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Abstract
Video frame interpolation is an important area in the computer vision research activities for video post-processing, surveillance,
and video restoration tasks. It aims toward increasing the frame rate of a video sequence by calculating intermittent frames
between consecutive input frames. This ensures extra smooth, clearmotion in order tomake animation fluid enough and reduce
display motion blur. Advanced deep learning algorithms have the potential to discover knowledge from large-scale diverse
video data. These algorithms gain insights about intermediate motion and provide new opportunities to further improve video
interpolation technologies. This survey demonstrates a comprehensive overview of about a good number of contributions over
past decade pertinent to the latest developments in this domain. The survey paper highlights common challenges in the area of
video frame interpolation based on three key aspects: high visual quality, low complexity, and high efficiency of interpolated
output from regular videos with the standard frame rate. We scrutinize the architectures, workflows, performance, advantages,
and disadvantages and generate a broad categorization along with an overview of experimental results of various state-of-
the-art methods executed on benchmark datasets. This survey discusses applications of diverse interpolation frameworks.
It provides a backbone reference that inspires future researchers to optimize current techniques on academic and industrial
grounds.
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1 Introduction

There are several iconic moments in our life that we certainly
wish to capture in slow motion. These events are hard to per-
ceive thoroughly by a normal human vision: the shooting of
a star, a tricky dance move, diving in a swimming pool, a
cricket shot, and many others. While it is conceivable to take
240 fps recordings with a standard video recording device, it
is impractical to record everything at high frame rates, as it
costs large memory and is power constrained for cell phones.
Moreover, very often themoments we slow down are not pre-
dictable and preferred to be recorded at standard frame rates.
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It is of extraordinary interest to produce a slow-motion video
from existing recordings of high quality. Video interpola-
tion encourages smoothness in these transformed videos of
higher frame rates. It has other fascinating new applications
like analyzing unlabeled videos using a supervisory signal
to learn optical flow [1–3]. To the best of our knowledge,
this survey on video frame interpolation task is the first of its
kind in the history of the deep learning research field. Apart
from this claim, this survey establishes its motive through
the following contributions: (1) A comprehensive evalua-
tion of the advanced deep learning-based methods developed
in the past decade, thereby assisting readers with a detailed
overview of comparative performance and research results of
recent state-of-the-art methods, (2) insightful analysis of sys-
tem requirements, algorithm complexity, quality of results,
and characterization of methods based on different schemes
of image processing and frame rate conversion, emphasiz-
ing the pros and cons of these methods outlined in reviewed
works, and (3) discussion of potential challenges of frame
rate conversion domain for identification of shortcomings
of existing techniques and aligning potential directions for
future researchers.
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1.1 Requirements in industry

With the advent of fast Internet, efficient storage facilities
and high-proportion compression standards, for example,
MPEG-1, MPEG-2, and MPEG-4, facilitate an in-depth
understanding of available video information. Subsequently,
automatic detection of semantically significant events for
video summarization to help video consuming, processing,
and indexing is highly in demand. Numerous methodolo-
gies toward automatic event-based detection and outline in
sports programs together build the computer vision literature.
Among all, most strategies are created for specific games,
visual editing, or explicit situations, bringing about domain-
specific methodologies. For instance, some of them require
the events to take place under camera surveillance, and some
are confined to football matches, others to baseball, soccer,
or basketball. YouTubers or National Geographic experts
who make those excessively motion-controlled recordings
contributed quite interesting rehearsal procedures in dance,
music, and other motion-based sports and various fields of
arts and cinema. The AI transformation projects intend to
decide viable techniques for processing motion films to pro-
duce visually pleasing intermediate animated motion frames
between existing ones by methods of interpolation. The ulti-
mate goal is to make motion much fluid and to resolve the
visual ambiguities arising from inadequate details of moving
objects due to low light or poor quality of captured frames.
Few use cases involve coming up with a legitimate deci-
sion on the proper punishment for any inappropriate activity
by carefully analyzing close inductions about the violator’s
intent using slow-motion frames.

1.2 Video interpolation process

The process of generating slow-motion videos deals with
extracting an enormous number of frames every second. On
the off chance that we do not record enough, it gets rough
and unwatchable whenwe speed down our video except if we
utilize advanced AI methodologies to envision the additional
frames by utilizing deep learning algorithms to transform
30 fps video into appealing, 240 fps slow motion. The AI
framework picks two unique frames and afterward generates
intermediatemotion by following the development of objects
starting with one frame then onto the next, as illustrated
in Fig. 1. It is not equivalent to really envisioning footage
like a human mind does; however, it produces close to accu-
rate results. The procedure requires refinement before it shall
flourish economically; however, when improved, it could be
utilized to add slow-motion impacts to smartphone record-
ings of daily life events.

Fig. 1 General process for video frame interpolation. I1 and I2 are
consecutive input frames fed to the interpolation network to generate
intermediate frames

1.3 Drawbacks of traditional slowmotion
algorithms

Motion interpolation on specific brands of TVs is now and
then joined by visual abnormalities in the image, as a little
tear or glitch, showing up for a small amount of a second.
The impact is most recognizable when the innovation all of
a sudden kicks in during a quick camera pan. TV and show
producers allude it as a digital artifact. The improvement of
related techniques after some time has decreased the extent to
which artifacts show up in modern-day commercial displays
still to eliminate it overall. It is essential to study and fill in
the large gap between frames. As a side effect of the apparent
increment in frame rate, motion interpolation may present a
“video” (versus “film”) look. This look is usually alluded to
as the “soap opera impact,” with reference to the appearance
of most communicated TV dramas or pre-2000s multi-cam
sitcoms, which were typically shot utilizing a more afford-
able 60i video. However, the soap opera impact ruins the
theatrical look of cinema works, by causing it to show up
as though the watcher is either on set or viewing the back-
ground attributes. Hence, practically all makers have worked
in an alternative to turn down the feature or lower the impact
quality. In problem setups, generating multiple intermediate
frames, the major challenge of a standard solution is not only
to estimate correct motion between consecutive images but
also handle occlusion to avoid severe artifacts aroundmotion
boundaries in the interpolated output as described in Fig. 8.
Despite the shortcomings, different watchers still acknowl-
edgemotion interpolation, as it decreasesmotion ambiguities
created by camera skillet and unsteady cameras, and hence
yields better clarity of images. It also facilitates to build a
finer frame rate of computer game programming for a pro-
gressively realistic feel, although the extra input slag might
be an undesired effect. The primary contrasts between an
interpolated (artificial) and commonly captured (in camera)
high frame rate are that in camera is not dependent upon any
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Fig. 2 Broad overview of video frame interpolation methods with technique-wise categorization designed by the author which is discussed and
analyzed throughout this paper

of the previously mentioned glitches, contains progressively
accurate (or “consistent with life”) image data, and requires
morememory and transfer speed since frames are not created
in real time.

1.4 Categorical distribution

A key aspect of this survey is that it highlights five major
lines of approaches to solving the aforementioned computer
vision task based on the structure of network architecture
and math involved named flow-based methods, CNN-based
methods, phase-based methods, GAN-based methods, and
hybrid methods as shown in Fig. 2. Deep learning frame-
works have the edge over conventional models in terms of
robustness, generalization, and learning ability. Recently, an
upsurge of increasing employment of deep, fully convolu-
tional neural networks has been eclectically explored by
many researchers [1,3–5] due to their exceptional perfor-
mance in solving tedious computer vision tasks.

Liu et al. [1] proposed a self-supervised framework that
inherently modifies the network to compute better optical
flow and warp input images to produce an intermediate
frame. Considerable results are achieved in contrast to con-
ventional supervised approaches. However, their method
produces adverse artifacts such as ghosts and halo due to
occlusion, which fails the optical flow estimation method.
Liu et al. [6] suggest embedding a cyclic consistency loss
in the training model to enhance optical flow estimation
by compelling proximity between input and mapped-back
images. Additionally, they also adopted edge-guided train-
ing and motion linearity to handle rich texture problems and
large-scale motion despite which the method does not show
any improved results for occlusion and complex motion.

Useful approaches came into existence to handle occlu-
sion. Tianfan et al. [7] implemented a network comprising

three sub-networks where the first two networks compute
occlusion mask and optical flow from input frames, and
the terminal network integrates interpolated frame using
estimated parameters. Jiang et al. [4] handled occlusion rea-
soning by using visibility maps that would blend only the
un-occluded pixels to the interpolated image, as shown in
Fig. 7. Parallel to this cause, Bao et al. [8] exploited depth
awareness, which detects occlusion explicitly by calculat-
ing additional depth maps to intermediate optical flow as
described in Fig. 12. These methods show strikingly supe-
rior results than other state-of-the-art methods that perform
occlusion reasoning. Nevertheless, these interpolation meth-
ods fail for high-resolution videos of beyond 4K images,
which capture extensively large-scale motion. A possible
solution is to improve the quality of estimated depth maps
by precising color and depth consistency [9].

Niklaus et al. [10] utilized both contextual information and
optical flow to design a context-aware network. Contrary to
standard interpolation methods, the architecture of this net-
work is derived from Gridnet [11], which merges warping
and pixel blending into one single step. Despite achieving
considerable state-of-the-art performance, this method still
fails to process high-resolution video frames, due to inherent
network complexity having substantial memory constraints.
Meyer et al. [12] designed a subordinate convolution neu-
ral network less known for its texture, to handle large motion
efficiently by estimating phase decomposition of the interpo-
lated frame, as shown in Fig. 11. Niklaus et al. [5] designed a
network that estimates pixel-wise spatially adaptive kernels
that incorporate a mix of both pixel warping and optical flow
information between consecutive input frames. Theirmethod
provides state-of-the-art performance for simple small-scale
motion but demands more computational resources to pro-
cess high-resolution video frames. Niklaus et al. [13] address
large memory demand by constructing a method that sup-
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plants 2D interpolation frame kernels with two separable 1D
kernels. Since their method commands a higher computation
cost than existing methods, it is incapable of processing 4K
and above video frames.

