiseη is applied to every pixel in the neighborhood.
Differential excitationψη(pc) and orientationΘη(pc) can be
derived, respectively, as

Differential excitation:

ψη(pc) = arctan

(
i−1∑

x=0

η((I (px ) − I (pc)))

η(I (px ))

)
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Fig. 4 a The gray values of 3 × 3 Neighborhood of an image; b the calculation of differential excitation for upper left hand side neighborhood; c
the noisy gray values of same 3 × 3 neighborhood; and d calculation of differential excitation for lower left hand neighborhood

= arcatn

(
i−1∑

x=0

((I (px ) − I (pc)))

(I (px ))

)

and ψη(pc) = ψ( pc). (7)

Orientation:

Θη(pc) = η((I (p7) − I (p3)))

η((I (p5) − I (p1)))

= ((I (p7) − I (p3)))

((I (p5) − I (p1)))
andΘη(pc) = Θ(pc). (8)

These equations prove that the WLD is robust to multiplica-
tive noise. WhenWLD is compared with SIFT [49] and LBP
[57] for additive noise, it is proved that WLD performs bet-
ter than these two-texture descriptors. These three-texture
descriptors performed same for the added white Gaussian
noise with noise strength 5, but WLD outperformed than the
SIFT and LBP for the noise strength greater than 5 [13].

(b) Robust to Illumination In WLD, δ I is the differences of
intensities of neighbored pixels with center pixel intensity.
Hence, brightness changes have no effect on the difference
values. Therefore, the WLD descriptor is robust to the illu-
mination [13] that can avoid potential use of preprocessing.

(c) Robust to Rotation of Image The differential excitation
component of WLD descriptor is having rotational invari-
ance property. Even if a 3× 3 neighborhood is rotated about
some degree, it produced the same difference value of the

intensity with the neighbor pixel and the center pixel. So,
rotation of image does not affect the Differential Excitation.
[61] proposed WLD with rotational invariance (WLDRI) to
make orientation component robust to rotation changes. Here
the orientation is computed for all the mutually perpendicu-
lar diagonal pairs and the minimum value for orientation is
taken. Equation [61] for calculating the orientation compo-
nent:

Θk = arctan

(
I (p

(( i
2 )−k)mod i ) − I (pi )

I (p
(( 3i4 )−k)mod i ) − I (p

(( i
4 )−k)mod i )

)
,

and θ(pc) = mini−1
x=0(θx ). (9)

WLDRI outperformed the conventional WLD in case of skin
diseases recognition. Deep neural network (DNN)-based
WLDRI [5] also significantly outperformed conventional
WLD in case of KTH-TIPS2-a [12] texture dataset, OUTEX-
10 [56] for texture recognition.

4 WLD: applications, a quick review

WLD has been successfully applied in verification of faces,
facial expressions and facial emotion recognition, fingerprint
detection, forgery detection, biometric spoofing detection
and texture classification. Face recognition and texture clas-
sification are found to be dominant applications. WLD
were used in Kinship classification based on self-similarity

123

325



A. Banerjee et al.

representation [41] and used as a problem solver in face
recognition in case of aging problem [6]. There were three
applications of WLD in medical imaging, one is automatic
mass detection in Mammograms [31], other is skin diseases
identification using WLDRI [61] and DNN-Based WLDRI
for Skin Diseases Detection [5]. There exist several versions
of WLD developed by the combination of state-of-the-art
descriptorwithWLD.These areMemetically optimizedmul-
tiscale circularWLD [8],Weber LBP [48], GaborWLD [69],
Log-GaborWLD [45], deep neural network-basedWLD [5],
quaternionic Weber Local Descriptor [43], etc. These ver-
sions of WLD were extensively used in several applications
with higher recognition accuracy. The higher-order statistics
ofWLDwas studied to get the highly discriminant image fea-
tures and applied in texture recognition, and recognition of
different food images and pattern ofHep-2 cell [26]. Recently
in 2018 [71] applied WLD-based biometric model for fish
species classification. A list of works that use WLD are enu-
merated as follows:

1. Texture classification [1,5,13,15,16]
2. Medical diagnosis [5,31,61]
3. Agriculture safety [19]
4. Fingerprint analysis and detection [23]
5. Forgery detection [33–35,66,74]
6. Face detection and recognition [13,19,22,32,41,46,54,76,

79,80,83]
7. Variations of WLD [8,26,45,48,68,69]

4.1 Texture classification

4.1.1 Robust local image descriptor

Authors presented WLD, a local descriptor, and applied
in texture classification [13]. WLD processes the texture
micropatterns locally. WLD was applied on Brodatz [11]
and KTH-TIPS2-a [12] texture dataset. The method of fea-
ture extraction is described in the Sect. 3. Brodatz dataset
consists 32 texture classes, each with 64 samples in it. Each
image is of 256×256 pixels and 256 gray levels. Every image
was divided into 64× 64 pixels and histogram-equalized for
luminance invariance. Additional samples are created using
rotation and scaling. The material dataset KTH-TIPS2-a has
4395 images and11 classes of textures. In this dataset, images
are present with different variations like 9 different scales,
4 illumination direction, and 3 different poses. Here size of

each image is 200 by 200 pixels. To avoid over fitting, they
tested using cross-validation (tenfold) on theBrodatz dataset.
The setup of KTH-TIPS2-a dataset was same as of [12]. For
training, 3 sampleswere applied.The testsweremade for four
timeswith four different sets of three images for training. The
parameter values of T , M , S were 8, 6, 20 and the Table 1
gives the weight of each sub-histogram. In this experiment,
for the classification purpose, K nearest neighbor (KNN)
was used. Besides, comparison ofmultiscaleWLD (MWLD)
with MLBP was done. WLD or MWLD outperformed the
other recently reported techniques for both the datasets. The
accuracy of WLD for Brodatz dataset was 97.5 (standard
deviation = 0.6) and accuracy of MWLD for KTH-TIPS2-
a dataset was 64.7 (better than the normal WLD, accuracy
= 58.1) [13].The accuracy of SIFT for Brodatz dataset and
KTH-TIPS2-a was 91.4%, 52.7% and accuracy of LBP for
Brodatz dataset and KTH-TIPS2-a was 91.2% and 49.9%.
Clearly, WLD outperformed the the SIFT- and LBP-based
techniques.

4.1.2 ImprovedWLD

It considers the orientation component. It blurs the texture
of the image and thus responsible for misclassification [16].
Authors proposed an improved WLD and applied in texture
classification. The following Eq. [16] express the way of
computing gradient at f (m, n),

Df =
[
Gradientx
Gradienty

]
=

⎡

⎣
d f
dm
d f
dn

⎤

⎦ . (10)

The magnitude of the vector is Df = mag(Df ) =
[
Gradient2x
Gradient2y

] 1
2

, and gradient direction is β(x, y) = arctan
([

Gradienty
Gradientx

])
For each cell of the image, the histogramwas

computed. The overlapping cells made it powerful for identi-
fying the edges. The image was formed from the histograms
of each cell. The differential excitation was considered to
keep the neighboring information. This improved version of
WLD was applied on Brodatz [11] and KTH-TIPS2-a [12]
dataset. The details of the datasets are same as Sect. 4.1.1.
Authors compared the performance of improved WLD with
LBP, LPQ and WLD. Support vector machine (SVM) was
applied for classification purpose. In case of LPQ, the corre-
lation coefficient ρ = 0.9 was used. This method achieved 8,

Table 1 Weights for the WLD
sub histogram [Hi denotes i th
sub histogram.] [13]

H0 H1 H2 H3 H4 H5

Frequency (%) 0.2519 0.1179 0.1186 0.0965 0.0875 0.3276

Weights (ωm ) 0.2688 0.0852 0.0955 0.1000 0.1018 0.3487
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6, and 4% better accuracies than the LBP [57], LTP [58] and
WLD [13]. If the textures are blurred, then micro variations
in image cannot be achieved by only using the local contrast
information. The method computes the features at the cell,
and therefore, it helps reduce the blurring of texture.

4.1.3 Integrating theWLDwith variance

Authors [15] proposed a technique to combine WLD and
variance histogram (WLDV) for better performance than the
LBP, LPQ, and WLD. PWM [18] was used for the variance
component. The input image was divided into 3× 3 window
and the variance of each window was calculated. The con-
trast image was normalized in (0–255) level range. In this
approach, WLD and variance histogram was calculated and
combined. These two histograms are complementary to one
another and exploit the contrast and local spatial pattern. The
value of the parameter T , M , S was 8, 6, 20. This combined
histogram was applied on Brodatz [11] and KTH-TIPS2-a
[12] texture dataset. The details of the two texture datasets
are same as Sect. 4.1.1. They used tenfold cross-validation to
conduct the experiment. The training and testing data were
created in 2:3 ratio. SVM was used for classification and
WLDV gained better accuracy than LBP, LPQ and WLD for
both datasets. Though accuracy percentage is not reported
in their work. The accuracy for the KTH-TIPS2-a dataset is
lower than the Brodatz dataset because of diverse nature of
the KTH-TIPS2-a dataset (illumination direction, different
pose, and rotation).

