
The Visual Computer (2022) 38:179–195
https://doi.org/10.1007/s00371-020-02010-4

ORIG INAL ART ICLE

A comparative study of single image fog removal methods

Bijaylaxmi Das1 · Joshua Peter Ebenezer1,2 · Sudipta Mukhopadhyay1

Accepted: 26 October 2020 / Published online: 20 November 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
The presence of fog degrades visibility in natural scene conditions. Computer vision applications like navigation, tracking, and
surveillance need clear atmospheric images or videos as prerequisites for optimal performance. However, foggy atmosphere
creates problems for computer vision applications due to reduced visibility. Different fog removal techniques are used to
improve the visual quality of images and videos. The fog density depends on the depth information. Scene depth information
estimation needs multiple images, which limits its real-life application. Hence, a single image fog removal requires some prior
knowledge and/or assumptions to get the depth information. In this paper, the recent fog removal techniques are grouped into
three broad categories: (1) filter-based methods, (2) color correction based methods, and (3) learning-based methods, for ease
of understanding. The primary objective is to provide an introduction to this field and compare performance (both qualitative
and quantitative) of representative techniques for each category. It is found that filter-based methods are doing overall better
compared to other categories.

Keywords Fog removal · Image restoration · Transmission map · Color correction · Contrast enhancement · Deep learning

1 Introduction

Fog and haze cause visibility reduction leading to accidents.
According to the Federal HighwayAdministration in US,1 in
the year 2007–2016, an averageof 8902personswere injured,
and 464 persons died in 451 crashes due to fog. Similarly,
according to The Times of India,2 in India, 9317 people died
due to fog-related crashes in the year 2016. The death toll
increased to 11,090 in 2017, which is a jump of almost 20%.
Fog removal algorithms are needed to assist drivers in reduc-
ing fog-related risks. Outdoor scenes are usually degraded

1 https://ops.fhwa.dot.gov/weather/q1_roadimpact.htm.
2 https://timesofindia.indiatimes.com/india/over-10000-lives-lost-in-
fog-related-road-crashes/articleshow/67391588.cms.
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by the presence of dust particles and water droplets which
cause atmospheric absorption and scattering of light. The bad
weather can be due to fog, haze, mist, and/or rain.

Fog and haze are created by suspended water droplets of
size 1–10µm and 10−2–1µm, respectively. Fog and haze
belong to the steady bad weather category. The presence of
fog and haze attenuates the radiance of the objects received
by the camera from the scene point. It causes a reduction in
visibility, increasing travel time, and increasing the number
of accidents. Different fog removal algorithms aim to recover
color and details from a foggy image. Fog induces two types
of attenuation in the foggy image: (a) Direct attenuation and
(b) Air-light. In direct attenuation, the image’s intensity val-
ues are affected or degraded, reducing the contrast of the
image.Air-light induces color degradation in the foggy image
compared to the fog-free images. Foggy images cannot be
used directly for different computer vision applications, as
fog degrades the image quality. Hence, we need good fog
removal techniques that can improve the contrast and recover
the color of the images. Fog removal increases the contrast of
the image bywhich the images aremore suitable for different
computer vision applications like tracking and navigation.
In recent years, many articles on fog removal techniques
have been proposed. Over time, the number of publications
is increasing. So, it is difficult for a new researcher to follow
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all the updates. It is easier for researchers to find a direction
for their work if they have a comprehensive view of recent
techniques. Tripathi et al. [50] and Singh et al. [45] have done
a review on previous fog removal techniques for both multi-
ple images fog removal and single image fog removal up to
the year 2012 and 2017, respectively.

In this article, we have focused on fog removal techniques
from a single image proposed in 2012 and onwards. Themain
contributions of this paper are

– We propose grouping the fog removal techniques into
three different categories depending on the constituent
building blocks for ease of understanding.

– With the help of a few state-of-the-art techniques, each
category is discussed to explain the evolution of the tech-
nology followed by qualitative and quantitative perfor-
mance comparison. We have presented other important
methods in Table 1 with a brief introduction.

– Different techniques use different databases, metrics, and
competing techniques for comparison, creating problems
for a new researcher in this field. In this paper, we have
tested the prominent techniques using the same databases
(one natural and two synthetic foggy image databases) to
compare their (both qualitative and quantitative) perfor-
mance.

The structure of the paper is as follows. Section 2 describes
the state-of-the-art single image fog removal techniques. In
Sect. 3, different types of performance metrics and their mer-
its are discussed. Simulation and results are discussed in
Sect. 4. The paper is concluded in Sect. 5.

2 Literature survey

Initially, fog removalmethodsweregrouped into enhancement-
based methods and restoration-based methods. In the litera-
ture, early fog removalmethods are enhancement-based tech-
niques. Enhancement-based methods use contrast enhance-
ment to remove fog from images; for example, histogram
equalization is one such method. These methods work well
for images with haze and very light fog. As the fog density
increases, enhancement-based methods fail to remove the
fog efficiently. The restoration-based techniques use a phys-
ical model to estimate the degree of fog degradation, and
based on the estimation, it recovers the clear image. Based
on Koschmieder’s law, the physical model for a foggy image
is given by [50],

Ifoggy(x) = Iclear(x)t(x) + A(1 − t(x)) (1)

where Ifoggy(x) is the foggy image, Iclear(x) is the fog-free
image, A is the global atmospheric light, and t(x) is the

transmission map. When the atmosphere is homogeneous,
the transmission t can be represented by

t(x) = e−βd(x) (2)

where β is the atmosphere extinction coefficient, and d is
the distance of the scene point from the camera. In Eq. (1),
the first term Iclear(x)t(x) is known as the direct attenuation,
which causes the contrast reduction in the image and the
second term A(1 − t(x)) is known as the air-light which
causes the scene color shifting.