To master the shortcomings of initial attempts, few
methodologies are available to support high-resolution video
interpolation, producing comparable results at a faster rate.
Amersfoort et al. [14] proposed a remainder learning method
that optimizes its performance by incorporating amulti-scale
residual estimation module, which constructs the synthe-
sized frame and anticipated flow in a coarse-to-fine trend.
Peleg et al. [15] and Vidanpathirana et al. [3] proposed
economic interpolated motion neural networks for HD res-
olution that provide real-time temporally aligned output
in a block-wise manner with an impressive efficiency on
standard CNN platforms [16]. Ahn et al. [17] designed a
hybrid network composed of temporal and spatial interpola-
tion sub-networks which sequentially produce a high-quality
intermediate frame subject to complex structural changes
and large-scale motion. Considerable state-of-the-art perfor-
mance is achieved for both visual and numerical evaluations.

2 Benchmark datasets

In this section, we briefly discuss the major datasets used by
authors for training their deep learning architectures for video
interpolation tasks and evaluation purposes. While there are
several benchmark datasets, we will be considering UCF101
[18], Middlebury [19] and Vimeo-90k [7] and some other
relevant datasets like Adobe240 [20] KITTI [21] or DAVIS
dataset [22] that are frequently discussed in interpolation
domain. The datasets mostly contain a series of triplets,
which are three consecutive frames taken from a video that
acts as a single input unit. However, these datasets are some-
what used differently by different authors for training and
evaluation purposes according to their learning architecture.
Few experimental results are attached in Sect. 4.1 for further
performance analysis.

2.1 UCF101 action recognition dataset

UCF101 [18] is an action recognition dataset collected from
user-uploaded YouTube videos; hence, it contains real action
sequencing videos. It has various categories for 101 different
action sequences. UCF101 is an extensive dataset of the pre-
vious UCF50 dataset, which has half that is 50 categories of
actions. There are 13320 videos divided into 101 categories
in the UCF101 dataset, hence making it the most diverse
dataset in terms of actions. Since these are user-uploaded
YouTube videos, large variations in camera motion, object
scale, object appearance, pose illumination conditions, clut-
tered background, and viewpoint are present. In total, 101

action categories are segregated into 25 groups, each having
4-7 videos of the action. Action categories are divided into
human–object Interaction, bodymotion only, human–human
interaction, playing musical instruments, and sports. Videos
in the same group generally contain some common features
like object appearances and background.

Most authors have not used UCF101 data for training but
just for evaluation purposes, because most of the UCF101
frames only have a tiny portion of the image actuallymoving,
while the rest is just a static background. We will present the
PSNR and SSIM values for UCF101 in the results in Sect. 4.
Liu et al. [1], Yu-Lun Liu et al. [6], and D. Gu et al. [23] have
preferred usingUCF101 for training their models. Since only
a minimal area of the image is apparently moving, while the
rest is just a static background, authors have selected triples
with a more obvious motion by choosing those with lower
PSNR values between input frames and combined UFC101
datasets with other datasets with more recognizable motion
while training. All frames generally scale to the resolution
of 256×256 before using them for training.

For evaluation purposes, Bao et al. for DAIN [8] and
MEMC-net [24], Jiang et al. [4], Cheng et al. [25], and Yu-
Lun Liu et al. [6] have used UCF101 test set, and the first and
third image frames for every triplet in the dataset are used
to make predictions for the second frame (temporal mid-
dle), where the resolution of images is 256×256 of pixels.
While other papers use a different set of test images from the
UCF101 test set, Mathieu et al. [26] used every 10th frame,
i.e., 10% of UCF101 test set for evaluation and Zhang et al.
[27] checked only on selected samples with apparent motion
using DIS optical flow. For more recent papers like that of
Ahn et al. [28], the UCF101 dataset is not useful since it
majorly contains low image resolution, hence not suitable
for the method which handles high-resolution video frames.

2.2 Middlebury

The Middlebury dataset [19] is an optical flow benchmark
dataset that is widely used to evaluate video frame interpo-
lation techniques. For further details on this dataset, refer to
http://vision.middlebury.edu/flow/eval/. There are two sub-
sets in Middlebury datasets. First, the Other set, which
provides the ground-truth middle frames, second the Eval-
uation set, which hides the ground truth and is evaluated
by uploading the results to the benchmark website [19].
The image resolution is 640×480 pixels in this dataset.
We will compare the average interpolation error (IE) on
the Middlebury dataset in the results section. Lower IE
values generally indicate better performance. Using dif-
ferent datasets combination gives the required variability,
which provides a basis for a thorough evaluation of cur-
rent algorithms. There are four types of data to test different
aspects of optical flow algorithms: (1) sequences with non-
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rigid motion where the ground-truth flow is determined by
tracking hidden fluorescent texture, (2) realistic synthetic
sequences, (3) high-frame-rate video used to study inter-
polation error, and (4) modified stereo sequences of static
scenes. Bao et al. model DAIN [8] ranks 1st in terms
of normalized interpolation error and is 3rd in terms of
interpolation error as on Middlebury results website http://
vision.middlebury.edu/flow/eval/. The website mentioned
above compares different algorithms based upon four error
measures, i.e., endpoint error (EE), angular error (AE),
interpolation error (IE), and normalized interpolation error
(NIE).

2.3 Vimeo-90k

Vimeo-90k [7] dataset is a high-quality video clip dataset
containing more than 89,000 videos of 720p or higher reso-
lution, which are downloaded from the Vimeo video sharing
platform. Authors Cheng et al. [25] and, Bao et al. for DAIN
[8] and MEMC-net [24], have used Vimeo-90k dataset for
training their models as it contains variable content for differ-
ent scenes. The motion of objects in the Vimeo-90k dataset
is much larger than that of UCF10.

Vimeo-90k dataset [7] includes 51,313 triplets for train-
ing. Each triplet is made up of 3 consecutive video frames
with a resolution of 448×256 pixels. Authors have trained
their networks to predict the middle frame (i.e., t = 0.5) of
each triplet. There are 3,782 triplets in the test set of this
dataset, and hence, it is used widely for comparing per-
formances of different algorithms due to the high-quality
videos.

2.4 Other datasets

Some other noteworthy datasets are also used for video frame
interpolation. While these datasets are considerably smaller
than UCF101 and Vimeo-90k, they have been successfully
employed by various approaches for training, as well as test-
ing purposes. First is Xiph1 dataset which contains a set of
4K videos. This dataset ismainly used to test image compres-
sion. For our purposes, we either resized the 4K frames to 2K
or used the centre crop of the frame to reduce the size while
retaining the per-pixel motion. Next is DAVIS dataset [22]
which consists of 50 high-quality videos with highly chal-
lenging frames containing occlusion and motion blur. KITTI
[21] dataset has also been used for training video frame inter-
polation models. Most videos from which the frames are
extracted are recorded from a moving platform, thus result-
ing in challenging scenarios. The dataset is also divided into
categories which does not find a use case in frame inter-
polation but in robotics. Overall the size of the dataset is

1 https://media.xiph.org/video/derf

about 180GB. Adobe240 [20] and YouTube240 have also
been employed successfully for implementing VFI models
as in SuperSlomo [4].

3 Categorized description

3.1 CNN- and kernel-basedmethods

CNN came into existence after AlexNet [29] in 2012 and has
seen great popularity among data scientists. After that, it got
successfully applied to many image processing applications,
including optical flow estimation. CNN has been success-
fully applied to estimate optical flow, which can be used to
generate intermediate frames. However, this two-step pro-
cess results in losses of various kinds. The first attempt at
generating an intermediate frame using CNN was made by
Long et al. (2016) [2]. They developed a deep CNN which
can be trained without any supervision. They exploited the
temporal coherency that occurred naturally in the real-world
videos and used it to calculate sensitivity maps, i.e., gradient
with respect to input via backpropagation. Hence, it is called
matching by inverting deep neural network. Its architecture
is that of an auto-encoded network similar to Flownet-S [30],
which shows that it incorporated the optical flow learning step
within the network. The network is entirely convolutional and
can be trained using any triplet of an image sequence, which
can be of different resolutions. They used the Charbonneir
loss function and trained it on the KITTI [21] dataset. The
interpolated frames produced by the algorithms were blurry,
but it opened a new avenue for data scientists working in this
domain.

Niklaus et al. (2017) [5] made significant improvements
to this approach. Their approach generated the pixel val-
ues of the interpolated frame by locally convolving the
input frames. They proposed a fully convolutional deep
neural network which predicts spatially adaptive convolu-
tional kernels for each pixel from the two given successive
input frames. They calculated a separate kernel for each
pixel in the interpolated frame to estimate the value of the
pixel. The predicted spatially adaptive pixel-wise convolu-
tion kernels are then convolved with the input frames to
generate the interpolated frame. Traditional frame interpola-
tion methods generally involve two steps: motion estimation
and re-sampling. The convolution kernels account for both
these steps. They encode both the local movement between
the input frames along with the coefficient for pixel genera-
tion as described in Fig. 3. The proposed neural network can
be trained end to endusingwidely available videodata, as dis-
cussed in Sect. 2. It deals with occlusion, sudden brightness
change and blur to enable high-quality video frame interpo-
lation. Methods based on optical flow are not this flexible in
handling these challenges, and these have to be dealt with
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Fig. 3 Convolution-based approach for interpolation inspired by
Niklaus et al. [5]. (a) A two-step general non-CNN approach follow-
ing motion estimation followed by pixel synthesis based on estimated
motion. Interpolation by motion estimation and color interpolation.
(b) A direct approach for estimating convolutional kernels to convolve
successive input frames for pixel color interpolation. Interpolation by
convolution

separately for frame interpolation as discussed in Sect. 3.2.3.
Vidanpathirana et al. [3] attempted to reduce optical flow
errors by designing a pose tracking system that operates on a
system of queues in a multi-threaded environment and pro-
vides a fast point tracking solution to boost the frame rate of
pose estimation system.