4.1.4 Texture classification using DNN-basedWLDRI

Authors proposed a deep learning-based rotation invariant
WLD. OUTEX-10 and KTH-TIPS2-a dataset was used in
this experiment [5]. Authors [61] presentedWLDRI to make
orientation component rotation invariant. In this approach
the kernel (or filter) of WLDRI was applied in deep neu-
ral network to simulate the behavior of WLDRI into DNN
for enhancing the performance of DNN. All the images
were grayscale and .bmp file type. In this approach, three-
layered DNN was used and 3000 neurons were used in
each layer. During DNN training, when the error rate was
not decreased after 30 epochs, at max 1000 epochs were
used. In OUTEX-10 [56] dataset, total 24 classes of tex-
tures are present with 4320 images. At nine different angles
(0◦, 5◦, 10◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦) the images were
rotated. There were no illumination changes for rotating the
images. In OUTEX-10 dataset, the accuracies using multi-
scale WLDRI and DNN based WLDRI were 81.27% and
89.33% accordingly. When KTH-TIPS2-a dataset was used
in the experiment, themultiscaleWLDachieved 64.7%accu-
racy and theDNN-basedWLDRI achieved 69.73%accuracy.
MultiscaleWLDwas used inKTH-TIPS2-a dataset for easier

comparison with [13]. It is also easy to compare the results
with other descriptors such as SIFT and LBP by refering
Sect. 4.1.1. DNN-based WLDRI achieved 8.06% better per-
formance in case of OUTEX-10 dataset and 5.03% better
performance for the KTH-TIPS2-a dataset. Further the pro-
posed DNN-based WLDRI descriptor proved its statistical
significance.

4.2 Medical diagnosis

4.2.1 Rotation invariant WLD for skin disease recognition

Authors proposed a rotation invariantWLD to recognize skin
diseases: Leprosy, Tinea Versicolor, and Vitiligo [61]. They
proposed that the orientation component of WLD [13] is
easily disrupted by rotation. The proposed technique help
make rotation invariant, since the orientation is computed
for all the mutually perpendicular diagonal pairs and the
minimum value for orientation is taken. The formula is
shown in Eq. (9). To build WLD histogram, 8 and 6 bins
were used for differential excitation and orientation. In the
experiment, 4 regions of the image were taken using the
center of gravity (CG) of the image. The experiment was
done on the skin diseases dataset [61] with the images of
Leprosy, Tinea Versicolor, and Vitiligo affected skin. The
normal skin images were also taken for classification pur-
pose. Altogether, from 876 randomly collected images 702
images were taken for training and 174 images were used
for testing purpose. Two experiments were done using WLD
and WLDRI—center-of-gravity-based partition method and
without center-based partition-based partitionmethod.Using
SVMclassifier,WLDRI achieved 4.79%better accuracy than
the WLD (without using center-of-gravity-based partition).
When center-of-gravity-based partition was used, multiscale
WLDRI achieved an accuracy of 89.08%, whereas multi-
scale center-of-gravity-based WLD achieved an accuracy of
86.78%.

4.2.2 Multiscale spatial WLD for mass detection in
mammograms

Authors proposed multiscale spatial WLD to detect mass
in the mammograms [31]. The method was proposed to
encode the local region patterns and spatial structure in the
masses. The application of thismethod includes the detecting
masses, including suspicious parenchymal regions. Tradi-
tionalWLDdoes not incorporate the spatial location factor. In
spatialWLD, the imagewas partitioned into different regions
and multiscale WLD was applied in each region. The his-
tograms associated with each region was concatenated and
final histogramwas built. The method was applied on Digital
Database for ScreeningMammography (DDSM) [27] dataset
which consists of images labelled as eithermass or normal by
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the experienced radiologists. 256 ROIs were extracted with
the size ranging from 240 × 240 to 1180 × 1180 depending
on the size of the masses. 256 ROIs of normal but suspicious
region images were also present in the dataset. For the clas-
sification purpose, SVM (with RBF kernel) was applied and
performance was tested by the Area under curve (AUC). The
appropriate value of the parameter T , M , S was (4, 4, 5) and
4 × 4 optimal number of blocks were used per image. The
AUC of MSWLD was 0.988 ± 0.006, whereas the AUC of
LBP and basic WLD was 0.922± 0.016 and 0.697± 0.032.
This method outperformed LBP and basic WLD with this
DDSM dataset.

4.2.3 DNN-basedWLDRI for skin disease recognition

Authors proposed a deep neural network-based system based
on WLDRI [5]. The description of the method and exper-
imental setup are described in Sect. 4.1.4. CMATER skin
dataset [61] was used for the experiment. This dataset con-
sists of the texture images of skin diseases—Leprosy,Vitiligo
and Tinea Versicolor and also normal skin images. In the
experiment, 702 images were taken as the training data and
174 images were taken for the testing. Center of gravity
(CG) of the image was used for the partition of the images
into four regions. The experiments were done using par-
tition based on the CG and without using the partition,
and results were compared between them. The results were
compared with the method by [61].The proposed method
without CG based partition achieved 2.88% better accuracy
than the WLDRI using the concatenated features of mul-
tiscale version, whereas in case of CG-based partition, the
proposed method achieved 5.74% improved accuracy over
WLDRI. The precision, recall, and F-score of DNN-based
WLDRI was also greater than WLDRI. The FPR of DNN-
based WLDRI was less than WLDRI. The observation is
that the use of combined multiscale features from the CG-
based partitioned images is more discriminative for making
the differences between the skin diseases affected images and
normal skin images.

4.3 Agricultural safety

4.3.1 WLD for biometric cattle identification

Authors proposed a systembased onWLD in biometric cattle
identification from the cattle muzzle print images [19]. Local
discriminant analysis (LDA) [64] was used for the reduction
of the feature dimension to discriminate between different
classes. From each of 31 heads of cattle, 7 images were taken
and this approach was evaluated on total 217 muzzle print
images. Training images were increased from one to six for
each head of cattle and rest were used for testing. AdaBoost
classifier was used for the recognition of unknown muz-

zle image. There were different parameters involved in the
experiment-WLD parameters (patch size), AdaBoost param-
eters (type of weak learner, learning rate and number of weak
learners). The patch size of WLD was determined by vari-
ous experiments done with different patch sizes. Using tree
and discriminant learner number of experiments were done
to get the appropriate type of weak learner. In the experi-
ment, number of weak learner was 200 and learning rate was
0.1. The discriminant learner had the less error rate than he
Tree learner. KNN and Fuzzy k-NN classifiers were used for
comparing performance with the AdaBoost classifier. Sev-
eral experiments were done for different odd values of K .
This method used AdaBoost classifier and achieved 98.9%
accuracy using 4 training images, and KNN and Fuzzy k-
NN gained, respectively, accuracies of 96.8% and 97.9%.
The system is very robust with rotation and occlusion even
though no preprocessing was applied. The statistical mea-
sures [sensitivity, specificity, AUC, equal error rate (ERR)]
of this approach using AdaBoost is relatively better than the
KNN and Fuzzy k-NN.

4.4 Fingerprint analysis and detection

4.4.1 Local features via WLD for fingerprint detection

Authors studied the fingerprint liveness recognition using
local discriminative feature space, which is considered as
a very challenging problem to track the fake fingerprints in
several sources, such as silicon, gelatin or clay [23]. The spa-
tial WLD histogram and the combination of WLD and local
phase quantization (LPQ) [59] were used for fingerprint live-
liness recognition. The LivDet 2009 [53] and LivDet2011
[82] dataset was used for the experiment. The works by
[52] and [20] were also considered for comparative analy-
sis of the results.The performance of WLD was better than
LBP for all sensors. The performance of WLD was better
than LPQ in LivDet2009 dataset and comparable with LPQ
for LivDet2011 dataset. Performance of the combination of
WLDandLPQonLivDet2009 dataset was better and statisti-
cally significant (p < 0.05) than the other approaches for all
the sensors, but in case of LivDet2011 dataset performance of
the combination was better than the other approaches except
Biometrika sensor. Combination of LBP and LPQ achieved
the best for Biometrika sensor in LivDet2011 dataset, but
the result is very close with the combination of WLD and
LPQ. The combination of WLD and LPQ outperformed the
other methods because two approaches are complementary
to one other. The authors have not identified the reason of
getting better result with the combination of WLD and LPQ
for this problem. A through experiment may reveal the dis-
criminant features, which are playing the lead role and the
insight behind it also will be clear.
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4.5 Forgery detection

4.5.1 Multiresolution WLD for image forgery analysis

Authors proposed the multiresolution-based WLD in image
forgery detection [33]. This work addressed the copy–move,
splice, and deformation forgery with the images. The human
eye is less sensitive with the chrominance than the lumi-
nance component of color. Basically, the image forgery is
done with RGB color space without no trace of tampering.
In this approach, the YCbCr color space was considered
and the WLD histogram was generated from the chromi-
nance component. The method was applied on the CASIA
TIDEV1.0 dataset [17]with large number of authenticate and
fake images with 384 × 256 pixels size and JPEG file type.
The T , M and S parameter values were optimally used as (4,
4, 20). Seven different scales (C1–C7) were considered for
the experiments, where C1, C2, C3 scale was, respectively,
(8, 1), (16, 2), and (24, 3). C4 scale was the combination of
C1 and C2 scale, C5 scale was the combination of C1 and
C3 scale, C6 scale was the combination of C2 and C3 scale
and C7 scale was the combination of C1, C2 and C3 scale.
In splicing detection, the Cr component outperformed the
Cb component for all the scales. 91.54% was found for the
Cr component withC7 scale, whereas for Cb component, the
accuracy was 89.88%. Size of feature vector forC7 was 960.
Joint histogram of Cr and CbwithC7 scale achieved 93.33%
accuracy and AUC of 0.93 in splice forgery detection. When
detecting copy–move forgery, accuracy of Cr channel with
C7 scale was 90.69% and Cb channel was 87.77%. Joint
histogram of Cr and Cb with C7 scale achieved accuracy of
91.52%andAUC0.88. Thismethod is comparedwith [75] on
CASIA TIDEV1.0 dataset, that used chrominance channels
and achieved 79.90% accuracy for splice forgery detection
and 76.30% accuracy for copy–move forgery detection. Dif-
ferent types of transformation were applied on the images
like deform, rotation, resize. The experiment was done with
Cr, Cb and Cr + Cb channel with C7 scale. The accuracy
of rotation transformation was less than the other transfor-
mations. Another experiment was done on different shapes
of copied regions in forgery (Arbitrary, Circular, Rectangu-
lar and Triangular). In case of splicing detection Cr + Cb
component gained the better accuracy but for copy–move
detection Cr component gained better accuracy except the
circular tampered region. The Cr + Cb component gained
better accuracy for circular tampered region in copy–move
detection.