As fog concentration depends on the distance between
the object and the camera, depth information is required for
fog removal. Generally, for depth information, two or more
images are required. From a practical point of view, it is
more useful if the fog can be cleared independently for every
image. Single image fog removal needs some prior knowl-
edge and/or assumptions for the depth information. In the
reviewpaper [50], fog removal techniques up to the year 2012
have been discussed and compared. Techniques by Tan et al.
[47], Fattal et al. [10], Tarel et al. [48], He et al. [14], and
Tripathi et al. [49] have been compared, and among them,
Tripathi et al. [49] is found to be best method in terms of
quality. This article concentrates single image fog removal
techniques from the year 2012 and onwards. Thus, Tripathi
et al. [49] is chosen as a benchmark technique to represent
the year 2012 and before. In the second review paper [45],
different fog removal techniques from the year 2008 up to the
year 2017 have been reviewed. Singh et al. [45] did a compre-
hensive review by grouping the fog removal algorithms into
different categories and analyzed the fog removal techniques
qualitatively in terms of their pros and cons. However, Singh
et al. [45] did not make a quantitative comparison of the
de-hazing techniques. Recently, several learning-based tech-
niques have been proposed for fog removal. These methods
may or may not use the physical model of fog for restora-
tion. These methods can be classified as enhancement-based
or restoration-based methods, depending on the use of the
fog model for improvement.

In this article, for ease of understanding, the single-
image-based fog removal methods are categorized into
three broad categories: (1) Filter-based methods, (2) Color
correction-based methods, and (3) Learning-based methods.
The learning-based methods can further be divided into (a)
simple learning-based method and (b) deep learning-based
method. The filter-based methods, color correction based
methods, and the simple learning-based methods belong to
the restoration-based method. The basic block diagram for
the fog removal shown in Fig. 1 applies to restoration-based
methods. In Table 1, new fog removalmethods (the year 2017
and onwards) are grouped based on the building blocks and
performance.
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Table 1 Comparison of competing single image-based fog removal techniques

Method (Year) [Ref.] Building blocks Performance (pros/cons)

Filter based methods

Wang et al. (2017) [52] (a) Linear transformation , (b) Gaussian blurring,
(c) Hierarchical quad-tree subdivision with a
threshold value

Pros: Low execution time; Cons: In the presence
of dense haze, the output is dark

Guo et al. (2017) [13] (a) Gaussian dark channel-based atmospheric
light estimation, (b) Detail module based on
CLAHE, (c) Fusion-based transmission

Cons: High execution time, Quality of restored
image dependent on fog density

Li et al. (2018) [28] (a) Global structure transfer filter, (b) Global
edge-preserving smoothing filter

Pros: Able to preserve fine structures in defogged
image; Cons: Occasionally underexposed
restored images

Salazar-
Colores et al. (2018)
[41]

(a) DCP, (b) DC, (c) Morphological
reconstruction

Pros: Low execution time; Cons: Occasional
degradation in sky region

Hu et al. (2019) [17] (a) Illumination decomposition, (b) Non-local
haze-line prior

Pros: Eliminates glow-shaped illuminations,
Preserves natural illumination of input image,
Cons: High execution time

Color correction-based methods

Son et al. (2017) [46] (a) DCP, (b) Near Infra-Red fusion Pros: Better color preservation

Peng et al. (2018) [37] (a) Ambient light estimation, (b) Generalization
of the DCP

Pros: Color preservation; Cons: Fails in the
presence of multiple illumination sources,
Occasional halo artifacts

Kim et al. (2019) [22] (a) White balance technique, (b) Gray-world
assumption, (c) Contrast limited adaptive
histogram equalization (CLAHE)

Pros: Fast; Cons: Occasional color degradation

Simple learning-based methods

Berman et al. (2018) [4] Haze lines Pros: Fast, Robust; Cons: Non-uniform lighting
leads to artifacts in the restored images

Mandal et al. (2019)
[35]

Patch similarity Pros: Low computational complexity; Cons:
Occasionally fails in preserving edges

Raikwar et al. (2020)
[38]

Nonlinear model to estimate the boundary
function for transmission map

Pros: Low execution time, Preserves the colors in
restored image

Deep learning-based methods

Liu et al. (2019) [32] (a) Data-and-prior-aggregated transmission
network

Pros: Light weight network; Cons: High
execution time

Kuanar et al. (2019) [23] Deep Dilated Convolutional Network Pros: Low execution time

Zhang et al. (2019) [57] End-to-end multiscale CNN Pros: Low execution time; Cons: Sometimes fails
in dehazing the sky region

Dudhane et al. (2019)
[9]

(a) Deep fusion network, (b) Rnet, (c) Ynet Pros: Low execution time

Yeh et al. (2019) [55] (a) Image decomposition, (b) CNN, (c) U-Net,
(d) Nonlinear regression-based image
enhancement

Pros: Low computational complexity, Preserves
detail structures

2.1 Filter-basedmethods

This category comprises of the methods which use filters
for the transmission map refinement. Transmission map
refinement is the last step in the Depth Map Information
estimation in Fig. 1. Though this is the oldest among the
three categories, it still attracts the attention of researchers
[2,6,7,13–15,17,20,27,28,31,41,49,52].

In the year 2011, He et al. [14] proposed a concept named
dark channel prior (DCP), which gives a new direction for
single image fog removal. DCP is based on the assumption
that at least one color channel intensity in a local patch of an
outdoor image is near zero. Thus for an image, dark channel
prior is defined as

IDCP(x) = min
y∈�(x)

( min
c∈(r ,g,b)

I c(y)) (3)
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Fig. 1 Fog removal framework
for restoration based techniques

where I c is a color channel of image I and �(x), is a local
patch centered at x . So, the transmission map was obtained
by

t(x) = 1 − ω ∗ min
y∈�(x)

( min
c∈(r ,g,b)

I cfoggy(y)

Ac
) (4)

The transmission map is refined using soft matting [24].
The refined transmission map is used to recover the fog-free
image. But this method fails when there is a bright object
in the image, and it produces halo and block artifacts in the
fog-free image.