Furthermore, much sharper results are obtained by kernel-
basedmethods as edge-aware kernels can be estimated by the
neural network. However, calculating 2D convolution ker-
nels for each pixel is computationally expensive. Hence, the
technique is comparatively slower. It also fails on videoswith
higher resolutions.

Niklaus et al. (2017) [13] improved on their previous
approachbyusing separable convolutions. Insteadof estimat-
ing the whole kernel for each pixel, they estimated spatially
adaptive pairs of 1D convolution kernels for each pixel, thus
reducing the parameters to be estimated as described inFig. 4.
It optimizes the algorithm within the allowable range. For a
1080p video frame, using separable kernels that approximate
41×41 ones only require 1.27 GB instead of 26 GB of mem-
ory. They also developed a dedicated encoder–decoder neural
network to estimate kernels for all pixels in a frame at once,
which gives better performance than AdaConv and more
visually pleasing results. Xue et al. (2016) [31] tackled this
problem in a more non-deterministic manner. The network
predicts multiple extrapolated frames from a single frame.
The proposed network consists of five components. First is a
variational auto-encoder to encompass motion information.

Second is a kernel decoder which learns motion kernels from
the output of the abovemotion encoder. The third is an image
encoder which estimated feature maps from an image. Fur-
thermore, the next is their novel cross-convolutional layer
which convolves the feature maps with motion kernels. And
thenfinally, a regressor. The core of their network is the cross-
convolution layer. It does not learn the weight of kernels but
rather take feature maps and kernel weights and calculates
convolution and then back propagates the gradient for both
feature maps and kernels. They use conditional auto-encoder
and use any simple distribution like Gaussian distribution to
estimate a future frame which introduces probabilistic com-
ponents in the network. Liu et al. (2017) [1] introduces a new
approach in tackling this problem. It calculates dense voxel
flow and uses it to generate an interpolated frame. These vox-
els encase the motion changes in the temporal domain, and
intermediate frames can be generated using trilinear inter-
polation. They proposed an end to end full differentiable
network that adopts a fully convolutional encoder–decoder
architecturewith a bottleneck layer that calculates voxel flow.
This voxel flow is similar to optical flow andmultiple nearest
neighbor-based interpolation (MNBI) [32] but also consid-
ers time component. Since it is only an intermediate layer,
it is never really evaluated. Liu et al. (2019) [6] build upon
DVF and introduces a novel loss called cycle consistency
loss, which can be integrated with any frame interpolation
method. They postulated that given three consecutive frames
I1, I2, and I3, the frames generated by I1-I2 and I2-I3 would
generate another frame that will be bounded by frame I2
in a cyclic manner. This leads to better motion information
preservation. CNN-based methods can only generate frames
at discrete intervals of time and are generally computation-
ally heavy.

A large proportion of existing methods tend to locate
regions with relevant information to closely estimate every
output pixel by applying self-produced frame warping tech-
niques. Still, a majority of current approaches have restricted
degree of freedom (DoF) and cannot fulfill real-time require-
ments of complex motions. To address this issue Lee et al.
(2020) [33] designed the latest warping module called adap-
tive collaboration of flows (AdaCof) based on an operation
that uses any number of pixels and any location. Unlike Sep-
Conv [13], this method calculates discrete offset vectors and
kernel weights for individual target pixels to generate the
output frame. It provides a more generalized warping frame-
work in contrast to classic optical flow methods [19,34–36]
and redefines majority of those as special cases of it. The
network architecture comprises a fully convolutional neural
network, advancing from DSepConv [37], and incorporates
dual-frame adversarial loss to reasonably produce real-time
intermediate frames.

However, these kernel-based interpolation techniques we
discussed above fail to capture motion between frames when
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Fig. 4 An overview of adaptive separable convolution neural net-
work architecture [13]. Input frames I1 and I2 are processed using
encoder–decoder framework to generate four 1D kernels corresponding
to every output pixel. The estimated kernels locally convolved with the

input frames generate interpolated frame Î . Majority of kernel-based
algorithms are inspired by this framework to execute and optimize state-
of-the-art video frame interpolation [24]

the kernel size, which is pre-defined in these methods, is
less than the actual motion flow of pixels. Secondly, these
methods are highly memory extensive. To solve these prob-
lems, Cheng et al. (2020) proposed to use more relevant
pixels to estimate kernels adaptively calling it deformable
separable convolution (DSepConv) [37], hence using smaller
kernel size with relevant features for handling large motion.
DSepConv uses the encoder–decoder network for feature
extraction. These features are used to estimate separable ker-
nels, masks and offsets for each pixel in the frame. Trained
on Vimeo-90k [7] DSepConv [37] produce more visually
appealing results and is less computationally expensivewhen
compared with other kernel-based methods [5,13]. However,
aswith other kernel-basedmethods, it can only generate a sin-
gle interpolated framebetween two consecutive input frames.
The authors ofDSepConv [37] improved their existingmodel
in EDSC [38]. They were able to reduce the number of
parameters to be trained while maintaining the same results.
They were also able to generate multiple interpolated frames
between two consecutive frames making it the first kernel-
based approach to do so. However, the results for arbitrary
time interpolation were not as good as state-of-the-art flow-
based approaches.

3.2 Flow-basedmethods

The goal is to determine the nature of flow between cor-
responding entities in consecutive frames and explicitly
synthesize intermediate images to enhance the resulting
video quality. High-quality video frame interpolation often
depends on precise motion estimation techniques that train
mathematical or deep learning models to establish a strong
correlation between consecutive frames in order to preserve

the continuity of flow, based on the actual optical displace-
ment of flow vectors and trajectory of visual components via
relevant occlusion reasoning and color consistency methods
[39]. So far, flow-based methods have managed to achieve
comparable results parallel to the latest GAN [14], CNN,
hybrid technologies, and are evolving evidently to outstand
heavy computational requirements of deep learning meth-
ods on real-time benchmarks. Based on the genre of flow
considered as a baseline for motion interpolation, the flow-
based approach is divided into three major subcategories as
discussed in Sect. 3.2.1, 3.2.2 and 3.2.3.

3.2.1 Path selective interpolation

The first approach is built upon the intuitive idea that every
pixel in the interpolated frames traces out a path in the prede-
cessor frames. The anticipated path justifies the movement
of pixel gradients, as described in Fig. 5. With the paral-
lel implication of correspondence and coherence criteria, the
most optimal path is obtained byminimizing the energy func-
tion and hence chosen as the desired path for that pixel.
A prominent feature is its transitioning property over the
blending approach preserving original frequency content of
images and greatly simplifying occlusions and blur. Unlike
standard optical flow and stereo techniques, path computa-
tion is more robust in capturing forward and backward flows
in un-occluded regions and needless to consider visibility
explicitly. Moreover, it eases the identification of occluded
regions deterministically as a post-processing operation by
onlymatchingflowconsistency. Finally, this approach proves
to show significant improvement in terms of visual quality
over the past decade with advancing works in image gradient
operations. However, a broad scope of improvement lies in
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exploring more genres of feature points to overcome com-
plex, intense lightning changes. Few popular state-of-the-art
interpolation strategies are discussed below.

Dhruv Mahajan et al. (2009) [40] proposed a path frame-
work parallel to an inverse optical flow approach that
computes background motion of arbitrary intermediate pixel
p in the input frames as shown in Fig. 5. The idea is to move
and copy pixel gradients along the anticipated path traced by
every pixel from source to the destination image, thus avoid-
ing usual chromatic aberrations produced such as holes or
visual blur using standard optical flowmethods [41–44]. The
transition over the blending approachpreserves the frequency
details of input frames without ghosting. Also, interpolating
gradients instead of actual intensities guards edge preserva-
tion of images.

Bo Yan et al. (2013) [45] improved the scheme men-
tioned above by introducing two leading innovations: first,
using standard optical flow [19,36,46] to supervise path
direction by constraining path length as illustrated in Fig. 6
and maintaining global path coherency using the Lucas
Kanade algorithm [47,48] and second, by employing a pixel
interlacing model to significantly optimize the optical flow
estimation process for more accurate path selection. In con-
trast to the original framework [40], narrowing down the
solution space of path set significantly improves the effi-
ciency of path construction step and overall efficiency of the
algorithm.

Yizhou Fan et al. (2016) [49] further guided the optimiza-
tion process of path construction by collaborating conven-
tional path-based framework of Mahajan [40] and Bo Yan
[45] with useful feature points extracted from input frames
[50]. Integrating semantic information identifies critical pix-
els in input frames. It supervises the method for accurate
motion pattern recognition via optimal energy minimization
[51], thus avoiding wrong path selection and achieving more
natural results as described in Fig. 6. The processing time is
limited by constraining maximum cost value Cmax = 104

to prevent memory overflow and possible timeouts. Further,
the method achieves reasonable performance for bigger size
input images and is eligible to produce an arbitrary number
of intermediate frames while considering motion propensity
supporting high visual quality.