4.5.2 Analysis of non-intrusive image forgery using
multiscale WLD and LBP

Authors presented a comparative analysis between multi-
scale WLD and multiscale LBP for the detection of image

forgery [35]. The texture micropatterns are distorted due to
the image forgery made by different image processing tools
and applications. Two texture descriptors (Multiscale-WLD
and Multiscale-LBP) were used to detect the distortion in
the texture micropatterns and their performances were com-
pared for different experiments. In this approach to form
the multiscale WLD histogram, histogram of three differ-
ent neighborhoods was combined. The neighborhoods were
(radius = 1, pixels = 8), (radius = 2, pixels = 16) and
(radius = 3, pixels = 24). The T , M , and S parameters were
optimally used as (4, 4, 20) for the experiment and in multi-
scale scenario the size of the WLD histogram feature vector
was 960. Three different versions of LBP were used, LBP
with rotational invariance (LBPriP,R), uniformLBP (LBPu2p,R)

and uniform LBP with rotational invariance (LBPri u2P,R) for
comparison with the Multiscale-WLD. To avoid the redun-
dant featuresLocal LearningBased (LLB) [70] feature subset
selection technique was used. In this approach, for the exper-
iment CASIA TIDE V1.0 dataset [17] was applied. In this
dataset, the number of original and tampered images were
800 and 921. Using Adobe Photoshop, the images were tam-
pered. Different transformations and cut and paste method
were used for tampering. A total of 459 images were forged
by copy–move forgery and rest were forged using splic-
ing. For the classification, SVM (polynomial kernel) was
used. They used performance accuracy and AUC for perfor-
mance evaluation. Three experimental caseswere considered
in this work—detecting splicing, detecting copy–move, and
detecting copy–move and splicing forgery combinedly. They
extracted the features from the Cr component, Cb component
and from the combination of both the component using fea-
ture level fusion (FLF). 94.29%accuracywasobtained for the
splicing detection using Multiscale-WLD using FLF (Com-
bination of Cr and Cb) and the AUCwas 0.938±0.024. AUC
for the Cr component 0.94±0.02 was slightly better than the
FLF.When FLF was applied on copy–move detection exper-
iment, 90.97% accuracy and AUC of 0.90 was obtained. The
third experiment for the combination of splice and copy–
move dataset was done and achieved 94.19%accuracy for the
FLF. In case of the combined dataset the performance of FLF
was far better than the Cr.Multiscale LBPwas applied for the
Cr andCb channel. (LBPriP<R) using Cr channel achieved the
accuracywith standard deviation of 90.48±4.20 andAUCof
0.90±0.05 for splicing detection,whereas LBPu2

P,R achieved
the accuracy and AUC (90.36 ± 2.94and0.90 ± 0.04).
The standard deviation for the LBPu2

P<R was less than the
LBPriP,R for both accuracy andAUC. The same case occurred

with Cb component and LBPu2
P,R achieved the best perfor-

mance (86.55± 2.81accuracy and AUC of0.86± 0.04)than
the LBPri

P,R in respect of the standard deviation. In case of
copy–move detection LBPriP,R outperformed the other two
variants for Cr and Cb channel. The accuracy and AUC for
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copy–move detection with Cr channel was 85.56± 4.91 and
0.83 ± 0.06 respectively and 85.83 ± 5.31 and and for Cb
channel 0.83 ± 0.08, respectively. But in case of combined
dataset, LBP(P, R)u2 with Cr channel outperformed the
other two variants with accuracy of 85.93% and AUC of
0.86±0.04. This study showed that in intrusive forgery detec-
tion Multiscale WLD achieved better performance than the
multiscaleLBPandCr component is best channel fromwhere
the features should be extracted to track the distortion due to
the image forgery. This method was also compared with [75]
using CASIA TIDE V1.0 dataset. Multi-WLD gained better
accuracy than Multi-LBP.

4.5.3 WLD for watermark authentication

Authors proposed a watermark authentication technique
using WLD descriptor [74]. The system can authenticate the
watermark that has been applied or affected by the noise
corruption, compression or cropping of the image. The illu-
mination, rotation and scale variance of WLD played the
key role for achieving the result. DCT coefficient modifi-
cation was used for embedding the watermark bits into the
image. The WLD histogram was calculated form the image.
WLD histogram was stored in register file with the key and
encrypted with AES. At the receiver end theWLD histogram
was calculated for the distorted image. The register file was
decrypted using AES the normalized coefficient of correla-
tion (η) and Euclidean distance (ρ) was calculated as [74],

η =
k−1∑

x=0

M(x) − M ′(x)√∑k−1
x=0 M

2(x)
√∑k−1

x=0 M
′2(x)

and

ρ =
√√√√

k∑

x=0

(M ′(x) − M(x))2. (11)

In this approach, an image was considered as watermarked
image when value of η and ρ was beyond some thresh-
old. This method was applied on the different gray level
nature images. Total 256 watermark bits were used. The host
image and the watermark image is having PSNR ratio of
40.17 db. This work achieved the PSNR close to 40db as
of [81] except for 1024-bit watermark. The threshold value
of T1 for η is 0.7 and T2 for ρ is 107. Several geometri-
cal transformations were applied on the images like rotation,
flipping, cropping, scaling, and translation. The images were
rotated using bilinear interpolation using MATLAB7.0. For
rotated image, the descriptor does not change significantly
with respect to the original image. The variation was for the
incorrectness of the rotation technique. In case of flipping,
the images were flipped in both horizontal and vertical direc-
tion and the approach was robust against the flipping attack
in both direction. Vertical and random cropping was done

with the images and system was robust with the cropping
also. The images were scaled with the factor of 2 and 4 and
normalized to 32 × 32 pixel. The descriptor was tested with
the original watermarked images and the system was robust
to the scaling. The images were translated by 16× 16 about
the centroid and the system proved the robustness against
the translation transformation. The approach was tested by
applying the Gaussian noise. The experiment was done with
the changes of mean and variance. The value of η is near
to 0.7 when low contrast image was used, which means the
low contrast image was sensitive to noise. Their approach is
robust to sharpness, contrast stretching and JPEG compres-
sion. 50 unwatermarked images were tested and only one
was identified as the watermarked image (host image). The
approach reported no false negative rate. The results of the
systemwere comparedwith SIFT andLBP. SIFT is not robust
to the vertical and horizontal flipping. SIFT was also not able
to identify the blurred image. For SIFT, it holds the same for
degradation and rotation. Also, the complexity of SIFT was
very high compared to WLD andWLD takes less time to get
executed. LBP has failed authenticate the blurred images,
but performance of LBP was good for other enhancement
techniques and the geometric transformation.