For dark channel (DC) estimation, Tripathi et al. [49] takes
the minimum over the color channel and omits spatial filter-
ing.

IDC(x) = min
c∈(r ,g,b)

(I cfoggy(x)) (5)

The proposed dark channel has better structural preserva-
tion than DCP. The anisotropic diffusion is applied over the
dark channel to get the depth map. A depth map should be
smooth for object except for the edges. Anisotropic diffusion
does smoothing in the central region, not in edge regions. So,
anisotropic diffusion helps in edge preservation. Tripathi et
al. [49] proposed anisotropic diffusion filter to estimate the
depth map. The refined depth map is called airlight map and
using it the defogged image is recovered as

I cclear(x) = I cfoggy(x) − Amap(x)

1 − Amap(x)
Ac(x)

(6)

where Amap(x) is the airlight map at pixel index x . Here, the
value of the global atmospheric constant for channel c, Ac(x)
is taken as 1. As the recovered images are low in contrast,
post-processing is done by histogram stretching [11].

The concept of DCP by He et al. [14] produces artifacts
at times. Hence, He et al. [15] proposed guided image filter
(GIF) for refining DCP to remove artifacts. The assumption
for GIF is, the GIF output is a linear transform of the guid-
ance image, i.e., the filtered output is a scaled and translated
version of the guidance image in a local window wi

P(x) = aiG(x) + bi , for all x ∈ wi (7)

where x is the pixel location, (ai , bi ) are constant coefficients
in wi , G is the guidance image, P is the filtered output and
wi is the patch centered at pixel i . In this method, the dark
channel image [IDC from (5)] is taken as the guidance image,

G. To determine the coefficients (ai , bi ), the output P is
modeled as,

P(x) = Q(x) − n(x) (8)

where Q is filtering input (DCP) and n is the unwanted com-
ponents or the noise. A solution is needed to minimize the
difference between P and Q and maintain the relation of
Eq. (7). So, a cost function is calculated in the window wi

given by,

E(ai , bi ) =
∑

x∈wi

((aiG(x) + bi − Q(x))2 + εa2i ) (9)

where ε is a regularization parameter. Hence, we can get the
values of (ai , bi ) by minimizing the cost function (E). After
calculating the (ai , bi ), the optimal value for GIF output, P
is calculated by,

P(x) = āi G(x) + b̄i , for all x ∈ wi (10)

where (āi , b̄i ) are the average value of (ai , bi ) in the window
wi (typicallywi = 20×20). The output of GIF (P) is used to
obtain the transmission map using Eq. (4) and the defogged
image is recovered from Eq. (1).

In the end of year 2015, Li et al. [27] proposed a weighted
guided image filter (WGIF) to remove the artifacts (e.g.,
halo artifact) produced by GIF. Li et al. [27] introduced an
edge-aware weighting and incorporated it into the GIF to
formWGIF [29]. The edge-aware weighting Γ measures the
importance of a pixel concerning the whole guidance image
by,

ΓG(x) = M(σ 2
G,�(x) + ε)

∑M
x ′=1(σ

2
G,�(x ′) + ε)

(11)

where σ 2
G,�(x) is the variance of the window size (2� +

1) × (2� + 1) centered at pixel x in the guidance image
G, M is the total number of pixels in the Guidance image.
ε = (0.001× L)2 is a small constant, where L is a dynamic
range of the guidance image. The Γ value for the edge pixels
is higher than the smoother region pixels. So, it preserves the
edges and removes the halo artifacts which are created in the
case of GIF. So, the cost function modified by inserting Γ in
Eq. (9) is given by,

E(ai , bi ) =
∑

x∈wi

((aiG(x) + bi − Q(x))2 + γ

ΓG(i)
a2i ) (12)
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where γ is the regularization parameter. Again the dark chan-
nel image (DC) is taken as the guidance image, G, and
DCP image as filter input, Q. The refined transmission map
is obtained using the GIF output P . For atmospheric light
estimation, Li et al. [27] have used hierarchical quad-tree
subdivision. This method has good edge-preserving quality
and no halo effects in restored images.

In the review by Singh et al. [45], WGIF [27] has been
placed among the top two rankedmethods based on its perfor-
mance. Therefore,WGIF is chosen as a benchmark technique
for further comparison.

2.2 Color correction-basedmethods

This category includes the methods which use color correc-
tion in the restoration of the defogged image. Sometimes,
the presence of color cast in hazy images affects some or all
color channels of the image. So, there is a need for color cor-
rection in those images for efficient defogging. Over time,
this category is getting more attention from the researchers
[18,19,22,37,46].

Huang et al. [18] proposed a method of combining DCP
and median filter for obtaining the transmission map from
a foggy image. The median filter technique is good at sup-
pressing the noise components while preserving the edge
information of the image. Here, an edge information is cal-
culated by

E(x) = w × min(mediany∈�(x) IDC(y), IDC(x))

− min
y∈�(x)

IDC(y) (13)

where w is a constant, Imin = minc∈(r ,g,b) I c and I is the
foggy image. The refined transmissionmap tr is measured by
subtracting the edge information from the DCP transmission
map [Eq. (4)] obtained as,

tr = 1 − w × min(mediany∈�(x) IDC(y), IDC(x))

+ (1 − w) × min
y∈�(x)

IDC(y) (14)

Thus, as a result, the transmission map has clear edge.
Huang et al. [18] have used an adaptive Gamma correction
method to enhance the transmission map which depends on
the density of haze. The value of Gamma is calculated by

γ = 1 + (th/Imax), if th > TH

= 1, if th < TH
(15)

where Imax is the maximum intensity of the input image,
th is an intensity value when cumulative probability density
(cdf ) is equal to 0.1. The threshold value TH is empirically

set to 120. The enhanced transmission map te is given by

te(x) = Imax (tr/Imax)
γ (16)

Using the gray world assumption, the color shift for each
channel is calculated. The fog free image is derived from
Eq. (1) as,