3.2.2 Optical flow guided

The second and most traditional approach to address frame
rate upscaling is by utilizing bidirectional optical flow that
perceives motion information across consecutive images
and captures dense pixel correspondences. The estimated
flow guides the warping process to convert input images
to the interpolated frame location and constructively blend,
maintaining space–time coherency in anticipated motion.
Optical flow suggests the apparent motion of objects mov-

ing in bi-dimensional motion space, which can be explored
as a subproblem of image interpolation domain. Classical
optical flow-based approaches adopted a variational model
utilizing an energy minimization process. Fast deep neural
network-based approaches proposed recently like CNN-
based approaches as discussed above in Sect. 3.1 still suffer
from two major disadvantages: 1) Separate computation of
forward and backward optical flows during bidirectional
optical flow estimation neglects the correlation between sym-
metric optical flows and hinders continuity of sequenced flow
and 2) the majority of the latest optical flow networks utilize
conventional coarse-to-fine warping frameworks [52,53],
which are unable to capture detailedmotion and focuswidely
on large-scale motion only [54,55].

Another area of interest lies in refining the pixel synthe-
sis stage, i.e., blending pixels of warped frames to produce
an interpolated frame. Occlusion is handled simultaneously
using bidirectional information [56,57], but is constrained to
pixel-wise blending. Recent deep learning-based pixel syn-
thesis approaches like Super SloMo [4] and CtxSyn [10]
substantially improve performance by persuasively utilizing
local information of surrounding pixels, as shown in Fig. 7.
However, constant research is conducted to minimize occlu-
sion and hole problem effectively by fusing extra information
about the location of holes and color consistency [39,57]. The
performance of the methods discussed below relies majorly
on the quality of estimated optical flow. As explained in the
previous section, the robustness of generating the unknown
flow vectors provides a major field of the ongoing investiga-
tion in this domain.

Manuel Werlberger et al. (2011) [35] utilized the repre-
sentation of image sequences in a space–time volume by
employingminimization of optical flowdrivenTV-L1 energy
functional, which relies on spatial and flow-guided tempo-
ral gradients. Linear movement of pixels is assumed while
propagating the optical flow vector that was countered by
Dhruv Mahajan [40] by constructing a path-based frame-
work to handle non-rigid complex motion. Inspired by the
ROF denoising model, the method supports a wide variety of
industrial applications such as reconstructing completely lost
frames, restoring impaired frames, image sequence denois-
ing, and frame interpolation.

Lars Lau Raket et al. (2012) [58] proposed to re-
parametrize optical flow energy described by Manuel [35]
with a symmetric data fidelity term that utilizes both
neighboring frames as references. Re-parametrizing origi-
nal energy functional minimizes the extra work of temporal
warping and makes the process of calculating bidirectional
flow superfluous. Notably, motion vectors have only half the
length of the ones obtained from the regular parametrization
making this method better suited to handle large displace-
ments compared to traditional methods that only make use
of a one-sided linearization. Convenient implementation on
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Fig. 5 An illustration of a
generic path-based framework.
It explains how the path is
defined in moving gradients
method [40]. Point p in the
starting input image travels to
transition point pA and pB in
intermediate images A and B,
respectively, and finally at point
p in the ending input image. The
direction of movement of the
pixel is approximately in the
opposite direction of the
movement of the object

Fig. 6 Path vector selection
process. The above figure
describes examples of valid and
invalid paths. In image A, path
vectors mA1 and mA2 stand
valid, while path vector mA3
stands invalid. In image B, path
vectors mB1 and mB3 are valid,
while path vector mB2 is invalid.
That proves only optimization
trial of pixel p1 is valid, while
trials of p2 and p3 are invalid

NVIDIATesla C2050GPUenables real-time frame rate dou-
bling of standard 30fps video footage of resolution 640 ×
480.

Hoda Rezaee Kaviani et al. (2015) [59] focused on elim-
inating severe artifacts like holes, cracks, salt-and-pepper
noise [60] in the reconstructed frame by mapping a patch
of pixels to a new position in the target frame instead of
mapping individual pixels. It outperforms existing state-
of-the-art motion-compensated methods [61–64] with an
averagePSNR increment of about 1-2 dB. Parallel processing
of patch-based modules accelerates the execution speed with
visually compelling results for faster motion. The technique
involves five major ingredients: optical flow motion esti-
mation [61], patch-based reconstruction scheme, mismatch

mask generation, decision making step concluded by a hole
filling module using IPHI [65]. Efficiency relies majorly on
frame-wise pixel count and default parameter values of opti-
cal flow motion estimation (ME).

Counter to the above, Wenbin Li et al. (2016) [66] sug-
gested an effective strategy to enhance local smoothness
of complex non-rigid motion by adding a Laplacian cotan-
gent mesh constraint [67]. It applies a mesh system with a
specificity of one vertex per pixel on every image intending
to preserve local geometric details by minimizing angular
differences through multiple nested fixed point iterations.
Fine-tuning of parameters like vertex density index of an
input mesh and smoothness term weight is used that con-
cludes its strong performance against other non-rigid optical
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Fig. 7 A standard framework for the majority of optical flow-based
interpolation methods is inspired by SuperSloMo [4]. Fully convo-
lutional U-Net architecture estimates bidirectional optical flow and
uses it to generate interpolated frame via backward warping and bilin-
ear interpolation. The most traditional approach to address frame rate

upscaling is by utilizing bidirectional optical flow that perceives motion
information across consecutive images and captures dense pixel corre-
spondences. The estimated flow guides the warping process to convert
input images to the interpolated frame location and constructively blend,
maintaining space–time coherency in anticipated motion

flow algorithms such as Garg et al.’s [68] spatiotemporal of
guided method that utilizes interdependence with neighbor-
ing pixels motion to constraint the flow computation field.
Quantitatively it excelsMiddlebury interpolation error crite-
ria described in Table 1, and smartermesh designs can further
provide better interpolation approximations for future inter-
ests.

Huaizu Jiang et al. (2018) [4] explored the success of deep
learning techniques in high-level computer vision tasks that
served as an inspiration to solve complex frequency bound
motion, as shown in Fig. 7. His work SuperSloMo is an
extended version of U-Net architecture proposed by Ziwei
Liu et al. [1] to preserve spatial and temporal coherency
jointly integrated with occlusion handling framework in a
self-supervised manner [69]. The time-independent nature
of learned network parameters enables it to produce mul-
tiple intermediate frames simultaneously. Training is done
with 1132 video clips from real-time cameras and YouTube
of 240-fps. The primary purpose of handling complex occlu-
sions is served judiciously as every interpolated pixel mirrors
optical flow from either bidirectional flows at a linearly
adjacent position in consecutive images. FlowNet2 [70] pro-
vides a strong baseline to compute bidirectional optical flows
between consecutive frames by effectively avoiding motion
boundary blur. Overall, Super SloMo’s consistent perfor-
mance against both non-neural and CNN-based approaches
supports its state-of-the-art standards on Middlebury [19],
KITTI 2012 benchmark [21], slowflow, high-frame-rate Sin-
tel datasets [71], and UCF101 [18].

Ting Zhang et al. (2018) [72] deviated the heavy depen-
dence on optical flow estimation accuracy by crafting a
multi-scale dense network for frame interpolation (FIMSDN)
with escalated feature propagation. The constructed network
fully exploits multi-scale information for large displace-

ment frame interpolation and outstands its competing meth-
ods [13,70,73–75] by distinctively using optical flow after
warping but not hinging to it. Precisely, bidirectional flow
generated between consecutive input frames using a pre-
trained FlowNet2 model [70] is utilized to estimate enclosed
motion via mapping functions applied to corresponding pix-
els in both frames. Warping is done spatially midway using
computed optical flow, and the interpolated frame is pro-
duced directly by supplying original frames into FIMSDN. In
contrast to the computationally expensive CNN-based super-
visedmethods, thismethod is independent of the ground truth
of optical flow for training and even not entirely dependent
on it for flow estimation module execution.

So far, experts have faced two significant challenges in this
domain: first, to accurately capture large-scale fast motion
and second, to simplify occlusion reasoning to enhance
visual quality. CBOF-Net (2019) [23] supports a two-tier
network architecture comprising optical flow evaluation and
pixel synthesis sub-modules. Iterative estimation of optical
flow [56] caters to preserve the continuity of the optical
flow sequence by keeping track of supplementary informa-
tion into the network and improves its accuracy. Besides,
radical development in conventional coarse-to-fine architec-
ture enables us to estimate the motion of fine structures
impressively by mitigating the warping effect of forward
flow to avoid hole problems. Furthermore, the pixel syn-
thesis network combines statistical information, including
color consistency of optical flows and sputtering frequency,
to adhere to the occlusion problem effectively [57].

Tejas Javashankar et al. (2019) [76] devised an effi-
cient optical flow estimation method based on the local
all-pass algorithm [77] by exploiting high approximation
order, typically quadratic. In contrast, conventional optical
flow methods use only first order. It is a leading opti-
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cal flow-guided state of the art for real-time operation at
high spatiotemporal resolutions under critical computational
requirements of optical flow estimation network. Overall,
subjective and objective results justify the pleasing per-
ceptual quality and smoother interpolated videos favorably
comparable to the supremeCNNmethod [13] and prove LAP
as a consistently fair candidate among preferred state of the
art.

Catering to address temporal constraints of video cam-
era sensors that assume uniform motion between successive
frames and cannot intensively capture fast complex motion,
Xiangyu Xu et al. (2019) [78] proposed an acceleration-
aware quadratic video interpolation method to render high-
quality interpolation results by allowing predictions with
curvilinear motion trajectories and variable velocities. In
contrast to state-of-the-art approaches based on linearmodels
[1,4,12,13] as illustrated in Fig. 7, the quadratic model pro-
vides higher-order video interpolation built on an encoder–
decoder network of U-Net [79,80] which effectively esti-
mates and refines flow maps of backward flow fields to
suffice accuracy of interpolation results. It is designed in par-
allel with the multiple nearest neighbor-based interpolation
(MNBI) [32] approach that simulates barrel distortion using
nearest accurate pixels.