4.5.4 IntegratingWLDwith statistical features for
copy–move detection

Authors proposed a copy–move detectionmethod affected by
the geometrical transformation in the small copied area using
the point descriptor derived from the integration ofWLDhis-
togram and some statistical features [66]. In this approach,
the key points were extracted using SIFT and WLD com-
ponents were calculated from every key point and all the
pixels around it in the circular area. The WLD components
were extracted for 3 × 3, 5 × 5 and 7 × 7 neighborhood
and histograms H1, H2 and H3 were concatenated to make
the final histogram. The approach also makes the WLD his-
togram rotation invariant using the dominant orientation.
The input was blurred by the Gaussian blur filter and from
every key point WLD components were extracted. The his-
togram of T equal-sized bins was formed with the width of
360
T using the orientation of the pixels proportional to the
differential excitation gradient of the pixels. The dominant
orientation of the key point is represented by the maximum
peak in the histogram. To make the rotational invariance
each pixel orientation in the region was subtracted from the
dominant orientation of the key point. Several statistical fea-
tures were calculated such as, mean intensity, mean color
channel and the color channels (HR, HG, HB) histogram
around each key point with the radius r . Key point similari-
ties were found using the normalized histogram intersection
measure. The weighted Euclidean distance (WED)was com-
puted between the two-candidate matched point with some
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weights and those points that had the smaller distance value
than the TWED(1.8 for this approach) were identified as
the matched points. The values of (T , M , S) for calculat-
ing WLD components was (8, 6, 20). The spatial clustering
was used to group together the matched key points to recog-
nize the copied areas. MICC_F220 [3] dataset was used for
the experiment without preprocessing and using geometri-
cal transformations like scaling, rotation, and combination
of them. The dataset consists with 110 original and 110
tampered images with resolution varied from 722 × 480
to 800 × 600 pixels. MICC_NBCM was created with 121
tampered and 121 original images after application of some
postprocessing techniques with the original and tampered
images. MICC-SMALL dataset consists of images tampered
in a small copy area, created using copying the 48 × 48
square image area. This dataset consists with 30 original
and 30 tampered images. The results were compared with
the SIFT-based method [3]. TPR and FPR was used for the
result comparison. In case of copy–move-tampered images
without any postprocessing, both SIFT-based method and
above approach performed equally well. Both the methods
were applied on the MICC-SMALL dataset and the multi-
scale WLD-based method achieved best result because the
WLD features and statistical measures were extracted from
the different granularities. In case of rotation postprocessing
the SIFT-based method worked better for the MICC_F220
dataset because the dominant orientation calculation in SIFT
is very robust than this method. The SIFT had better result
for the scaling postprocessing on the MICC_F220 dataset
because features were extracted from each key point using
different scale space, whereas the WLD components were
extracted using only three-scale variation. SIFT also had bet-
ter result in case of the combination of rotation and scaling
postprocessing.WLD had significantly good result for added
white Gaussian noise asWLD is robust against the noise. The
WLD also had the better results for the blurring and JPEG
compression than the SIFT. Themean color channelYplayed
the key role here. In case of mirror postprocessing WLD had
the significantly better result than the SIFT-based method.

4.5.5 Multiscale WLD and its influence in image forgery
detection

Authors [34] extended their previous work and used CASIA
v1.0 dataset, CASIA v2.0 dataset [17] and Columbia color
dataset [55]. The method was same as of the approach
described in Sect. 4.5.1. The grid search method was used
for the finding the optimal parameter for the kernels used
in SVM. This approach used tenfold cross-validation for the
experiments. The TPR, TNR, ACC, and AUC was used for
the evaluation purpose. The values for WLD (T , M , S) was
same as of the previous work (4, 4, 20). In splicing detec-
tion, the Cr component achieved the accuracy of 94.29%,

whereas the FLF(Cr + Cb) achieved 94.52%. Though the
AUC of Cr and FLF was same but for TPR, TNR, and accu-
racy the performance of FLF was better than the Cr channel.
In copy–move detection, the accuracy using the Cr channel
was 91.11%, it was better than the accuracy of the other
channel but for TPR, TNR and AUC, the FLF performed
better than the Cr channel. The accuracy using FLF for copy–
move detection was 90.97%. In copy–move detection, from
the image small part is taken and introduced in the original
image, so the hidden noise patterns are present in the image.
This is the reason for which the performance of copy–move
detection is less than the splicing detection. They also created
the combined dataset using the splicing and copy–move. The
approach was tested using C7 scale on the combined dataset.
They used SVM (polynomial kernel) for the classification
purpose. LLB was used for dimensionality reduction from
960 to 770. Accuracy of the approach using C7 scale and
770 features with FLF(Cr+Cb) was 94.19%. When detect-
ing splicing and copy–move, multiscale WLD was tested
for different transformations, shape and size of the tampered
regions. The deformation transformation for splicing detec-
tion achieved the best result of 95%, whereas the rotation
transformation achieved 88.57% because of small dataset.
The results of copy–move detection for different transfor-
mations were not reported due to the lack of images in the
dataset for this attack. In case of arbitrary shape of tampered
region, the accuracy was 94.33%, but for the rectangular and
circular shape the approach achieved 85% and 90% accord-
ingly. In splicing detection, using Cr channel multi-WLD
achieved best result, even if tampered region size changes.
This method achieved 93% accuracy when tampered region
size was large, but for medium and small tampered region
the accuracy was 91%. In copy–move detection, this method
using FLF achieved the best result of 86.67%with large tam-
pered region, which was 86.67%. The above approach was
tested on CASIA v2.0 dataset where the number of images
was large than CASIA v1.0. After feature selection, the fea-
ture vector size for Cr, Cb and FLF were 185, 379, and 359,
respectively. The multi-WLD achieved the best accuracy of
96.52% with FLF after feature selection. FLF with feature
selection (size of feature vector is 316) achieved 94.17%
accuracy for the Columbia color dataset, which consists with
the TIFF images. This result was the best, compared to the
results shown by the method of [86]. It proves the invariance
with the different file format and size of the images. The
results of multi-WLD approach were tested with the perfor-
mance of three variants of LBP for the CASIA v1.0 dataset.
LBPu2 achieved the best performance (compared to other
variants) of 90.36% and 86.81% for splicing and copy–move
detection accordingly. In spicing detection LBPu2 achieved
the performance with the feature selection done by LLB and
size of the feature vector was 256, whereas in copy–move
detection LBPu2 achieved the best accuracy without any fea-
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ture selection and size of feature vector was 437. This proved
that for the copy–movedetection the systemneedsmorenum-
ber of features to learn because of the hidden noise pattern
remaining the same.

4.6 Face detection and recognition

4.6.1 Robust local image descriptor via WLD for face texture
analysis

Authors proposed WLD—an enriched local descriptor and
tested its performance in recognitionof textures anddetection
of faces. The details of the approach and the formation of
the WLD histogram is described in Sect. 3. This subsection
describes the application of SVM-WLD in face detection.
In case of face detection, each face image was divided into
9 overlapping regions of 32 × 32 dimension. Each region
of the images was of 16 × 16 dimension and overlapping
region of size 8 by 8 was used. The WLD histogram was
generated for each overlapped blockwith the parameter value
M = 6, T = 4 and S = 3. For each block, SVM with
polynomial kernel was trained using the histogram feature
and thenused to detect valid face block.When total number of
valid face blockwas above the threshold value, then the image
was detected as a face. A positive set with 1,00,000 images
of different pose, illumination and lighting conditions and
negative set with 31,805 images were used for the training
samples. Testing was done on three different datasets-MIT
+ CMU frontal face dataset [65] with 507 upright faces, AR
face dataset [51] with 1512 frontal view face images and
CMU profile testing set [67] with 441 multiview face. Due
to large training data, resampling method was used to train
the SVM classifier. The threshold value for determining face
block was set to 8, 7, 6 for MIT + CMU, AR and CMU
accordingly. In case of MIT + CMU face dataset without
false alarm, SVM-WLD recognized 89.3% faces. They did
a comparative study with the other reported methods [10,21,
25,29,47,72]. And SVM-WLD had comparable performance
with the other methods. In case of AR dataset, SVM-WLD
detected 99.3% faces without any false signal. SVM-WLD
detected all faces with three false signals. In case of CMU
face dataset, 85.7% faces was recognized by SVM-WLD
without any false signal.

4.6.2 IntegratingWLD-based human perception and LBP
for face analysis

Authors proposed an combined technique for recognizing
faces based on the human perception using Weber’s law
and LBP [80]. In this approach on the face image, LBP
was applied at first and then the image was partitioned into
non-overlapping regions. The WLBPH was computed from
each non-overlapping regions of LBP image according to the

perception of the local micro-patterns as weights. Only the
uniform patterns (59 uniform patterns) of the LBP were used
to form the WLBH. All the weighted histograms were com-
bined tomake the feature vector.Nearest neighborhoodbased
on Chi-square metric was used for the comparison between
the two global histograms. The approach was applied on the
ORL [60], Yale and extended Yale-B dataset [38]. The (P ,
R) value in this experiment was set to (8, 1). Results was
compared with the LBP histograms for different partition-
ing modes-without partition, 2 × 2, 2 × 4, 4 × 2 and 4 × 4
partition. The best average result was found for the 4 × 2
partition of the face image for all the datasets. In case of
ORL dataset theWLBPH achieved 98.0% accuracy, whereas
LBP achieved 96.5% accuracy for 4× 2 partition of the face
images. WLBPH also outperformed the LBPH for the Yale
dataset. But for the extended Yale-B dataset LBP achieved
99% accuracy and outperformed theWLBPH due to the vari-
able illumination in the dataset.

4.6.3 Multiscale and spatially enhancedWLD for face
analysis

Authors presented a technique of face recognition using
the spatially enhanced multiscale WLD [32]. The spatial
information played the key role for extracting local micro
patterns for better description and to increase the discrim-
inative power. In this approach, WLD components were
calculated from different regions of the image with different
neighborhood. The components of different neighborhood
were concatenated to make the resulting 1D WLD his-
togram. Fisher score was used for the selection of the key
features. Key features were always having larger F-score.
The approach was tested on FERET [63] and AT&T face
database [60]. FERET database consists of large number
of images with 60 * 48-pixel size, collected during dif-
ferent photo sessions. The training was done with 1204
images (fa set) and testing was done with 1196 images
(fb set). The testing images were taken in different illumi-
nation, facial expression and poses. The WLD parameter
values (T , M , S) for the experiment was set to (16, 4, 5)
and the number of block in a face image was set to 16
(4× 4 with n = 4). The approach achieved 96.15% accu-
racy with the above configuration and using the combination
of three scale [(8, 1) + (16, 2) + (24, 3)] without the fea-
ture selection process. The application of feature selection
using F-score reduced the feature vector from 15,360 to 910
and the approach achieved 98.07% accuracy for the above
configuration of the parameters. Thus, F-score-based fea-
ture selection reduced the amount of the redundant features,
which improves performance and takes less time. The At&T
face database consists of 40 subject (10 images for each sub-
ject) acquired with some pose variation. The approach was
tested with two-experiment protocol. The first experiment
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done with 3 training images and 7 testing images per sub-
ject and achieved 96.89% accuracy. The second experiment
was done with 5 training images and 5 testing images. This
method achieved 99.37% accuracy in this experiment. The
performance of LBP and Eigenface using FERET and At&T
face databaseswas (94.67%, 74.41%) and (97.96%, 95.37%).
Clearly, this approach outperformed the Eigenface and LBP-
based approach for the above two datasets.