I cclear(x) = I cfoggy(x) − (Ac − dcshift)

max(te(x), t0)

+ (Ac − dcshift), c ∈ r , g, b

(17)

where dshift is the color shift for each channel measured by,

dcshift = avgr − avgc c ∈ r , g, b (18)

where avgc is the average intensity for channel c.
Peng et al. [37] proposed a fog removal method based
on ambient light estimation using depth-dependent color
change. The transmissionmap is estimated from the absolute
difference between the observed intensity and the ambient
light. Then, dependingupon thedifferent haze andvisual con-
ditions, the generalization of the DCP is performed to restore
image. The transmission map for foggy image is obtained
using Eq. (4). When there is a color cast, the color correction
coefficient is calculated by,

θc = (maxl∈(r ,g,b) Iavg)l

I cavg

1√
max(φ(Dσ ),1)

where, φ(y) = y if y > ε

= ∞, if y ≤ ε

(19)

where I cavg = max(avgx (I
c(x)), 0.1). The color cast is mea-

sured in CIELab color space by Dσ = ‖μ‖2−‖σ‖2‖σ‖2 where ‖ ‖2
is L2 norm, μ = (μa, μb)

T and σ = (σa, σb)
T represents

mean and standard deviation of chromatic components. If
Dσ is large value, then the color cast is strong and if Dσ is
zero, then there is no color cast. So, the ambient light (A)

is corrected by Ac
θ = Ac

θc
. Using the corrected atmospheric

light constant and from Eq. (1), the clear image is recovered.

2.3 Learning-basedmethods

Learning-based methods are those methods in which the
model is trained to create a mapping function for the given
input and output pair. During training the model, the param-
eters of the mapping function are estimated. So, fog-free
ground-truth images and the corresponding foggy images
(ground-truth + fog) are required for training themodel. Such
pairs can be generated faithfully by adding synthetic fog in
a ground-truth image.
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2.3.1 Simple learning-basedmethods

Zhu et al. [58] proposed a method based on color attenuation
prior and guided filter. It works on the HSV plane. Color
attenuation prior is based on the assumption that the scene
depth at a point is a linear function of

d(x) = k0 + k1S(x) + k2V (x) + e(x) (20)

where d is the scene depth, x is the pixel index, S, and V
are the saturation and brightness in the HSV plane. k0, k1,
and k2 are the parameters that need to be calculated, and e
is the normally distributed error. Using 500 synthetic foggy
images and supervised learning method, the model is trained
and thefinal coefficients are obtained as k0 = 0.121779, k1 =
−0.780245, k2 = 0.959710 and the standard deviation (σ )
for e is 0.041332. Once the depthmap is obtained, it is refined
using a guided filter [15] where the guidance image is the
dark channel image, and the final fog-free image is restored
using Eq. (1). As the fog degradation model is used to get
the fog-free image, it can also be called a restoration-based
technique. Recently, this subcategory is drawing more and
more attention from the researchers [4,16,21,30,35,38,44].

2.3.2 Deep learning-basedmethods

Recently, deep-learning-based methods are playing signif-
icant roles in object classification and recognition tasks
[5,9,23,32–34,39,40,51,54–57].

Cai et al. [5] proposed a convolutional neural network
(CNN) using a nonlinear activation function called bilateral
rectified linear unit (BReLU). Cai et al. proposed DehazeNet
for fog removal, which takes the foggy image as input, esti-
mates the transmission map and restores the defogged image
using Eq. (1). The refinement of the transmission map helps
preserve the edges and reduces the artifacts in the restored
image. Thus, this method is suboptimal as no refinement is
done on the transmission map, and the time for de-hazing is
also high. It is a restoration-based method.

Li et al. [25] proposed restoration-based de-hazing model
called All-in-one Dehazing Network (AOD-Net) which is
also based on the CNN. It does not need a separate estimation
of the transmission map and atmospheric constant for defog-
ging, instead used an end-to-end mapping to get defogged
image directly from foggy image. Li et al. [25]minimized the
recovered image error in the pixel level by merging the esti-
mation of transmission map (t(x)) and global atmospheric
constant(A) into one variable obtained by,

Iclear(x) = K (x)Ifoggy(x) − K (x) + b,

K (x) =
1

t(x) (Ifoggy(x) − A) + (A − b)

I (x) − 1

(21)

where Iclear(x) is the fog-free image, Ifoggy(x) is the foggy
image. K (x) is the variable which contains both transmis-
sion map (t(x)) and air-light (A) and b is a bias constant
with value 1. From Eq. (22), the value of K (x) also depends
on foggy input I (x). But, sometimes this method is unable to
remove the fog completely from the images, i.e., the recov-
ered images have some fog residues.
Goodfellow et al. [12] proposed a Generative Adversarial
Network (GAN) framework based on adversarial learning to
generate realistic-looking images from random noise. But
GAN is hard to train, and also it often induces artifacts
like color shifts and noise in the retrieved images. Li et
al. [26] proposed an end-to-end de-hazing framework based
on Conditional Generative Adversarial Network (cGAN) by
incorporating pre-trained Visual Geometry Group (VGG)
features and a L1-regularized gradient prior into basic cGAN.
It uses an encoder and decoder architecture for single image
haze removal. Each layer of the encoding process includes
convolution, batch normalization, and LeakyReLU, while
each layer of the decoding process includes deconvolution,
batch normalization, and ReLU. The architecture of cGAN
contains the generator and the discriminator frameworks. The
generator tries to generate a clear image from the foggy
image, whereas the discriminator (CNN) tries to decide
whether the clear image is real or fake. Both compete with
each other in an adversarial two-player game.

3 Performancemetrics

Although fog removal techniques can be compared visually
from the defogged image, quantitative metrics are needed to
get an unbiased opinion. Here, some of the standard perfor-
mance metrics like contrast gain (Cgain), percentage of the
number of saturated pixels (σ ), gradient norm (r ), structural
similarity index SSIM, Peak Signal to noise ratio PSNR, and
the execution time (t) are used to compare the fog removal
methods. Out of these metrics, SSIM and PSNR need refer-
ence or ground-truth.