The fundamental aspect of VFI framework as seen till
now is to produce smooth motion with minimum visual
blur and preserving local information of mobile objects in
the produced intermediate frames. This generally involves
two strategies, including frame rate upscaling and frame
deblurring. New techniques are coming up with a joint video
enhancement solution, namely generating a higher rate of
frames which are blur-free from initial low-frame-rate hazy
input frames. Wang Shen et al. (2019) [81] introduced a
blurry VFI technique to process motion blur via EDVR [82]
and SNR [83] along with parallel upscaling of frame rate
using SuperSloMo [4], MEMC-Net [24] and DAIN [8]. The
author incorporates the functionality within a pyramid mod-
ule that cyclically produces blur-free intermediate frames.
The pyramid model improves restoration ability and compu-
tational complexity by incorporating flexible temporal scope
and spatial receptive field. To enhance this further, an inter-
pyramid recurrent module is integrated to exploit temporal
dependencies by associating sequential models. This recur-
rent component enables iterative extraction of temporally
smooth intermediate frames with least effect on the size of
the model. Its exceptional performance on Adobe240 [20]
and Youtube240 datasets can be observed exclusively from
Table 2.

The increasing upsurge of optical flow inspired Songhyun
et al. (2019) [84] to introduce a VFI framework that converts
frame rate to 4× the standard rate using a combination of a
flow estimation module coupled with an enhancement net-
work [7,85]. Thismethod ismore robust and produces unique

Table 2 Objective results comparison using state of the art on
Adobe240 and Youtube240 datasets

Adobe240 [20] YouTube240

PSNR SSIM PSNR SSIM

Super SloMo [4] 27.52 0.859 30.84 0.910

MEMC-Net [24] 30.83 0.912 34.91 0.959

DAIN [8] 31.03 0.917 35.06 0.96

BIN [81] 32.51 0.928 35.10 0.946

FI-MSAGAN [119] 33.37 0.937 – –

flow estimators for every possible direction and position of
the frame in the network [10]. Earlier methods [4,58,72,86]
were based on a single flow estimator as described in Fig. 7
to double the frame rate or generate multiple intermediate
frames. In comparison, this method underpins any missing
information by utilizing flow maps and given input frames
in the flow estimator network as supplementary input to the
enhancement network. The intuition behind using two differ-
ent models to generate three intermediate frames: PosNetS
and PoSNetM alleviate artifacts caused by inconsistent opti-
cal flow, thus improving overall visual quality especially in
regions having occluded pixels and mobile boundaries of
constituent objects. The ablation studies confirm that this
method successfully performs at real-time execution speed
and subjective quality.

The techniques explored so far [78,87] have skillfully used
backward warping to render functions like flow estimation
and depth prediction as a version of differentiable image sam-
pling. Relatively, forwardwarping had the least influence due
to its inherent challenges such as solving the ambiguity of
multiple pixels mapping toward the same position in the out-
put frame. Simon Niklaus et al. (2020) introduced Softmax
Splatting [88] to counter this phenomenon shift and apply it
effectively for frame interpolation tasks. Two input frames
fed as input are forwardwarped alongwith their feature pyra-
mid structures using the optical flow of the softmax splatter
module. This is continued by a synthesis network that gen-
erates an intermittent frame from these warped inputs. To
exploit the generalization of U-Nets, it skillfully employs
GridNet [11] architecture and mitigates checkerboard rari-
ties by utilizing the advancements laid down by Niklaus et
al. [10]. Hence, it effectively predicts intermediate frames at
any arbitrary time apart from fine-tuning the optical flow and
feature pyramid to show its competence against prominent
state of the art as shown in Table 1.

The primary interest of the latest studies inclines toward
processing super-high-resolution fast and real-time videos of
4K, 8K, 16K frames in a single pass with minimal resource
resetting. So far, state of the art is achieved for standard
resolution videos of UCF101 [18] and Middlebury [19]
benchmarks using conventional flow-, CNN-, GAN- and
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phase-based methods, namely Super SloMo [4], SepConv-
L f [13], Ahn et al. [17], and DAIN [8], which are less
suitable to handle HD videos of 4K due to very limited
low-image-resolution training benchmarks. Ha-Eun Ahn et
al. (2019) [28] proposed an advanced 4K VFI method that
performs multi-scale optical flow refinement to produce
intermediate HD frames in a single pass and outperforms
efficiency standards by running 4.39× faster than new 4K
methods [14,15,17] along with real-time visual quality. The
main model is composed of three sub-modules, namely OFE
and two coarse-to-fine OFR networks. Novel to previous
approaches, it targets to reconstruct optical flow information
rather than directly modifying pixel information in order to
minimize the visual blur of traditional video enhancement
methods [60]. Performance is evaluated on SJTU Media,
Ultra Video, and upgraded Vimeo datasets containing suit-
able 4K image resolution and is not covered in this paper.

3.2.3 Motion-compensated interpolation

The third andmostwidely used approach to derive intermedi-
ate flow is utilizing motion vectors to determine the transfor-
mation scheme of a given reference frame to the target frame.
These methods were designed to overcome the discrepan-
cies of earlier non-motion-compensated methods of frame
repetition and frame averaging that produced impractical
results with motion jerkiness and ghosting artifacts to inter-
polated frames. Hence, advanced FRUC approaches perform
frame interpolation along motion trajectories called motion-
compensatedFRUCmethods and cangenerate higher-quality
reconstructed frames in return for more computation. Due to
the fast development of technology, higher computational
complexity can be tolerated for FRUC.

It is a sequential process containing three major steps
called motion estimation (ME), motion vector smoothing,
and motion-compensated interpolation (MCI). Motion esti-
mation is programmed to compute the “velocity” vector of
each pixel in the input frame, i.e., the trajectory followed
by pixel in a temporal unit [47]. Further, estimated motion
vectors compensate each pixel spatially halfway to deter-
mine constituent motion [89]. However, they are degraded
due to misplaced blocks or “tears,” resulting in poor qualita-
tive results described commercially as a “soap opera effect.”
MC techniques are commonly operated using pixel-based or
block matching algorithms, the latter being more useful to
handle faster motion with less blocky artifacts consistently.
Motion estimation for block matching bifurcates to two
kinds: unilateral ME where block matching occurs for every
block in the previous frame, followed by linkage to block in
the next frame, thus interpolating intermediate block at the
corresponding location, as discussed by a FRUCmethod pro-
posed by Jeon et al. [90]. Being more prone to leave holes
or overlaps in the intermittent frame, bilateral ME [65] is

suitably preferred that adopts temporal symmetry between
blocks of consecutive frames.

Earlier approaches discussed in this paper perform numer-
ical computations to solve interpolation problems. These
methods suffer from limitations as follows. Firstly, most of
them do not consider the spatial consistency of neighboring
pixels. Second, to the best of our knowledge, none of them
considers and analyzes the reliability of estimated motion
trajectories. Furthermore, none of them considers the possi-
bility of employing multiple motion trajectory hypotheses to
obtain a better estimation for the intermediate frame. This
paper aims to discuss the relative performance of advanced
MCtechniqueswith state-of-the-art frame rate up-conversion
(FRUC) algorithms.

Hongbin Liu et al. (2012) [92] integrated both temporal
motion model and spatial image model to a multi-hypothesis
Bayesian FRUC model to rebuild the optimization criterion
to predict the interpolated frame of the maximum posterior
probability. The model employs a set of “optimal” motion
fields to build a group ofmotion trajectory hypotheses instead
of a unique optimal solution, as shown in Fig. 9. The resulting
pixels in the interpolated frame are a weighted combination
of the reliability of each solution. The method is evaluated
to be quite suitable for sequences having a variety of motion
scales. Significant yields of PSNR values compensate for
surplus performance time by analyzing empirical results,
which supports that the outcome of the proposed scheme can
achieve a reasonable objective and subjective quality if real-
time constraints are not highly critical. An extension of such
an algorithmwas proposed by Doosep Choi et al. (2015) [93]
tending to minimize computation cost vis-à-vis comparable
level of performance. The task is accomplished by addressing
the issue of multiple protrusive local minima by a maximum
posterior probability (MAP)-based MV refinement method
that iteratively upgrades true MV estimates of every block
by computing a weighted combination of cumulatively esti-
mated locally neighboring MVs and current observed MV
according to the unreliability factor stored as locally static
additive Gaussian noise (AGN) variance.

Zhefei Yu et al. (2013) [34] studied the distinct behaviors,
mutual dependence, and interaction among various levels of
adjacent video frames and suggested a self-corrective multi-
levelmodel including three of themas pixel level, block level,
and sequence level.Constructive algorithms are implemented
for each level, i.e., block-level ME by eliminating unreliable
MVs, and so on. Productive exploitation by preserving level-
wise advantages and learning from selective information to
overcome inherent limitations is the core purpose of this algo-
rithm.

Won Hee Lee et al. (2013) [64] proposed an occlusion
reasoning-based solution that anticipates four interpolated
frames using the reliability of estimated motion vector fields
produced by an advanced optical flow framework [56]. A
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Fig. 8 Illustration of occlusion
and motion ambiguity problems
as discussed in MCFI [86].
Black and colored region
corresponds to foreground
objects and background details,
respectively. Both the uncovered
portion of backward ME and
covered portions of forward ME
are lost in the target frame
which generates false MVs and
generates ambiguities in
bidirectional motion evaluation.
Finally, portions where the
correct MVs of background and
foreground objects come across
each other, and it is tough to
select motion for a typical
foreground object. Background
MVs if chosen produce more
visual artifacts due to irregular
trajectories of moving objects

Fig. 9 Full search motion
estimation. Search window is a
candidate set to find optimal
motion trajectory.
Computational complexity is
huge for full search ME due to
large size of candidate set.
Advanced successive
elimination algorithms are
utilized to relax the overall
computational cost [91]

combination of the above-said frames produces a singular
interpolated entity by utilizing a variational image fusion
module by utilizing data energy terms based on differential
relationship curve between pixel reliability and error distri-
butions of interpolated images. The method opens excellent
possibilities for future work in occlusion handling.