4.6.4 WLD for race identification via face images

Authors proposed a WLD-based race recognition technique
from the face images. In this approach, face images were
normalized and from them WLD features were extracted
[54]. They extracted most discriminative features using the
Kruskal–Wallismethod. The FERETdataset was used for the
experiment. They had taken the images from five major race
groups, such as Black, White, Asian, Middle and Hispanic.
All the race groupswerewithmore than 50 subjects. Training
was done using the fa (1204 images) set and testing was done
using fb (1195 images) set. There are total of 1180 images of
60×48-pixel size of five major race groups. Different values
of the T , M and S were used (T = 6 or 8, M = 4 or 6 and
S = 10 and 15). The changes of these parameters did not
affect the result of the application. In the experiment the (8,
4, 5) configuration was used for T , M and S. For the com-
parison purpose PCA features were used with 200 principal
components and accuracy achieved 79.17%. The proposed
approach with the full image size obtained 74.09% accu-
racy with the above configuration of the parameters. Clearly
the result is worse than the PCA because the local features
were used to express the global features. Different blocks
of the image should be used to extract the features so that
the global and local information could be captured. Out of
the several block sizes, 10 × 16 size blocks achieved the
average performance 96.88% using the city block minimum
distance classifier. The performance of Euclidean distance
classifier is comparable with the city block classifier but the
performance of the chi-square method was worse than the
others. The KW techniques were applied with different sig-
nificance values to get a threshold above which the features
are discarded. The significance value 0.16 with 1632 features
achieved the same performance as of the full length WLD.
Thismethod achieved 97.74%accuracy forAsian race group,
96.89% accuracy for Black race group, 92.06% for Hispanic
race group, 98.33% for Middle race group and 99.53% for
White race group.

4.6.5 Weighted LBP based onWLD for face analysis

Authors proposed an infrared-based technique for face recog-
nition using weighted LBP [79]. The intensity of pixels
in local regions (IOL) is calculated using the equation,

IOL =
1
p

∑p−1
i=0 |gi−gc|

gc
. Here gi represent intensities of neigh-

bored pixels, and gc represent intensity of current pixel. The
mouth, nose and eye region play crucial rule in infrared
face recognition. In formation of normal LBP histogram
same weight 1 is assigned to each micro-pattern. This paper
addressed this issue and assigned adaptive weight. The uni-
form weighted LBP histogram was extracted from each of
the non-overlapped regions of the image and combined to
make the final feature representation. The feature vector is
of length 59× total patches under consideration. The chi-
square statistics was used as the nearest-neighbor classifier.
The training set consists 500 images of 50 subjects captured
in a controlled air-conditioned environment. The test set is
portioned into two groups: one is same session data which
consistswith 500 thermal images of 50 subjects capturedwith
same environment setting as the training set and other is time-
elapsed data where for each individual 165 thermal images
were present. The resolution of the images for the experiment
was 80×60.The approach achieved 98.6%accuracy for same
session data using WLBPH with 2 × 2 partitioning method
and (8, 1) scale whereas LBPH achieved 97.2% accuracy.
The difference of accuracy between LBP and WLBP was
very small in this experiment. But in case of time-elapsed
data, the WLBPH achieved 91.2% accuracy, whereas LBP
achieved 87.4% accuracy. The results were compared with
PCA and LDA. PCA and LDA combination achieved the
accuracy of 92.4% and 33.6% accuracy for same session and
time-elapsed data, respectively.

4.6.6 Weber faces for self-similarity representation for
kinship classification

Authors proposed a kinship classification technique using
the self-similarity of the Weber faces [41]. Due to the non-
availability of the dataset and the inherent variation among
the kins, kinship classification is a less explored application.
In this approach at first using the Adaboost face detector
they detected the faces from the image. The face images
were normalized byWLD, and hence illumination factor was
removed. The images were represented by the reflectance
only.Thekeypointswere identifiedby local extremaofGaus-
sian differences (DOG). The discriminatory key points were
extracted using the threshold centering and gradient detec-
tion. The facial features and similarity measure of textures
were encoded using the self-similarity descriptor (SSD). The
approach was applied on the IIITD Kinship Database [41]
and UB Kinship dataset [78]. IITD Kinship database con-
sists with 544 images of 272 pairs and 272 non-kin pairs were
added with this database. There were four different societies:
Afro-American, American, Indian and Asian except Indian.
The kinship relationship had seven relation categories. The
UB dataset consists with 200 kin-pairs. SVM classifier was
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used for the binary classification (kin or non-kin). They used
RBF kernel on IIITD kinship dataset and achieved 75.2%
accuracy. The method of [87] achieved 57.5% for the IITD
kinship database. The high accuracy was observed for the
Indian and American ethnicity because 85% of the images
belong to these groups. For all the kinship classes and eth-
nicity, the approach of [41] outperformed the method in [87].
In case of the UB dataset only 175 groups were considered
for the experiment. In case of child versus older parents
group, this approach achieved 52.5% accuracy and when
using child versus young parents group 55.3% of accuracies
was achieved. The accuracy for this dataset was less because
of the failure of the detection of key points. In case of UB
dataset also, the above approach outperformed the [87] by at
least 4.1%.

4.6.7 Region-basedWLD for face analysis

Authors used WLD features for face recognition purpose.
In this approach, the face images were smoothed using
the Gaussian filter [22]. The smoothed face image was
partitioned into sub-regions andWLD components were cal-
culated for each sub-region. Sobel operator was used to
extract the gradient orientation to avoid the noise disrup-
tion in the orientation component. All the sub-regions of the
test and gallery images were considered and the Euclidean
distances in the feature space were computed. Voting based
decision fusion was used for the improvement of the per-
formance. ORL and Yale dataset were used for testing this
approach. In ORL dataset total forty subjects are there and
each having ten different images (112×92− pixelsi ze)with
small occlusions, orientations, different scales and various
expressions. In Yale dataset, all 15 individuals have 11 dif-
ferent images (100×100− pixelsi ze) and images expresses
the facial expressions in different lighting conditions. For
evaluation purpose, leave one out strategy was used. The
recognition accuracy of the approach for ORL dataset was
99.25% (T = 10 and N = 5) and for Yale dataset accuracy
was 96.97% (T = 20 and N = 10). They done experi-
ments by changing number of sub-regions of image. The
accuracy was increased if number of blocks increased up to
a certain limit, and then the recognition accuracy decreased.
The observation is that there should be tradeoff between
the number of regions or blocks of an image. The results
of this approach were compared with two popular texture
descriptors, LBP and LTP (for threshold value 1 to 4). The
recognition accuracy for ORL dataset using LBP was 96%
whereas best result for LTP was 99% for threshold 2 and
for Yale dataset LBP achieved 90.30% accuracy and LTP
achieved 91.52% for threshold 3. Clearly theWLD approach
outperformedLBPandLTP.The also done comparative study
with some other reported methods, viz. ICA, Eigenfaces,

Kernel Eigenfaces, and 2DPCA. The above method outper-
formed all the methods in terms of recognition accuracy.

4.6.8 Integrating HOG and theWLD for recognition of facial
expression

Authors proposed a ensembled technique for recognizing
facial expressions using HOG and WLD [76]. The local
information of image was encoded using the gradient and
orientation density distribution. WLD was used to encode
the lack of information and shape distribution. The approach
ensemble the HOG and WLD to get the advantages of both
the descriptor. In this approach, the faces were detected using
the AdaBoost face detector. The scaled images were normal-
ized into 128×128 size. The imageswere divided into several
blocks and assigned different weight to the blocks to encode
different behavior in facial expression recognition. The opti-
mal parameters of T , M , S was (8, 3 ,5). The approach was
tested on the JAFFE [50] andCohn–Kanade [37] face dataset.
JAFFEdataset contains total 70 facial expressions taken from
ten individuals. Every expression has 3 or 4 images in it
and total of 213 images are there. In Cohn–Kanade dataset
100 university student images are there with age group from
18 to 30 years. They used chi-square and nearest neigh-
bor for the classification purpose. Experiment was done for
three times on JAFFE dataset, where each time 1–2 images
were taken for training and another 1–2 images were used
for testing purpose. There were 15 images in both training
and testing dataset. The results were compared with LBP,
AAM [28] and Gabor Wavelet. AAM has the better perfor-
mance than LBP. This approach achieved 93.97% accuracy
andoutperformed the othermethods. This resultwas the aver-
age performance of all the classes. In case of Cohn–Kanade
dataset for every subject, there were six images present per
expression. They used three images of each expression of
different people for training and other images were used
in testing. The experiment was done for four times. The
approach achieved 95.86% accuracy and outperformed the
Gabor, LBP, and AAM. The proposed approach had taken
little more time than the LBP, but time complexity is less
than the Gabor and AAM approach. Therefore, the fusion
of WLD and HOG achieved the best for facial expression
recognition.