3.1 Contrast gain

Contrast gain [50] is described as a mean contrast difference
between defogged and foggy images. Since clear day images
have higher contrast than foggy images, the contrast gain
should be positive for restored images. A higher value of
contrast gain indicates better performance of the fog removal
algorithm. The Cgain is measured by

Cgain = Cdefogged − Cfoggy (22)

where Cdefogged and Cfoggy are the mean contrast of the
defogged and foggy image, respectively. Let an image of size
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M × N is denoted by I. Then, mean contrast is expressed as

CI = 1

MN

N−1−p∑

y=p

M−1−p∑

x=p

C(x, y) (23)

where C(x, y) is the contrast of pixel at (x, y), which is
measured as

C(x, y) = s(x, y)

m(x, y)
(24)

where m(x, y) and s(x, y) are calculated as

m(x, y) = 1

(2p + 1)2

p∑

k=−p

p∑

l=−p

I (x + k, y + l) (25)

s(x, y) = 1

(2p + 1)2

p∑

k=−p

p∑

l=−p

|I (x + k, y + l) − m(x, y)|

(26)

where (2p + 1)2 is the window size. Here, 5 × 5 window is
taken for calculating mean contrast, i.e., the value of p is 2.

3.2 Percentage of saturated pixels (�)

Saturated pixels are those pixels which turn to either com-
pletely black or white in the image after the fog removal. The
value of σ [18,49,50] is measured as,

σ = n

M × N
× 100 (27)

where, n is the number of the pixels which are saturated after
fog removal but were not before. The lower is the value of
σ , the better is the result.

3.3 Gradient norm (r)

Gradient norm [18] is the ratio between the average gradient
of the image after fog removal and the foggy image. The
gradient norm is given by

Gradient norm (r) = mean(|∇ IDefogged|)
mean(|∇ IFoggy|) (28)

where |∇ IDefogged| ismagnitudeof gradient of restored image
and |∇ IFoggy| is magnitude of gradient of foggy image. The
gradient magnitude is calculated by the L2 norm between the
horizontal and vertical gradients. The higher is the gradient
norm, the better is the result.

3.4 Structural similarity index (SSIM)

SSIM [53]measures the similarity between reference fog free
image and the restored image. The range of SSIM is [0,1].
The SSIM value is calculated by,

SSIM(I,J) = (2μIμJ + c1)(2σI J + c2)

(μ2
I + μ2

J + c1)(σ 2
I + σ 2

J + c2)
(29)

where I is the reference image or the ground-truth, J is the
restored image,μI andμJ are the average of I and J, respec-
tively,σ 2

I andσ 2
J are the variances of I and J, respectively,σI J

is the covariance of I and J. c1 = (k1L)2 and c2 = (k2L)2

are the variables to stabilize the division and k1 = 0.01 and
k2 = 0.03 are constants and L is the dynamic range of the
pixel values. The higher the value of SSI M , the better is the
result.

3.5 Peak Signal to Noise Ratio (PSNR)

PSNR measures the peak signal-to-noise ratio, in decibels,
between two images that is the reference fog-free image and
the defogged image. The PSNR can be calculated as

PSNR = 10 log10
R2

MSE
(30)

where R = 255 andMSE is the mean-squared-error between
fog-free image (I ) and defogged image (J ).

The MSE can be calculated as

MSE =
∑

M,N [I (m, n) − J (m, n)]2
M × N

(31)

where (m, n) are the pixel index and M × N is the image
dimension. The higher the value of PSNR, the better is the
result.

3.6 Execution time (t)

Execution time (t) is the time taken by algorithms to remove
fog from an image. Here, the execution time perMega-pixels
is calculated for each image. A lower value of t means a faster
algorithm.

4 Experiments and results

In this section, we present details of the databases used and
the experimental setup as well as comparisons with various
other competing methods.
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Fig. 2 Images from O-Haze Database (a–d); Images from D-Hazy Database (e–h); Natural foggy images from LIVE Image Defogging Database
(i–l)

4.1 Database

We have used publicly available O-Haze [3] dataset, D-Hazy
[1], and LIVE Image Defogging Database [8] for compari-
son. As fog is a natural phenomenon, we need natural foggy
images for testing the efficiency of the defogging meth-
ods. So, we have used all 100 natural foggy images without
ground-truth from the 100-foggy-test-image of the LIVE
Image Defogging Database. But for comparing fog removal
methods using the metrics like SSIM and PSNR, we need
ground-truth corresponding to the foggy images. Hence, we
have used the O-Haze dataset and D-Hazy dataset, which are
collections of foggy images with their respective ground-
truths. The O-Haze dataset consists of 45 foggy outdoor
imageswith their ground-truth images (clear outdoor image).
These foggy images are generated using the haze generated
by aprofessional hazemachine that imitateswith highfidelity
real hazy conditions. The D-Hazy dataset consists of foggy

indoor images with their ground-truth images (clear indoor
image). From the D-Hazy database, 1159 images are used
to train the deep learning-based methods (DehazeNet, AOD-
Net, cGAN, GridDehazeNet), and the remaining 290 foggy
images with their ground-truth are used for comparison (test-
ing). In Fig. 2, some examples of the three databases are
shown.