Optical flow methods discussed in the previous section
suffer frommotion approximation in a limited space or time.
As an attempt to overcome shortcomings of block-based

approaches, many region-based interpolation approaches
have been opted despite implementation complexity [94,
95]. Region-based motion-compensated frame interpolation
methods segment the input images into a variable-shaped
group of pixels based on pixel intensity and motion homo-
geneity using image segmentation modules. The computa-
tion time is largely occupied for image segmentation, and
SAD (Sum of absolute differences) calculation as the region
merging process is comparatively less tedious. Hyungjun
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Lim et al. (2014) [96] claims the superiority of this method
than previous optical flow-based motion-compensated meth-
ods by subjectively comparing MV fields of various ME
methods and ground truth [46,47,97–100]. As a result, this
method provides significantly improved exhaustive search
and region-based motion vectors outperform former state-
of-the-art methods.

Un Seob Kim et al. (2014) [65] focused on reasonably
optimizing real-time performance rendering better PSNR
values by adopting a prediction-basedmotion vector smooth-
ing (PMVS) to efficiently eliminate outliers using MVs
of neighboring local blocks, partial average-based motion
compensation (PAMC) that simplifies blocking artifacts in
intermittent frames by using region-wise partial average
and intra-predicted hole interpolation (IPHI) of magnitude
H.264/AVC to reduce motion blurriness. Implementation
using shift operations on predetermined weights widely
relaxes computational complexity. In contrast to earlier bilat-
eral motion estimation algorithms [101,102], the method
establishes strong interpolated frame PSNR improved by
3.44 dB on an average and hardly a loss of 0.13 dB than
competing unilateral ME employed algorithms. Overall, an
effective yield of 89.3% relaxation in computational com-
plexity based on absolute difference proves the importance
of the described method.

Qingchun Lu et al. (2016) [86] upgraded the solution to
occlusion handling and motion discrepancies. Following the
basic principle of temporal motion consistency among mul-
tiple consecutive frames, the uncovered, overlapped type of
motion ambiguous regions is identified as shown in Fig. 8
to accurately compensate bidirectional MVFs using auxil-
iary information. Also, an improved version of traditional
overlapped block motion estimation (OMBC) is maintained
through statistical adjustments to subdue unwanted motion
blurring and ghostly artifacts. Compared to previous meth-
ods, it claims to render an efficient real-time performance
tested in three benchmark methods: Dual ME [62], novel
TME [103], and iterative ME [104]. The average PSNR of
interpolated frames also shows a proximate increment of up
to 1.788 dB.

Yongbing Zhang et al. (2016) [87] formulated the pixel
intensity variation across consecutive frames through con-
tinuous and differentiable Taylor series functions to mini-
mize discolorations across neighboring frames and maintain
motion continuity. The idea conduces to find the most opti-
mal motion vector by employing a motion-aligned partial
derivative (MAPD) computation algorithm that guides Tay-
lor approximation to closely match forward and backward
polynomial approximations at interpolated frame position.
Experimental analysis proves the superiority of described
polynomial approximation method over preexisting mono-
mial approximation ME methods [62,92].

Jiang et al. (2017) [105] considered the development of
graphic technologies and modeled a prototype for efficiently
interpolating 3D videos, generally having a limited frame
rate due to hugememory demand. The approach re-computes
MVF of the intermittent frame using the BME module, fol-
lowed by the classification of image blocks into occluded and
normal blocks. Post-processing of occlusion blocks through
foreground–background segmentation and normal blocks
using color–depth information is carried out for interpolation
[106]. Simulation studies prove the significant raise in PSNR
and SSIMmetrics’ values than conventional MCFI methods,
as shown in Fig. 8 with more natural and fluid interpolated
video quality.

Simon Niklaus et al. (2018) applied a context-aware syn-
thesis [10] approach by incorporating per-pixel contextual
information to eliminate motion estimation discrepancies
and occlusion and synthesize a better, visually appealing
interpolated frame. Input images fed to a pre-trained neu-
ral network generate context-specific information, which
enhances the estimated interpolated frame quality by apply-
ing these context maps on output frames of usual optical flow
estimation andwarping steps. Distinguished from the regular
approaches that mix the pre-warped frames, this methodol-
ogy uses both input frames, and their context maps to a video
frame synthesis deep learning model to generate interpolated
frame in a context-aware way. Performing motion compen-
sation before interpolation allows adding more frames at
temporally arbitrary position t ∈ [0,1]. Unlike other CNN-
based approaches that are directed to interpolate at fixed time
t, it does not require to retrain its model on changing time t of
interpolated frame saving extra computation cost of alterna-
tive approaches like recursive interpolation or retraining the
pre-defined model.

Li et al. (2019) [91] figured a spatially predictive model
for MC-FRUC (SP-MCFI) that splits every incoming frame
into two categories of blocks called basic and absent
blocks. The optimized version of bilateral motion estimation
(BME) through the successive elimination algorithm (SEA)
is applied to compute MVs of basic blocks as described in
Fig. 9, while MVs of absent blocks are discovered quite
accurately using surrounding MVs of neighboring blocks.
Reducing the search space of motion vectors using adequate
parameter settings greatly contributes to increase computa-
tional efficiency.

Zhao et al. (2019) [107] presented an edge-based refine-
ment of estimated MVFs by utilizing edge information in
variable block ME module and hole filling in MCI module.
Computation overhead of edge-based component is counter-
balanced by tangibly good quality visual results compared to
conventional optical flow-guided and MSEA method.

Li et al. (2020) [108] designed a low-complex version
with advanced EPF that subsamples high-frequency com-
ponents of video frames to minimize accuracy degradation
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before BME. The real-time EPF enforces edge preservation
of constituent objects by aiding BME to reduce mismatched
blocks by nullifying the poor effects of homogenous struc-
tures in texture regions of video frames. BME is further
optimized by opting out redundant and irrelevant candidates
from search space of conventional FS (Full Search) and pre-
dictMVout of spatial and temporal neighbors as illustrated in
Fig. 9 conforming to the local smoothness of Motion Vector
Field (MVF). Experimental evaluations suggest fruitful sub-
jective and objective gains compared to most recent methods
[109,110] at a lower computation cost.

3.3 GAN-based interpolation

With advancing trends of the digital age, the demand for the
photorealism ofmotionmedia tends to prioritize accurate but
smooth results. The state of the art discussed in previous sec-
tions notably improved optical flow estimation using deep
convolution neural networks and MCI remarkably exploit
motion information between consecutive frames, but inherit
their artifacts resulting in qualitatively poor performance cor-
related with hardware constraints. Inspired by the evident
success of deep convolutional neural networks in video pro-
cessing tasks and thorough research in the field of GANs by
Goodfellow since 2014, the first GAN interpolation network
designed by Mark Koren et al. (FINNiGAN [111]) in 2016
managed to cut traditional “ghosting” and “tearing” artifacts
and compensated for fast-motion discrepancies. The general
architecture of a GAN framework is illustrated in Fig. 10.
Few developments have been discussed below.

The first attempt by Mark Koren et al. (2016) [111]
enhanced frame rate by utilizing the convolutional neural
network framework collaborated with generative adversarial
networks known as FINNiGAN. The idea is to prevent com-
mon structural information loss during up-sampling by using
a SIN (structure interpolation network) that produces the
structure of the intermediate frame constrained by aweighted
combination of four significant losses: L1 loss, clipping
loss, MS-SSIM loss, and discriminative loss. Color and tex-
ture inconsistencies in SIN output were further addressed by
pipelining a refinement network that appends GAN loss with
L1 loss to refine output frame quality. Tensorflow supports
the efficient implementation of the model. It manages to out-
perform naïve LFI (Linear FI) and DFI (Deep FI) results
by producing sharper and more structured frames with elim-
inated checkerboard-style artifacts.

ZheHu et al. (2018) [112] proposed amulti-scale structure
to share parameters across various layers and cut costly global
optimization, unlike usual flow-based methods. MSFSN
(multi-scale frame synthesis network) became the first model
to provide flexibility by parametrizing the temporal locus
of the interest frame. It adopts a more compact network
than popular auto-encoder methods [5,13,74] while main-

taining comparable reconstruction accuracy. Qualitatively,
a pre-trained VGG network bypasses the outlandish recon-
structed frames obtained on minimizing pixel-wise MSE
loss functions. The coarse-to-fine structure greatly reduces
memory overhead for model storage without compromis-
ing accuracy and renders useful services in the latest IoT
and smartphone applications. Independent of fixed inter-
polation settings, it can synthesize multiple frames at any
intermediate temporal location. Evaluations suggest that it is
a suitable choice over CNN-, kernel-, and voxel-based meth-
ods, namely FlowNet2.0 [70], EpicFlow [74], DVF [1], and
Sep-Conv L f [13] where computation resources are limited.

Subject to real-time interpolation, efforts to reduce opti-
mization parameters are always a prime concern of modern
developers, thereby cutting excessive hardware costs. Chen-
guang Li et al. (2018) [113] exploited multi-scale CNN
architecture to support the long-varied motion and employed
additional WGAN-GP (Wasserstein generative adversarial
network loss with gradient penalty) [114] to achieve more
natural results. The model has a slim generator network
structure requiring relatively less storage and high-speed
processing due to residual structure and cumulative gener-
ation of high-resolution frames. Instead of image pyramids
[112], feature pyramids [115] are built to achieve better visual
experience. The loss function is a weighted triplet of L1,
WGAN-GP, and perceptual loss that overcomes the defects of
each loss function adopted individually, as discussed earlier.
Wei Xue et al. (2019) [116] further utilized this framework
to enhance the performance of frame rate upscaling of GAIT
videos.