4.6.9 Nonlinear quantization-based multiscale WLD for face
analysis

Authors proposed a face recognition technique using a
nonlinear quantization-based multiscale WLD [46]. In this
approach, the nonlinear quantization was applied to com-
pute differential excitation and orientation. The face image
was divided into some non-overlapped regions (internal sub-
image). Each of the internal sub-image was taken as the
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center and several sub-images with different sizes were
extracted.WLDcomponentswere extracted fromeach scaled
sub-image and fused together to make the feature vector
for each internal sub-image. The chi-square-based near-
est neighborhood was used to calculate the similarity of
two sub-regions. They used a voting function on individ-
ual result of the sub-regions of the image. They used Yale,
AR and FERET datasets for testing this approach. In Yale
dataset, total 165 facial images (100 × 100-pixel size) of
15 individuals were present. The images were taken in dif-
ferent illumination conditions and details (glass or without
glass). In the experiment, facial images of 50 men and 50
women were taken into consideration. There were 13 images
(100 × 100-pixel size) per person per session (two session
separated by 2 weeks). A Small portion FERET dataset of
1400 images from 200 individuals was considered for the
experiment. Several experimentswere done to set the number
of internal sub-regions andnumber of sub-images per internal
sub-image. For the AR and FERET dataset, if the number of
internal sub-images increased the recognition accuracy was
also increased. The average best performance for AR and
FERETdataset achievedwith 81 (9×9) sub-images. The per-
formances of the system were increased at first with the size
of the sub-images increased and then keeps stable or degrade.
The number of sub-images was 4 for both the dataset. A
comparative study was done with the other reported meth-
ods in face recognition. In case of AR dataset, the proposed
method achieved 96%, 95.33% and 96.67% accuracy for the
facial expression, sunglass, and scarf occlusionprobe set. The
above method got the best result of 89.83% accuracy with
the FERET dataset, when training was done with 4 images
and testing done with rest 4 images. Using the leave-one-out
strategy this method achieved 98.18% accuracy for the Yale
dataset and outperformed the ICA, Eigen faces and 2DPCA
approach. The results of the approach on AR and FERET
dataset also outperformed the other state-of-the-art approach.
The most important fact is that the result using the nonlinear
quantization ofWLD is far better than the linear quantization
method. The approach also performed better for the random
occlusion than the SRC and the partitioned SRC algorithm.

4.6.10 Realistic facial expression learning fromweb images

Authors presented a search-based framework for collecting
web search engine-based images of facial expressions [83].
This approach was based on the active learning approach
(using SVM) to select the relevant images form the noisy
result given by the search engine. A novel histogram
contextualization-basedWLDwas also proposed for the han-
dling of such a challenging dataset. However, there are some
popular datasets (CK and JAFFE) available for the recogni-
tion of facial expression, but the number of samples are not
enough to capture the task reliably. This approach can col-

lect the large number of samples and thus enhanced the area
of facial expression recognition research. In this approach,
Viola–Jones [73] approach was applied for removal of noisy
images (low quality or lack of frontal face). The Average of
Synthetic Exact Filters (ASEF) [9] was used for the localiza-
tion of eye in the face and different face imagewere aligned in
a common coordinate. For further improvement of the dataset
the semantically relevant images were selected using the
binary SVM, which was learned from active learning-based
training set. Multiscale-WLD was used for the recognition
of the images of the dataset prepared. Each face image was
downscaled and divided into some non-overlapped regions.
From every sub-region of downscaled images,WLD compo-
nents were computed and fused together for the construction
of the 1D feature vector. To encode the spatial contextual
information of the image, contextual information histogram
was constructed. The dataset consists with seven categories
of expressions with 2000 to 2500 images in each category.
For the experiment, validation set Gv(for determination of
stopping criteria of active learning) with 350 images (50
images of each category), seed training set (20 images for
each category) and active learning pools with rest images
were prepared. In the experiment number of regions of an
image was 25(5 × 5), number of downscaled version was
3 at scale 0.6, and WLD parameter T , M , S was (6, 2, 4).
The size of feature vector for contextual multiscale WLD
histogram was 10,800 and PCA was used for the reduction
of feature vector to 400. LBPU2

8,2 with 59 bin was used for the
comparison purpose. In case of the proposed dataset and for
CK and JAFFE, the results were good for the happiness and
neutral categorywhenfivefold cross validationwas used. The
misclassification occurred due to some same appearances
between the categories. The approach was confused with the
anger, fear and sadness category. Another point is that for
the disgust and surprise category the result was not promis-
ing for the proposed dataset but results were good for the CK
and JAFFE dataset. The reason may be the two expressions
are over exaggerated for the CK and JAFFE dataset which is
not applicable for the real-world environment. The proposed
multiscaleWLD achieved 59.9%, 85.7%,95.7% accuracy for
proposed dataset, JAFFE and CK dataset whereas multiscale
LBP achieved 48.8%, 84.9% and 92.5% accuracy’s accord-
ingly. It shows that multiscale WLD clearly outperformed
multiscale LBP. Another experiment was also done for the
cross-dataset. Training using the proposed dataset and test-
ing using the proposed dataset achieved 48.8% accuracy, and
testing using CK and JAFFE achieved 49.3% and 45.1%
accuracy. When the system was trained using CK dataset
and testing using CK, JAFFE and proposed dataset achieved
95.6%, 35.3% and 26.4% accordingly. In case of training
using JAFFE and testing using JAFFE, CK and proposed
dataset achieved85.7%, 35.4%and24.2%accordingly. Their
approach is robust to cross-dataset as well. The approach
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achieved the benchmark result 58.2% when trained with the
proposed dataset and tested on the BU-3DFE dataset.

4.6.11 Region-basedmultiscale WLD in e-healthcare for
facial emotion recognition

Authors proposed facial emotion recognition approach based
on multiscale WLD for the initial assessment of the patient
in e-Healthcare system [2]. In this approach, face image was
cropped from the full image (via mobile app) and sent to the
cloud server to extract feature. Multiscale-WLD was used
for extraction of WLD components from each sub-regions
of the image. Only two neighborhoods were used—one with
(8, 1) and another with the (16, 2) scale. The features of the
different subregions were combined to get the final feature
histogram. They used Fisher discrimination ratio (FDR) for
section of significant bins from the feature set. After captur-
ing the emotion, the information is sent to the e-Healthcare
professionals. The approach was applied on CK and JAFFE
dataset. In JAFFE dataset from 10 female Japanese actresses
total 213 face images were taken. In CK dataset, 100 uni-
versity students (96 students were selected finally) from
different ethnicities. Here for experiment purpose, threemost
expressive emotional frames were considered from total 408
image sequences. In case of neutral, the first frame of 408
image sequences were selected. In case of JAFFE dataset,
an eye localization method was applied and using rectangu-
lar approach cropped face images were created. In case of
CK dataset eye labeling was already provided. The images
of both the dataset were in grayscale and with 150 × 110
pixels size. SVM with RBF kernel using single scale WLD
achieved the best accuracy of 82.34% and 76.28% for the CK
and JAFFE dataset, respectively. The face images were sub-
divided using four variations—two horizontal blocks, two
vertical blocks, three block and four block. The best accu-
racies of 99.28% (for JAFFE) and 97.44% (for CK) were
achieved with the four blocks with SVM (via RBF kernel
andWLD parameter, T = 6, M = 8, and S = 20). The FDR
ratio was used to detect the significant features and achieved
98.82% accuracy with CK dataset and 97% accuracy with
JAFFE dataset, respectively. Their method outperformed the
LDP, LFDA and the combination of LBP with isomap. Best
results achieved for surprise emotion, and in case of anger
emotion the accuracy was lowest.

4.6.12 Pose-invariant face recognition usingWLD and facial
landmarks

Authors presented a face recognition technique which is
invariant to pose using combination ofWLD and facial land-
marks [85]. Due to the facial rotation, the intra-class variation
increased and face recognition performance is degraded. In
this approach, from the inner face N (31) landmarks were