4.2 Simulation settings

The simulation is performed in MATLAB R2016b on Linux
Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz and 32Gb
RAM with NVIDIA GEFORCE GTX 1080 Ti (11 Gbps
GDDR5X memory and 11GB frame buffer) GPU platform.
Using the foggy images from the O-Haze database, the
D-Hazy database, and 100 foggy images from the LIVE
Image Defogging Database, the comparative analysis is
performed. In Table 2, the values of the parameters for

Table 2 Parameters used to test/train the competing fog removal techniques

Category Method Parameters

Filter Tripathi et al. [49] Kappa=30, λ = 1/7, β = 0.9, No. of iterations=10

Based WGIF [27] � = 1, Patch size for DCP=7×7, ω = 31/32, For WGIF, r = 60, γ = 0.001

Salazar-Colores et al. [41] ω = 1, Square window for morphological operation=15 × 15

Color Huang et al. [18] w = 0.95, T H = 120, � = 5 × 5

Correction Peng et al. [37] Patch size for DCP=15×15

Simple Learning Zhu et al. [58] k0 = 0.121779, k1 = −0.780245, k2 = 0.959710, σ = 0.041332, For GIF,
r = 15, ε = 0.001

Deep Learning DehazeNet [5] Network training: iteration no.=5,00,000, Batch size=128, Initial learning
rate=0.005 which decreases by half for each 1,00,000 iterations

AOD-Net [25] Network training: momentum=0.9, Decay parameter=0.0001

cGAN [26] Network training: learning rate=2× 10−4, Weight of adversarial loss (α)=1, Weight
of perceptual loss (β)=150, Weight of content-based pixel-wise loss (γ ) = 150

GridDehazeNet [34] Learning rate=0.001, Training batch size=18, No. of dense layer=4, Growth
rate=16, λloss =0.04, Validation batch size=1
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each bench-marked fog removal method are provided. The
DehazeNet (Cai et al. [5]) method codes are taken from
“https://github.com/zlinker/DehazeNet”. Cai et al. [5] have
randomly collected 10,000 haze-free images from the inter-
net and synthesized 1,00,000 hazy images from them. The
DehazeNet is trained using these 1,00,000 synthesized foggy
images. The AOD-Net (Li et al. [25]) method codes are
taken from “https://github.com/Boyiliee/AOD-Net”. Li et al.
[25] have used the ground-truth images from NYU2 Depth
Database [36] to synthesize the foggy images using Eq. (1)
for different atmospheric light (A) and β [from Eq. (2)].
The AOD-Net is trained using 27,256 synthesized indoor
foggy images. The codes for cGAN (Li et al. [26]) are
taken from “https://github.com/hong-ye/dehaze-cGAN”. Li
et al. [26] have used the ground-truth (indoor) images from
NYU2 Depth Database [36] and ground-truth (outdoor)
images fromMake3D dataset [42,43] to synthesize the foggy
images using Eq. (1). The cGAN model is trained using ran-
domly chosen 2400 synthesized foggy images. The code
of GridDehazeNet [34] is taken from “https://github.com/
proteus1991/GridDehazeNet”. All the deep-learning-based
techniques are trained using the synthetic foggy images from
the D-Hazy database. The codes for technique by Kim et al.
[22] are taken from “https://sites.google.com/view/ispl-pnu/
software”. The DehazeNet, AOD-Net, cGAN, and Kim et
al. [22] are implemented using Python language. In Tables 3
and 4, the quantitative comparison in terms ofCgain, r , SSIM,
PSNR, and σ is shown for the O-Haze and D-Hazy database,
respectively. In Table 5 the quantitative comparison in terms
of Cgain, r , and σ is shown for the LIVE Image Defog-
ging Database. In Table 6, the execution time (in seconds
per Mega-pixels) for each fog removal techniques is given.

4.3 Discussion

In Figs. 3, 4, 5 and 6, a qualitative comparison between dif-
ferent techniques are shown. In Fig. 3, it can be observed
that techniques proposed by Tripathi et al. [49], Huang et al.
[18], Zhu et al. [58], cGAN (Li et al. [26]), Salazar-Colores
et al. [41] and GriDehazeNet [34] are doing a good job in
removing the fog. The defogged image from techniques by
DehazeNet [5] andAOD-Net [25] contains some residual fog
in the background. Themethod byKim et al. [22] can remove
the fog but is unable to preserve color in the restored image.
In Fig. 3, techniques by WGIF [27] and Peng et al. [37] are
unable to remove the fog. In Fig. 4, all the methods are doing
a great defogging work for the foreground, but are unable to
properly defog the background. The defogged image restored
by Salazar-Colores [41] method is underexposed.

In Fig. 5, defogged image from techniques by Zhu et al.
[58] (Fig. 5k:left) and AOD-Net [25] is under-exposed and
the defogged image from Peng et al. [37] has halo artifacts
around the wooden structure (Fig. 5k:right). In Fig. 6, a stan-

dard natural foggy image having twowhite objects (swans) is
shown. In fog removal, the presence of white objects (which
are similar to atmospheric light) sometimes creates chal-
lenges as the color of the white objects may change due to the
error in estimation of the dark channel. In Fig. 7, an enlarged
region of interest containing a swan, for each technique, is
analyzed. FromFig. 7, it canbenoticed thatTripathi et al. [49]
and Salazar-colores et al. [41] are handling the white object
better than other techniques. In Fig. 7,Huang et al. [18] is suc-
cessful in removing the fog, but failed to preserve the white
objects. Kim et al. [22] is able to remove fog, but induces a
color tint in the restored image. GridDehazeNet [34] is hand-
ing the white object better but is unable to remove the fog
completely. Techniques by Zhu et al. [58], DehazeNet [5],
WGIF [27] are removing the fog, but the images are becom-
ing underexposed. The image restored by Peng et al. [37]
method has undesired halo artifacts (Fig. 7h). Full resolu-
tion images are given in link: http://tiny.cc/compare-image-
restoration.3

From Tables 3, 4 and 5, it can be noted that contrast gain
(Cgain) for all techniques is positive, which implies that all
the methods are successful in enhancing the contrast of the
images. As fog removal techniques are grouped into four dif-
ferent categories, we should first investigate the best method
in each category.