Joost van Amersfoort et al. (2019) [14] remarkably estab-
lished the most popular state of the art called FIGAN well
known for its exemplary performance on real-time YouTube
8M videos with an average runtime speedup of ×47 than
immediate competing method [13] and high PSNR gains.
The proposed framework is a multi-scale network super-
vised at various levels with mixed perceptual loss function
stating the earliest model to combine the pyramidal system
of traditional optical flow modeling with the evolution of
spatial transformer networks. The author claims to surpass
flow-based and phase-based methods and produce sharper,
visually compelling results comparable to SepConv-L f at a
lower proportion of training parameters under real-time sce-
narios.

Motivated by the great success of GAN architecture in
low-level and high-level computer vision problems, Shiping
Wen et al. (2019) [117] laid out a strong network of two
concatenated GANs (built on U-Net [79]), former learning
motion from training video clips and latter integrating finer
frame details to enhance output quality. Counter to standard
adversarial losses, it employsNormalizedproduct correlation
loss (NPCL [118]) that support its exceptional performance
over relatively noisy results of earlier approaches.
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Fig. 10 Basic module of a
Generative Adversarial network.
The discriminator functions as a
classifier to characterize
between various input orders
produced by the generator

Fig. 11 PhaseNet for video frame interpolation [12] estimates phase
shift and amplitude values that were hand-tuned in phase-based inter-
polation [73]. Their network employed a decoder only architecture to
imitate level-wise decomposition of phase information. The decompo-
sition of two given input images shown as R1 and R2 is achieved by
enacting the steerable pyramid filters (ψ). These are fed as inputs to
the PhaseNet, purely based on a decoder framework. The dimensions

and count of layers is parallel to the decompositions R1 and R2. The
features of constituent blocks of each level are available in PhaseNet
paper. For a given level of input frame decomposition, the links from
the former are illustrated to mitigate frame cluttering. The estimated
response from the filter, R̂ is utilized to generate the intermediate frame

Xiao et al. [119] interpolated intermediate frames using
generative adversarial networks in which they introduced
an attention network for focusing on moving objects. The
introduced frame interpolation framework using multi-scale
dense attention generative adversarial networks, i.e., FI-
MSAGAN uses multiple generators and discriminator net-
works with input images of different sizes for a better
combination of local and global information details. Run-

time and accuracy for FI-MSAGAN are comparable to other
state-of-the-art methods.

3.4 Phase-basedmethods

The initialwork in using phase information for frame interpo-
lation is done by Didyk et al. (2013) [120]. Their method was
based on the supposition that phase shift values of each pixel
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encode small motion information. However, their method
was unable to perform well for large motion. Their method
was improved significantly byMeyer et al. (2015) [73]. They
used a coarse-to-fine structure to adjust phase shift informa-
tion. They proposed a multi-scale pyramid level structure to
propagate phase information. They put an upper bound on
phase shift to accommodate large motions. Their algorithm
consists of calculating phase shift, interpolate using phase
difference, and blending interpolated frame using amplitude
values. The phase shift value is calculated at each level of
the pyramid with an upper bound. They assume that both
large and small motion occurs at comparable frequencies.
Their method fails at high frequencies. Even areas with small
motion but at high frequencies appear to be blurred. The
above approaches contain hand-tuned parameters for image
generation. Both phase shift value and amplitude value were
calculated. Meyer et al. (2018) [12] proposed a network to
estimate phase shift and amplitude values. Their network can
thus handle a larger range of motion and frequencies. Their
network used a decoder only architecture as described in
Fig. 11 to imitate level-wise decomposition of phase infor-
mation. All layers are identical except for the last layer. The
resolution of the interpolated frame increases level by level.
The parameters that were hand-tuned in phase-based [73]
approach were directly estimated using Phase-Net.

3.5 Other hybrid methods

Several methods did not fall into any of the categories or
combine one or more approaches. Ahn et al. (2019) [28]
employed a multi-scale motion reconstruction network in
their video frame interpolations method. This technique first
estimates bidirectional optical flow in a lower resolution than
the input frame. For 4K videos, they use one-fourth of the
resolution for estimated bidirectional optical flow. Then, they
recreate the estimated optical flow for the original resolu-
tion by employing a multi-scale reconstruction scheme that
can recreate high optical resolution stably. They used multi-
scale smoothening loss, consistency loss, adversarial loss,
and more to train their network. The proposed network can
be divided into three sub-networks. First is an optical flow
estimation (OFE) network that estimates low-resolution bidi-
rectional optical flow in a computationally efficient manner.
The other two are multi-scale optical flow reconstruction
(OFR) networks. They reconstruct optical flow in the origi-
nal resolution from the low-resolution optical flow estimated
by the OFE network. It shows computationally better results
than thosemethods that are operable for 4K videoswith com-
parable visual quality.

Kimet al. (2019) [121] realized thatmodern video require-
ments include not only high frame rates but also high
resolutions. While [28] takes advantage of high-resolution
frames, it does not increase frame resolution. [121] pro-

posed a joint model that not only interpolates frames but
also increases the spatiotemporal resolution of frames.

There are two major approaches for deep learning-based
video frame interpolation, that is, motion compensation and
motion estimation. These methods either estimate convolu-
tional kernels for motion compensation as shown in Fig. 4
or estimate flow and then warp the input frames for motion
estimation. Various approaches have been discussed in the
earlier sections. Kernel-based methods [5,13] are computa-
tionally expensive, and flow-based methods often produce
blurry results [60]. Bao et al. (2018) [24] attempted to com-
bine the two approaches. Both convolution kernels and flow
vectors are generally estimated using CNN. They proposed
a method to combine the two approaches by introducing an
adaptive warping layer which used flow vectors and motion
compensation kernels to generate output pixels. This layer
can also be employed for other video enhancement tech-
niques like super-resolution.

For handling large complex motion, several other tech-
niques employ a coarse-to-fine strategy likeDeepVoxel Flow
[1] or adopt advanced flow estimation architecture like in
context-aware paper [10] using PWC-net, or calculate an
occlusion mask for adaptively blending the pixels like in
Super SloMo [4], MEMC-Net [24], or interpolation kernels
to adaptively generate output pixels from a large neighbor-
hood like in SepConv [13]. While other methods rely on
the network to handle occlusion, usually by training with a
large amount of data, Bao et al. (2019) [8] handled occlusion
explicitly by using depth information. MEMC-Net implic-
itly handles the occlusion by estimating occlusion masks,
extracting contextual features. In contrast, DAIN explicitly
detects occlusion.

DAIN [8] relies on a straightforward observation that
nearer objects ought to be synthesized first within the inter-
mediate frame (calculate the contribution of everyflowvector
supported the depth price for aggregation). DAIN consists
of the subsequent sub-modules: the flow estimation, context
extraction, depth estimation, kernel estimation, and frame
synthesis networks as visible from Fig. 12. In DAIN, a
depth-aware flow projection layer is employed to synthesize
intermediate flows that ideally sample nearer objects than
farther ones. It also learns hierarchical features from neigh-
boring pixels to gather contextual information. Then it uses
an adaptive warping layer to exploit the optical flow effec-
tively, local interpolation kernels, contextual features, and
depth maps to synthesize interpolated frames. For estimat-
ing depth maps from the input frames, DAIN employed the
model of Chen et al. [122] which is an hourglass network
trained on MegaDepth dataset. Compared to the MEMC-
Net, DAIN uses 69% fewer parameters. More accurate depth
maps can be obtained by predicting depth maps from input
frames and modeling the consistency between depth maps
and optical flow [9]. Their model is efficient and compact
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Fig. 12 Depth-aware video frame interpolation architecture [8]. In
DAIN, a depth-aware flow projection layer is employed to synthesize
intermediate flows that ideally sample nearer objects than farther ones. It
also learns hierarchical features from neighboring pixels to gather con-

textual information. Then it uses an adaptivewarping layer to exploit the
optical flow effectively, local interpolation kernels, contextual features,
and depth maps to synthesize interpolated frames

and performs reasonably well against other existing frame
interpolation methods as evident from the performance met-
ric values in Table 1.

Choi et al. [123] showed the benefits of test time adapta-
tion of the network in video frame interpolation tasks through
meta-learning strategy. Their scene-adaptive frame interpo-
lation technique adapts to unseen new videos at test time to
achieve a significant amount of improvements in the interpo-
lated frames.This strategy canupdate theweights/parameters
of any existing frame interpolation models using just frames
present at the test time. This is the first implementation of
the meta-learning technique in video interpolation domain.
By incorporating meta-learning technique at test time, per-
formances of base models like DVF [1], SuperSloMo [4],
SepConv [13], and DAIN [8] have improved. Hence, with-
out any change in the architecture of existing video frame
interpolation methods, the scene-adaptive frame interpola-
tion algorithm can be employed.

Choi et al. [124] and Xiao et al. [119] utilized neural
networkswhich focus on important regions of the feature rep-
resentations, i.e., attention networks for interpolating video
frames effectively. Instead of explicit optical flow estimation,
Choi et al. [124] reply on channel attention.Theyutilize chan-
nel attention method proposed in Zhang et al. 2018b [125]
for video frame interpolation framework. Trained on Vimeo-
90k [7], CAIN (channel attention for frame interpolation)
utilizes feature reshaping operation (PixelShuffle) with chan-
nel attention as a replacement for optical flow computation
module. CAIN, when compared with other state-of-the-art
methods, is efficient in terms of both time and memory con-
sumption.