used. Multiscale patches were extracted at each landmark
with the window size same as the minimum of the width
of eyes and mouth from the training set. Thus, total N (31)
local features were extracted from the 31 landmarks of the
inner face. According to the different semantic components,
six groupswere formed dividing the N (31) landmarks. From
each of the six group randomly, one local feature using local-
random strategy was selected and formed a fusion feature of
length 6×L×T 1×T 2, where L was the number of patches,
T 1was the number of differential excitations and T 2 was the
number of orientations). Total M number of fusion features
were extracted recursively. Every face image had N + M
number of feature vectors. The cosine angle-based KNNwas
used to draw the similarity between the feature vectors. To
establish the significance of the fusion features an experi-
ment was done with the subset of the FERET dataset. During
training, 1 to 5 samples were used. The proposed approach
achieved over 90% accuracy, when training was done with
2–4 images from every subject, whereas the local feature (N )
achieved about 85% accuracy when for each subject 4 train-
ing samples were used. The value of C(= M/N ) was 0.5
for the applications of this approach on the FERET, ORL,
GT [4] and the LFW dataset [30]. A comparative study was
done with the other reported methods in face recognition. In
FERETdataset total 1400grayscale images of 80×80 dimen-
sion were taken from the 200 subjects. The value of M and
K (KNN with 3 neighbor) was set to 10 and 3 respectively.
In the experiment, 1 to 5 training samples were used. This
method achieved the best performance 92.5% with 4 sam-
ples for training. In case of three training images per class
thismethod achieved 91.9% accuracywhereas the traditional
WLD achieved 75.5% accuracy. In case of ORL dataset, 400
face images were taken from the 40 subjects with the dimen-
sion 112×92 after cropping. LDA achieved 90.8% accuracy
when six training images were used whereas this method
achieved 97.5% with only 5 training images. Performance
of the system is very effective even the number of samples
are less. In case of GT dataset, from 50 people 750 color
images were collected. The images were then grayscaled and
cropped and resized to 120 × 100. The results proved this
approach has 13% less classification error than the WLD.
This method achieved the best performance of 85.1% when
trainingwas donewith 7 images per person. TheLFWdataset
is an unconstrained dataset with 13,000 face images and two
or more distinct face images were taken from 1680 people.
The experiment was donewith the face image of 158 subjects
with no less than 10 photographs and no more than 20 pho-
tographs. This method achieved improved performance than
the other reported methods with the same experiment proto-
col and achieved the best performance 44.8% when number
of training images per personwas 7. Another experiment was
done on the ORL dataset with random occlusion. The block
size was set to 20× 20 and 30× 30. In this experiment also,
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this approach outperformed the other reported methods. The
final observation is that it is very robust to pose and occlusion.

4.7 Variations of theWLD

4.7.1 Gabor wavelet WLD

Authors presented theWLDbasedongaborwavelet (GWLD)
[69]. In this approach, every pixel of Gabor magnitude map
was taken for the calculation of differential excitation and
orientation. GWLD was applied for the Bovine Iris recogni-
tion. In this approach, active contour model helped to find the
edge curves at inner and outer iris. The elliptical boundaries
were obtained by using the edge curves. Further histogram
quantization was applied for the enhancing of bovine iris
region. To compute the GWLD, multiple Gabor magnitude
maps (40 Gabor magnitude maps for the experiment) were
extracted in the frequency domain using the multiscale and
multiorientation Gabor filters. Next in the Gabor magnitude
maps, from every pixel differential excitation and orientation
were calculated to form the GWLD histogram. Finally, the
1DGWLDfeature vectorwas generated.Histogram intersec-
tion method was used to find the similarity between the two
GWLD histograms. The GWLD descriptor was used on the
SEU bovine iris dataset. 18 subjects with 90 original images
were selected for the experiment. The size of the bovine iris
image was 253 × 61. Since 40 Gabor magnitude maps, the
1D GWLD histogram was generated using the 40× 61 pairs
of differential excitation andorientation. Several experiments
were done for the parameter (mask size of theGabor filter and
length of the histogram) selection. The best performance was
achieved with the 5× 5 mask size. The feature vector length
was 32000. The proposedGWLD achieved 98.87% accuracy
on the SEU bovine iris dataset. On the same dataset, LBP and
center-epsilon LBP achieved 93.1% and 95.79% accuracy.
TheWLD and modifiedWLD achieved 96.20% and 98.73%
accuracy accordingly andGabor filter alone achieved98.30%
accuracy. GWLD outperformed other methods with no sig-
nificant values except LBP. The feature vector is large and it
suffers from heavy computationally cost.

4.7.2 Log-Gabor WLD

Authors proposed WLD based on Log-Gabor (LGWD) [45]
for recognizing faces. The Log-Gabor representation of the
image and Weber LBP was used to form the LGWD. In
this approach, log-Gabor transform was applied on each
face image and WLD based on Log-Gabor magnitude
(LGMWD) [45] and WLD based on Log-Gabor phase [45]
were extracted from it. LGMWD encodes the variation of
center pixel with its neighbors, whereas the phase feature is
encoded by the LGPWD. The LGMWD and LGPWD fea-
ture histogram was concatenated to make the final vector.

This approach was applied on the ORL, Yale and UMIST
face dataset [24]. ORL face dataset consists with 10 different
images of 40 different subjects with 92 × 112 dimension.
In Yale dataset 165 gray scale images of 15 individuals
with 100 × 100 dimension. UMIST dataset contains 565
images from twenty people with changes in pose, race,
sex, appearance. The images are of 92 × 112 pixels and
gray-scaled. For the experiment the images of each dataset
was divided into K subsets (K = 10, 8, 5). Training was
done using one subset. They used average result of K iter-
ations to report the performance of the approach. In the
first experiment the results were compared with the WLBP
and LBP. The performance of individual components of
the approach (i.e. LGMWD and LGPWD) was analyzed.
The performance of LBP and WLBP was not satisfactory
than the individual components of the approach. LGMWD
contributed more than the LGPWD for all the datasets.
With nearest neighbor (chi-square distance metric) classi-
fier, the performance of approach using combined histogram
(i.e., combination of LGMWD and LGPWD—LGWD) was
89.88%, 81.52%and 93.48% forORL,Yale andUMIST face
dataset for 5 subsets used as training. With the same settings
the performance of LBP,WLBP, and Gabor-WLBP for ORL,
Yale and UMIST dataset was (55.44%,47.88%,77.61%),
(69.50%,56.97%,86.17%) and (83.88%,67.42%, 89.87%).
For smaller value of K, the LGWD performed better. This
approach outperformed the Gabor-LBP, Log-Gabor statis-
tic, Log-Gabor magnitude PCA, Log-Gabor phase andMBC
method also. This approach proves the discrimination power
of WLBP and Log-Gabor transform.

4.7.3 Memetically optimized MCWLD

Authors proposed an evolutionary memetically optimized
multiscale circular WLD for crime investigation [8]. The
discriminative information was extracted from digital and
sketch face images. In this approach, 6× 7 non-overlapping
portions of images were used and multiscale circular WLD
components were extracted. Three different scales were used
such as- (number of pixels = 8, radius = 1), (number of pix-
els = 16, radius = 2) and (number of pixels = 24, radius
= 3). The Memetic algorithm [42], was applied to find the
optimized weights for different facial regions. For the com-
parison between MCWLD histograms, chi-square distance
was applied. This approach was applied on viewed sketch
dataset (combination of theCUHK[77] and IIIT-Delhi sketch
dataset [7]) with 549 pairs of sketch-digital images, IIIT-
Delhi semi-forensic sketch dataset with 140 sketch images
by an expert from the digital images as per memory and
Forensic sketch dataset with 190 forensic sketches from dif-
ferent source. Three experiments were done with the viewed
sketch dataset, using digital face images as gallery and as
probe sketch images were used. Training was done using
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40% data and 60% was used for the testing. The results
were compared with WLD, MWLD, MCWLD, SIFT [39],
EUCLBP+GA [7], LFDA [40] and two commercially pack-
age named COTS-1 and COTS-2. In case of CUHK dataset
this approach achieved 97.28% rank-I accuracy and at least
2% effective accuracy than the WLD, EUCLBP+GA, SIFT
MWLD, andMCWLD. There was a slight performance hike
using this approach than the LFDA. The proposed approach
achieved at least 5% better performance than the two com-
mercial products. MWLD achieved 1% better accuracy than
the WLD for all the experiments and the multiscale circular
WLD improved 1%, 2.8% and 2.9% accuracy on CUHK,
IIIT-Delhi and the combined dataset. Memetic optimization
achieved 2.2% improved accuracy on CUHK dataset, 5.7%
improved accuracy when IIIT-Delhi dataset was used and
4.9% improved accuracy when both the dataset was used.
This proved the effectiveness of the memetic optimization.
In case of the combined dataset, the proposed approach
achieved at least 2% better accuracy than the other meth-
ods and 13% better result than the two commercial products.
In case of semi-forensic sketches memetically optimized
MCWLD achieved rank-I accuracy of 63.24% and outper-
formed the other methods by 2–5%. This approach achieved
at least 9% better result than the two commercial systems. In
total four experiments were done for forensic sketch images
matching. For conducting experiment 1, for training 140
sketch-digital pairswere taken from IIIT-Delhi viewed sketch
dataset [7] and testing was done using 190 forensic images.
In experiment 2, for training 140 pairs of sketch-digital pairs
were taken from IIIT-Delhi semi-forensic sketch dataset [8]
and 190 forensic sketches and 599 digital face images were
taken for testing. Experiment 4 was done with 140 pairs of
sketch-digital images for training and testing was done with
the rest of data with preprocessing and without preprocess-
ing. In case of experiment 1 the propose algorithm achieved
about 2% better accuracy than the existing algorithms and
at least 3% improvement than the two commercial systems.
When the system was trained with the semi-forensic sketch
images (experiment 2) about 7% improved performance
achieved than the experiment 1 with the proposed algorithm
and 4% improved accuracy in case of the other methods. In
case of experiment 3, all the algorithms achieved an improve-
ment of 2–3%. For experiment 4 when system was trained
with viewed sketch dataset and without preprocessing of
forensic image data the approach achieved 23.94% accuracy
and it achieved 3% improved accuracy than all the reported
techniques. The proposed approach achieved 28.52% accu-
racy when the system was trained with the semi-forensic
sketch images without preprocessing. When compared to
other reported methods, 4% better accuracy was achieved
using this approach and compared to the two commercial
methods 15% better performance was achieved. The results
claimed that for the matching of the forensic images with

the digital images, training using the semi-forensic sketch
images was very effective than the viewed sketch dataset.