Fromfilter-based category, three technologies that are Tri-
pathi et al. [49],WGIF (byLi et al. [27]), and Salazar-Colores
et al. [41] are benchmarked. For O-Haze database (Table 3),
in terms of contrast gain (Cgain), gradient norm (r ) and per-
centage of number of saturated pixels (σ ), Tripathi et al. [49]
is performingbetter thanWGIF (byLi et al. [27]) andSalazar-
Colores et al. [41] whereas in terms of SSIM and PSNR,
WGIF performs better. Similarly, for the D-Hazy database
(Table 4), Tripathi et al. [49] perform superior than WGIF
(by Li et al. [27]) and Salazar-Colores et al. [41] in terms of
all the metrics except gradient norm (r ). Similarly, Salazar-
Colores et al. [41] is preferable in terms of gradient norm
(r ). If the mean and standard deviation values are close to
each other for both the ground-truth image and the recovered
image, then the SSIM value will be high. In Tripathi et al.’s
method, there is contrast stretching (Post-processing) after
the fog-free image is restored, and it changes the mean and
standard deviation values, which lowers the SSIM index. In
WGIF (by Li et al. [27]), the use of guidance image and the
absence of post-enhancement after restoration causes similar
mean and standard deviation values of a ground-truth image
and the defogged image resulting in a higher SSIM value.
From the above discussion, it can be deduced that Tripathi
et al. [49] is an overall better method than WGIF [27] and

3 https://sites.google.com/view/more-results/a-comparative-study-
on-fog-removal-from-single-image.
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Fig. 3 Defogging results of competingmethods onFoggy Indoor Image
No. 1221 of D-Hazy Database: a Foggy Input; output of same by, b
Tripathi et al., c Huang et al., d Zhu et al., e WGIF, f DehazeNet, g

AOD-Net, h cGAN, i Peng et al., j Salzar-colores et al., k Kim et al., l
GridDehazeNet; and m Groundtruth; Full resolution images are given
in link: http://tiny.cc/compare-image-restoration

Fig. 4 Defogging results of competing methods on Foggy Outdoor
Image No. 19 of O-Haze Database: a Foggy Input; output of same by,
b Tripathi et al., c Huang et al., d Zhu et al., e WGIF, f DehazeNet, g

AOD-Net, h cGAN, i Peng et al., j Salzar-colores et al., k Kim et al., b
GridDehazeNet; and m Groundtruth; Full resolution images are given
in link: http://tiny.cc/compare-image-restoration

Fig. 5 Defogging results of competing methods on Foggy Outdoor
Image No. 22 of O-Haze Database: a Foggy Input; output of same by,
b Tripathi et al., c Huang et al., d Zhu et al., e WGIF, f DehazeNet, g

AOD-Net, h cGAN, i Peng et al., j Salzar-colores et al., k Kim et al., l
GridDehazeNet; and m Groundtruth; Full resolution images are given
in link: http://tiny.cc/compare-image-restoration
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Fig. 6 Defogging results of competing methods on Natural Foggy
Image of LIVE Image Defogging Database: a Foggy Input; output
of same by, b Tripathi et al., c Huang et al., d Zhu et al., e WGIF, f

DehazeNet, g AOD-Net, h cGAN, i Peng et al., j Salzar-colores et al.,
kKim et al., lGridDehazeNet; Full resolution images are given in link:
http://tiny.cc/compare-image-restoration

Fig. 7 Enlarged version of Swan from Fig. 6; Full resolution images are given in link: http://tiny.cc/compare-image-restoration

Salazar-Colores et al. [41] in the filter-based category based
on chosen metrics and databases.

From the color correction-based category, three methods,
Huang et al. [18], Peng et al. [37] and Kim et al. [22], are
taken for bench-marking. For O-Haze database (Table 3), in
terms ofCgain, r , and SSIM, Peng et al. [37] is performing bet-
ter than Huang et al. and Kim et al., but for D-Hazy database
(Table 4) the technique by Huang et al. is performing supe-
rior to Peng et al. and Kim et al. in most of the metrics.
From Tables 3 and 4, Peng et al. [37] is an overall better
method than Huang et al. [18] and Kim et al. [22] in Color-
Correction category, but it is also creating halo effects (Fig. 7)
in restored images which is undesirable. From Tables 3 and
4, it can observed that for O-Haze databse, cGAN (by Li et
al. [26]) is performing better in terms of all themetrics except
contrast gain (Cgain) where as for D-Hazy database, GridDe-
hazeNet is performing better in terms of PSNR and SSIM. As
deep-learning-based models are trained using foggy and cor-
responding ground-truth image pairs, they have better SSIM
andPSNR values compared to techniques of other categories.
Zhu et al. [58] is doing better contrast enhancement in the
learning-based category, but it also has a high percentage

of saturated pixels (σ ), which is undesirable. Hence, for
learning-based methods, cGAN [26] is more acceptable in
fog removal compared to others.

From Table 3 for O-Haze database, we can notice that,
in terms of Cgain, Tripathi et al. [49] has the highest value,
followed by Salazar-Colores et al. [41] and Zhu et al. [58]
which shows that Tripathi et al. [49] method is doing a better
job at contrast enhancement. Concerning metric r , Tripathi
et al. [49] has the highest value, followed by Peng et al., and
Salazar-Colores et al. [41]. Concerning metric SSIM, cGAN
[26] has the highest value, followed by WGIF [27] and Peng
et al. [37]. As, SSIM shows the similarity of two images,
cGAN [26] has better preservation of the structures in the
restored images. Concerning metric PSNR, cGAN [26] has
the highest value, followedbyWGIF [27] andDehazeNet [5].
Similarly, for σ , GridDehazeNet [34] has the lowest value,
followed by cGAN [26] and Huang et al. [18].

From Table 4 for D-Hazy database, in terms of Cgain,
Zhu et al. [58] has the highest value, followed by Tripathi
et al. [49] and Salazar-Colores et al. [41]. Concerning met-
ric r , Tripathi et al. [49] has the highest value, followed
by Salazar-Colores et al. [41] and cGAN [26]. Similarly,
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concerning metric SSIM, GridDehazeNet [34] has the high-
est value, followed by cGAN [26] and DehazeNet [5]. As,
the deep learning-based methods are trained using the D-
Hazy database, they have better SSIM andPSNR. Concerning
metric PSNR, GridDehazeNet [34] has the highest value, fol-
lowed by cGAN [26] and Huang et al. [18]. Similarly, for σ ,
Kim et al. [22] has the lowest value, followed by AOD-Net
[25] and cGAN [26].