4 Discussion

4.1 Performance analysis

We compare different video interpolation techniques on
several benchmark datasets including UCF101 [18], Mid-
dleBurry [19], Vimeo-90k [7], and Xiph2. We interpolate the
intermediate frame at t = 0.5 temporal location in compara-
tive experiments here. For quantitative analysis, we used four
comparison metrics. An important note about these metrics
is that they are calculated based on the generated images in
comparison with the ground truth. First one is peak signal-to-
noise ratio (PSNR) (see Eq. 1). It is a common metric used
for measuring image quality. PSNR is defined as the ratio
of maximum power of signal to the power of noise signal.
For color images, i.e., images having three RGB values per
pixel, PSNR can be defined via MSE which is sum over all
squared value differences divided by image size and number
of channels. For an m × n image with 3 channels where I is
ground truth and K is interpolated frame, its PSNR value is
given by:

PSN R = 20.log10(MAXI ) − 10.log10(MSE) (1)

where MAXIMAX I is maximum possible pixel value and
MSE is mean squared error given by:

MSE = 1

3mn

m−1∑

i=0

n−1∑

j=0

[I (i, j) − K (i, j)]2 (2)

2 https://media.xiph.org/video/derf
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PSNR is used as a quality measurement between the recon-
structed and original image. The higher the ratio, the better
the quality of the reconstructed image. Second is Structural
Similarity (SSIM) index (see Eq. 3). It is used for measur-
ing image quality by measuring the perceptual difference
between two similar images. SSIM index on two windows x
and y of common size N × N is given by:

SSI M(x, y) = (2μxμy + c1)(2σxy + c2)

(μ2
x + μ2

y + c1)(σ 2
x + σ 2

y + c2)
(3)

where,μ denotes average of the window σ 2 denotes variance
of the window σxy denotes covariance of window x and y and
c1 and c2 are stabilizing constants.

SSIM cannot judge which is better but just howmuch they
differ from each other. SSIM is based on visible structures
in the image. The third is the Middlebury interpolation error
(IE). One particular advantage of interpolation error is that
it does not need ground truth. It is calculated by using the
optical flow to extrapolate the current frame. The extrapo-
lated image is then compared with the real next frame of the
video.

The last one is learned perceptual image patch similarity
(LPIPS) metric. It derives from the observation that deep
network activations can be effectively used as a perceptual
similarity metric. For our experiments, we used the version
0.1 of LPIPS. In contrast to PSNR and SSIM, the lower value
of LPIPS indicates better results.

We test various video frame interpolation techniques to
compare the techniques based on the metrics described in
this section. We tested the approaches with the same testing
dataset for all the approaches whose open source imple-
mentation was completely available. For some approaches,
we copied the performance results as given by the author
under the confirmation that they are tested with the same
dataset.Somemissing entries in the table can be accounted to
the fact that the results were not available for themorwewere
unable to test that particularmethod on that dataset. InTable 1
, we provide the quantitative results of various video frame
interpolation techniques. Each approach has been appropri-
ately tagged with the category they fall into as described in
this paper. Along with PSNR, SSIM, and LPIPS values on
Vimeo-90K [7], UCF101 [18], and Xiph, we also provide
interpolation error (IE) in the table. The number of parame-
ters to be trained is a governingmetric to the size of themodel
and the time required for training. Therefore, we included the
number of parameters in the table. Similarly, in Table 2, we
provided the quantitative results on Adobe [20] and YouTube
dataset.

In this paper, we presented a comprehensive study of a
variety of models for video frame interpolation. We com-
pared them based upon PSNR, SSIM, and LPIPS values on
UCF101 [18], Vimeo-90k [7], and Xiph evaluation datasets

and interpolation error (IE) on Middlebury dataset [19].
Better comparison values do not always necessarily mean
visually pleasing results; a visual comparison is necessary.
Although visual inspection cannot be used directly as a
metric, as it is subjective, it can reveal artifacts and other
distortionswhich are hard tomeasurewith quantitativemeth-
ods.

4.2 Challenges

The emergence of low-cost deep learning frameworks that
productively exploit the color and motion information of
high-quality video sequences has significantly inspired great
developments in interpolation processing methods. Promis-
ing outcomes of deep learning approaches, on a set of
constrained datasets such as UCF101 [18], Vimeo-90k [7]
and Middlebury [19]. Despite this success, results are a lot
more to be achieved to satisfy real-time requirements. In fact,
it is quite tedious to design an efficient, intelligent interpola-
tion system. Such an idea poses numerous challenges.

Encoding spatial and temporal informationAs discussed,
several strategies are available to skillfully capture inter-
mediate motion between frames to synchronize temporal
and spatial information of the interpolated frame effectively.
We employ deep fully convolutional neural network to esti-
mate pixel-wise spatially adaptive kernels [5,13], or predict
spatially and temporally regularized between optical flow
that preserves local correlations using convolutions [1,30,70]
over temporal irregularities of non-deep learning approaches
[74], or utilize pixel-wise phase shift [12,73] to determine
motion information, or accommodating corresponding spa-
tial weights in above feature networks [1,4,7,14,24,32].
However, all these methods have their associated draw-
backs. Temporal fusion process tends to bypass the temporal
sequence; 3D pooling filters and 3D filters have a very strin-
gent temporal structure, so they tend to intake a fixed number
of frames as input that is always insufficient; optical flow
computation is generally costly and involves side effects
such as visual glitches due to edge distortion, depth incon-
sistencies, abrupt brightness changes, and others. Modeling
spatiotemporal coherence of frames stands amajor challenge
in the interpolation tasks.

Scenario-specific training Most of the advanced deep
learning strategies demand in-depth labeled training data.
However, in real-time scenarios, gathering and cleaninghigh-
definition video data are laborious and memory-intensive,
especially in the medical research field. For example, 4K
VFI techniques [17,28] are built on efficient platforms to
avoid system collapse during training. It is observed that
fine-tuning parameters of interpolation networks with spa-
tial information is more beneficial than training all over
again. Several data augmentation tacts are utilized to lead
robust scenarios, and overfitting is controlled by calibrating
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the learning rate. Another aspect involves the limited quality
of results due to domain-specific training datasets [7,18,19].
Learned models tend to perform better over similar video
graphic scenarios, which limits its robustness to produce an
optimum quality of high-frame-rate videos for a wider vari-
ety of generalized data. However, effectively training deep
learning networks from a contingent form of training data
remains a challenging future assignment.

Visual artifacts and occlusion These between frames
estimated using depthmaps [8,9]might cause viewpoint vari-
ation that generates ambiguous results for repetitive arrivals
of the same actions, and occlusionmay lead to loss of graphic
details. Many commonly used datasets constrain subjects
to perform actions in a restricted and visible background
to get rid of occlusion, and eventually, this leads to less
occluded but limited view data collection. However, inter-
actions in practical scenarios are bound to have occlusion,
which makes it challenging to segregate entities in overlap-
ping regions, as illustrated in Fig. 8 and extract features of
individual objects, resulting in the ineffectiveness of vari-
ous existing approaches. A possible solution to figure out
occlusion and viewpoint variation involves operating on
multi-sensor systems [39]. Such systems can procure multi-
view data, with a downside of synchronization requirement
and recognition/feature fusion within different views. This
adds up to the computation cost and processing complex-
ity. Numerous methods have been proposed to deal with
occlusion and viewpoint variation. Evan Herbst et al. [57]
opted for a bidirectional flow-based optical flow algorithm
parallel to spatial regularizations to handle occlusions and
dis-occlusions. However, expertly training deep learning net-
works to handle occlusion remains is a constant challenge.

Intra-action localization We come across numerous inci-
dents that require exact spatiotemporal localization of suspi-
cious/semantically significant events via interpolation mod-
eling of constituent objects’ trajectories. Predicting mean-
ingful constituent action by increasing frame rate is a classic
computer vision problem applied widely in fields of human
behavior recognition and activity analysis, motion-based
sports, art rehearsal, video retrieval, and many others. There
are two fundamental challenges to this task: first, identifi-
cation of subtle inherent characteristics of movements of
entities in various scenarios that may justify intervening
motion; and second, carrying out predictions as fast as pos-
sible in the demanding social world, with a limited set of
prior observations. This becomesmore complicated provided
real-time challenges, e.g., background clutter, occlusion, fast
large-scale motion. Accurately predicting the specific inter-
mediate events has a wide range of applications while taking
prior decisions in health care, surveillance, and autonomous
robots. How to develop convincing algorithms in this direc-
tion is a potential concern.

5 Conclusion

This paper puts forward a comprehensive survey of classic
video frame interpolation techniques using deep learning.
We present a broad overview of existing widely used bench-
mark evaluations. The available techniques are divided into
fivemajor categories given theirmodality: flow-based, CNN-
based, phase-based, GAN-based, and hybrid methods. The
five modalities exhibit their unique features and branch to
diverse choices of deep learning techniques to utilize their
properties productively. The inherent spatial, temporal, and
structural attributes of a video sequence are identified. From
the aspect of spatiotemporal structural encoding, we high-
light the pros and cons of available techniques. Based on
key insights underlined by the survey, the problem of video
frame interpolation contains promising research opportuni-
ties. Performing frame interpolation in real time would be
the main focus of future research work. Incorporating some
image enhancement technique with real-time frame inter-
polation can lead to a vast number of practical and useful
applications. Furthermore, new techniques in deep learning
will enlarge the scope of improvement of frame interpolation.
GAN-based training paradigms show a promising future in
the field of frame interpolation. Combining frame interpola-
tion with other video processing tasks also seems to interest
researchers. It can be said that a wide plethora of research
opportunities remain in this domain despite the advances cov-
ered till date.
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