4.7.4 Weber LBP

Authors proposed weber local binary pattern (WLBP) which
was formed by using the differential excitation of WLD and
LBP [48]. The differential excitation extracted the perception
features and LBP extracted the local feature. The Laplacian
of Gaussian (LOG) was used to enhance to reduce noise
level. The interval of the differential excitation component
was divided into low (−K , K ) and high perception pattern
[(−π

2 ,−K ) and (K , π
2 )] where K is a constant. The inter-

val of differential excitation is further divided. Uniform LBP
was computed using (8, 2) scale to extract local features. The
WLBP 2D histogram was generated using the S number of
intervals of differential excitation of WLD and T number of
pattern in LBP. The 2D histogram of size T × S is further
coveted into 1D histogram for the better discriminative fea-
tures. WLBP was applied in face recognition (FERET and
AR dataset) and texture classification (Brodatz and KTH-
TIPS2-a dataset). They used 5 intervals (represented by S) in
differential excitation and (P , R) value was (8, 2). Each face
image was divided into 4 × 4 regions to compute the spa-
tial features. Chi-square distance was used for the similarity
measurement and NN classifier was used for the classifica-
tion purpose. The result of WLBP was compared with PCA,
KPCA, 2DPCA, LBP and WLD. In case of face recogni-
tion on the FERET dataset the WLBP achieved accuracies
of 91.07%, which is 3.49% better than the WLD and 8.24%
better than LBP. WLBP had at least 21.34% better accuracy
than PCA, KPCA, and 2PCA. In case of AR dataset, the
experiment was done for different time span, lighting con-
dition and different expression of face. WLBP achieved at
least 5.60% better accuracy than the other methods in case
of different time span but with the changes of lighting con-
dition and expression, though the performance of WLBP
was better than the other methods but the performance of
WLBP was not significantly better than the second position
holder method (LBP for lighting and WLD for expression
difference). Thus,WLBP extracted the similar set of features
even if the face images were taken in different time. Another
experiment was done on the FERET dataset in addition to
white Gaussian noise. WLBP performed significantly bet-
ter. In case of texture classification, WLBP achieved 95.68%
accuracy on the Brodatz dataset which is 0.63% better than
the second position holder multiscale LBP (MLBP). Again,
in case KTH-TIPS2-a dataset MLBP stood second position
and WLBP achieved 64.42% accuracy (4.74% better than
MLBP). WLBP descriptor is robust to different lighting con-
dition, expression, and time span in case of face recognition
and robust to rotation, scaling, illumination and pose. But the
major drawback is it uses large size of the feature vector.
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4.7.5 High-order information of the WLD

Authors proposed higher order statistical measures of WLD
for improving discriminant representation power of image
representation [26]. This approach extracted highly discrim-
inative features from an image using the robust WLD. They
used Weber’s law to represent original image in the domain
of differential excitation and local patch was generated
from the transformed image. A generative probability model
was employed to adaptively characterize the WLD space
and learn parameters. The higher order statistics of WLD
was applied on three image classification problems- tex-
ture classification using KTH-TIPS2-a dataset, food images
classification using PFID dataset [14] and HEp-2 cell recog-
nition using HEp-2 cell dataset [62]. Linear SVM was
used for all the experiments to gain the promising recog-
nition performance. In case of KTH-TIPS2-a dataset results
were compared with GMM and other local descriptors. The
higher order statistics of WLD achieved the best perfor-
mance 75.35% for GMM with 128 components whereas the
SIFT andmicrostructure base approach achieved 73.59%and
71.46% accordingly. The proposed approach outperformed
the other two local descriptors for all the component numbers
of GMM. The higher order statistics of WLD also achieved
better performance than the popularly used local descriptor
LBP. LBP achieved 58.1% accuracy whereas this approach
achieved 75.35% and 75.58% for 3×3 and 5×5 local struc-
tures. Another important observation is that the proposed
approach achieved best performance for low, first and sec-
ond order statistics ofWLD. In case of PFID food dataset the
proposed approach achieved 36.9763% accuracy and out-
performed the color histogram (11.2%), SIFT with lower
order statistics (9.3%), WLD (28.05%), SPLF (28.2%). The
task for HEp-2 cell dataset is to recognize the intermediate
and positive intensity image. Their approach achieved the
best performance of 95.97% for positive intensity image and
85.14% for intermediate intensity image using 3 × 3 local
structure. It outperformed the SIFT, LBP, WLD, and micro-
structure for both the cases.

5 Authors comments on this review

WLD has been applied in several different domains rang-
ing from biometrics, medical image analysis to agriculture.
Regardless of the applications, WLD’s performance remains
promising and statistically significant. The reason behind
this is due to the fact that human perception is converted
into the descriptor, where illumination and rotational invari-
ance, robustness to noise and scaling are considered. Even
though we have several variants of WLD, we observe that
the Original WLD performs significantly better in common
tasks, such as texture classification and face recognition as

compared to other local descriptor, such as LBP and GLCM.
Further,understood that if WLD is combined with variance
histogram, performance can be augmented. Recently, deep
learning emerges as key tool in almost every domain of com-
puter science. We find that when WLDRI kernel in deep
neural networkmodel performs better than conventional one.
Skin disease identification is one of the examples to state fact
that the DNN-based WLDRI is better [61].The multiscale
and multiresolution-based WLD performed well in agricul-
ture safety and face recognition domain. In other cases,
WLD is combined with many well-known computer vision
image descriptors and in each combined version, the per-
formance is better than when they are separately used. This
means that WLD is found be complementing other descrip-
tors. Therefore, WLD has become an obvious choice in both
emerging and existing image recognition problems. With
WLD, this review work groups together potential related
methods, experiment protocols and performance. Like other
descriptors in the domain, we need to tune parameters for
WLD. We can consider it as an open research area to study
parameter optimization of WLD. Also, we find it interesting
that performance vary when different classifiers are varied.
In the view of the recent developments of deep neural net-
work, it may be a new research area to explore the difference
between what we achieved and what we can. Looking at the
performances of the methods using WLD, we find it inter-
esting to apply WLD in the other codomains, such as image
processing and pattern recognition.

6 Conclusion

We have presented a comprehensive survey on the different
approaches applied in various image classification problems
that are based on the robust and rich local feature descrip-
tor WLD. This survey illustrates all the applications that
are based on WLD. Indicatively WLD feature descriptor
has been applied on texture classification, medical image
classification, face detection, and recognition and in sev-
eral agricultural applications. Texture classification problem
itself resolves many other pattern recognition problems. In
the Sect. 3 we illustrated the theory, principle and character-
istics ofWLD. TheWLD is robust to noise, rotation, changes
of illumination and changes in scale. This robustness is the
key factor in gaining the best results in different applications.
The Sect. 4.1 described the approaches used in texture clas-
sification. Maximum of the approaches were applied on the
KTH-TIPS2-a and Brodatz dataset. Recently proposed deep
neural network-based WLDRI [5] achieved the best result
than the other WLD-based approaches. Next, the Sect. 4.2
explains the methods of the application of WLD on medical
diagnosis. [61] proposed WLDRI and applied for the skin
diseases recognition. A single work was done by [31] for the

123

339



A. Banerjee et al.

detection of mass in the mammograms. [5] have proposed
deep neural network-basedWLDRI for the three popular skin
diseases recognition and achieved the improved performance
than the method ofs [61]. The Sect. 4.3 illustrates a bio-
metric approach to identify cattle from muzzle print images.
Combination ofWLD and LPQwas used for fingerprint live-
ness detection [53] on LivDet2009 and LivDet2011 dataset
and achieved the best performance then the other state-of-art
methods. WLD has been efficiently utilized in image forgery
detection and achieved significant better results. Combina-
tion of WLD with other local descriptors was proposed to
increase the recognition performance. In recent years WLD
has been extensively used in face detection and recogni-
tion on some standard datasets like ORL, Yale, AR, CMU,
MIT+CMU. The approaches in face analysis domain prop-
erly used the local and spatial information from the faces
using WLD. Some of approaches combined the WLD with
some global descriptors for gaining the better discriminative
features for the recognition. Gabor-Weber local descriptor
[69] was proposed and used in bovine iris recognition for
the security in the agricultural field. Log-Gabor weber local
descriptor LGWD [45] was proposed for face recognition
purpose.Memetically optimizedWLD [8], a variant ofWLD
was used in forensic sciences for the matching of digital
face images and sketches. Another popular WLD variation
is WLBP which takes the benefit of both WLD and LBP. In
recent times, higher order statistics was studied and applied
on texture classification using KTH-TIPS2-a dataset, food
images classification using PFID dataset and HEp-2 cell
recognition usingHEp-2 cell dataset. This approach achieved
improved performance than the other reported methods. It
has been seen that due to robustness and effectiveness in
extracting the localmicropatterns of the imageWLD resulted
always the best in the above application domains. But the
problem in these filed is for different or same type of problem
several classifiers were trained with different hyperparame-
ters. The future work may be to develop some framework
such that it would be possible to apply the same for all the
same type problems. Another approach would be to apply
WLD in other unexplored research fields and to analyze the
results with the other reported methods.
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