From Table 5, with respect toCgain, Tripathi et al. [49] has
the highest value, followed by Salazar-Colores et al. [41],
followed by Zhu et al. [58] which shows that Tripathi et al.
[49] method is doing a better work at contrast enhancement.
Concerning metric r , Tripathi et al. [49] have the highest
value, followed by Salazar-Colores et al. [41], followed by
Peng et al. [37]. Similarly, for σ , cGAN [26] has the lowest
value, followed by GridDeHazeNet [34] and Kim et al. [22].
So, it can be noted that the technique by Tripathi et al. [49] is
giving a better defogging result at high Cgain and low σ and
also have high gradient value.
For better performance, the defogged image should have high
contrast gain with a low saturation percentage. cGAN [26]
method has the lowest σ value, but with a low contrast gain.
In Tripathi et al. [49]’s method, the defogged image has high
contrast gain with a low saturation percentage. Hence, it can
be deduced that Tripathi et al. [49] is giving an overall better
result.

InTable 6, the execution time (in seconds perMega-pixels)
for each fog removal technique is observed. From the table,
AOD-Net [25] is the fastest compared to other methods.
However, AOD-Net [25] is executed using a high-end GPU;
the execution time comparison is not fair. From the table, for
all databases (O-Haze database, D-Hazy database, and Live
ImageDefoggingDatabase), Tripathi et al. [49] have the low-
est execution time, followed by Zhu et al. [58], and Huang
et al. [18] for MATLAB implemented codes using only the
CPU. So, Tripathi et al. [49] is the fastest method. As AOD-
Net and cGAN have been tested using CPU and GPU, they
are faster than the other techniques. For the Python-based
codes (AOD-Net and cGAN and the method by Kim et al.
[22]), AOD-Net [25] is faster.

From the above discussion, it can be analyzed that filter-
based techniques are better for defogged image restoration
than the other categories.

The filter-based techniques use amodified concept ofDCP
to remove the fog, but most of the filter-based methods have
high execution time. However, as a category, filter-based
techniques are better than other groups in terms of execution
time. For the filter-based techniques, sometimes the artifacts
associated with DCP are present in the output. The outputs
lose their natural look, which causes low values of SSIM and
PSNR of restored images. The future work in this category
should be to get a fast filtering method which can reduce
artifacts and give a natural look.

The color correction-based methods work well for foggy
or hazy images with a color cast. However, they distort the
color of the defogged image if no color cast is present in the
input foggy images, which is undesirable. The future direc-
tion for the methods should be to find the color correction
methods that canwork nicely for hazy imageswith orwithout
a color cast and preserve the color in either scenario.

All the deep learning-based methods need an extensive
database of foggy images with their respective ground truth
for training the models. These methods give good results
for synthetic foggy images but fail to do the same for natural
foggy images. The deep learning-based methods are faster as
they use high-end GPU, which is not always feasible in real
applications. So, the future direction for this category should
be to make them more robust, which can give better results
for synthetic and natural foggy images with low execution
time with the use of only CPU or low-end GPU.

5 Conclusion

Over time, the methods for removing fog are becoming
more and more sophisticated. In this paper, the recent
fog removal techniques are analyzed. First, the new fog
removal techniques are categorized based on their constituent
blocks. From each category, the prominent methods are dis-
cussed comprehensively. The merits and demerits of the fog
removal methods are analyzed. Then, the competing tech-
niques are bench-marked based on their performance. The
competing techniques are compared qualitatively and quanti-
tatively using three databases (O-Haze, D-hazy, and Live Fog
Database). The metrics like contrast gain (Cgain), gradient
norm (r), percentageof saturatedpixels (σ ),SSIM, andPSNR
are used for quantitative comparison. From the discussion, it
can be deduced that filter-based techniques, though old, are
performing better than other categories in fog removal from
natural foggy images and O-Haze dataset (outdoor synthetic
foggy images). For the D-Hazy dataset (synthetic indoor
foggy images), the deep-learning-based techniques perform
superior to other categories.As the deep-learning-based tech-
niques are trained using the synthetic foggy images, they are
doing better fog removal for similar synthetic foggy images.
The deep-learning techniques are also fast as they use the
help of a high-end GPU. However, they perform poorly for
natural foggy images as they cannot be trained using natural
foggy images. Recently, the use of deep learning techniques
for defogging is increasing. Although the deep learning tech-
niques are giving good results, the computational complexity
of these techniques is very high, and they need prior knowl-
edge of depth to train the model. So, at this moment, it
is not easy to use these methods for a real-time applica-
tion. However, in conventional techniques, there is no need
for ground-truth (fog-free image). Using some assumptions
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and/or prior knowledge, they can get the scene depth. From
the comparisons, it can be deduced that the conventional
techniques are doingbetter than thedeep learning-based tech-
niques. From the qualitative and quantitative analysis, it can
be noted that few filter-based techniques viz. Tripathi et al.
[49], Salazar-Colores [41] are giving overall better results.
From the deep learning-based techniques, cGAN [26] and
GridDehazeNet [34] are performing better than the other.
In the future, with more training data and GPU power, deep
learning-based techniquesmay overcome these obstacles and
exceed other performance techniques.

Each category of fog removal technique has its advantages
as well as limitations. Hence, there is a scope of improve-
ment for all fog removal techniques in each group. For the
filter category, the methods can be faster without degrad-
ing the restored image (without the halo, block artifact) and
retain the natural look. For the color correction category, the
techniques should work for with or without color cast foggy
images. Similarly, learning-based methods should also work
efficiently for natural images using only CPU or low-end
GPU. In the future, the techniquesmayovercome the research
gap in each category to improve fog removal.
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