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Abstract
This paper proposes a novel single-image super-resolution method based on local biquadratic spline with edge constraints
and adaptive optimization in transform domain. The complex internal structure of the image makes the values of adjacent
pixels often differ greatly. Using surface patches to interpolate image blocks can avoid large surface oscillation. Because the
quadratic spline has better shape-preserving property, we construct the biquadratic spline surface on each image block to make
the interpolation more flexible. The boundary conditions have great influence on the shape of local biquadratic spline surfaces
and are the keys to constructing surfaces. Using edge information as a constraint to calculate them can reduce jagged and
mosaic effects. To decrease the errors caused by surface fitting, we propose a new adaptive optimization model in transform
domain. Compared with the traditional iterative back-projection, this model further improves the magnification accuracy by
introducing SVD-based adaptive optimization. In the optimization, we convert similar block matrices to the transform domain
by SVD. Then the contraction coefficients are calculated according to the non-local self-similarity, and the singular values
are contracted. Experimental comparison with the other state-of-the-art methods shows that the proposed method has better
performance in both visual effect and quantitative measurement.

Keywords Local biquadratic spline · Boundary conditions · Singular value contraction · Adaptive optimization

1 Introduction

The purpose of single-image super-resolution (SISR) is to
recover high-frequency information from the low-resolution
(LR) input images and generate reasonable high-resolution
(HR) images that are not conflict with the LR versions. SISR
is an important branch of image processing and has appli-
cations in many areas, such as medical imaging, security
surveillance, satellite imagery, e-commerce andmany others.
There are two main types of SISR methods: interpolation-
based methods and learning-based methods.
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Classical polynomial interpolation methods [21–23] are
extensively used due to their simplicity and speed of com-
putation. However, since these methods use the commonly
used polynomial fitting method to construct the interpola-
tion surface of the image, the generated images are often
too smooth and appear jagged and ringing effects in texture
and edge areas. To solve this problem, some edge-oriented
interpolationmethodswere proposed [5,20,29]. The adaptive
interpolation method based on covariance was proposed by
Li et al. [20]. The method first estimates the local covariance
coefficient from the LR image, estimates the HR covariance
according to the geometric duality between LR covariance
and HR covariance, and then used these covariances to adap-
tively adjust the interpolation.Chen et al. proposed a fast edge
guidancemethod [5]. Based on the analysis of the local struc-
ture of the image, this method divides the image into smooth
regions and edge regions, and adopts a specific interpolation
method in different regions. The method proposed by Wang
et al. [29] realizes the super-resolution reconstruction of a
single image through adaptive self-interpolation of gradient
amplitude.Thebasic ideaof thismethod is tofirst estimate the
HRgradient field from theLR image, and then this gradient is
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used as the gradient constraint in the reconstructedHR image,
so that the reconstructed image can retain sharp edges. RFI
[35] uses rational fractal interpolation for texture regions and
rational interpolation for non-texture regions. These meth-
ods use the structural information of images to sharpen the
edges, but they are easy to generate noise and distortion in
the texture area. Other methods use some constraints to opti-
mize the interpolated HR images. Iterative back projection
optimizes the HR image by reducing the error between the
down-sampled HR image and the input LR image iteratively,
such as IBP [19], BFIBP [7], NLIBP [13], etc. NLFIBP [34]
optimizes the interpolation image in combination with the
nonlocalmean filter and back projection. The enlarged image
has sharp edges, while the accuracy is relatively low. In addi-
tion, the nonlocal self-similarity of images is widely used in
various image super-resolution methods [18,25,37]. BM3D-
SR [14] enlarge the image by combining Wiener filtering
in transform domain and iterative back projection frame-
work. WSD-SR [6] is improved based on BM3D-SR. The
Wiener filter in 3D transform domain is changed into one
in 1D similar domain, which not only reduces the compu-
tational complexity, but also improves the image quality.
LPRGSS [33] uses the self-similarity of images and the spar-
sity of the global structure as the constraints to optimize the
interpolated image, and achieves remarkable results.

The learning-based SISRmethod learns themapping from
LR to HR images through training sets containing numer-
ous HR and LR image pairs. Learning mapping methods
can be divided into two categories: methods that rely on
external images as the training data and methods that rely
only on input LR images. These methods include sparse
dictionary learning [24,27], manifold learning [4], local lin-
ear regression [26] and convolutional neural networks [11].
ANR [27] learns the sparse dictionary on fixed dictionary
atoms. SF [30] achieves outstanding performance through
clustering and the corresponding learned functions. A+ [28]
improvesANRbased on the idea of SF, and combines the best
characteristics of ANR and SF. The deep learning method
SRCNN [10] based on convolutional neural network directly
learns the end-to-end mapping between LR and HR images,
and achieves remarkable results. FSRCNN [12] raises the
speed of enlargement and achieves better image quality by
improving the structure of SRCNN. SelfEx [16] is based on
image self-similarity. Instead of relying on external data, it
learns internal dictionaries from the given image. By expand-
ing the search space of similar blocks, the limitations of
internal dictionaries are improved. MMPM [17] proposes
mixture prior model to learn image features, and uses the
method based on curvature difference to group image blocks.
DLD [9] builds a lightweight database and learns adaptive
linear regression, which maps LR image blocks directly into
HR blocks, and achieves excellent results.

In this paper, we propose a new method based on local
biquadratic spline with edge constraints and adaptive opti-
mization in transformdomain for SISR.The local biquadratic
spline interpolation is divided into four steps. First, we use
the image edge information to calculate the boundary con-
ditions. Second, for each 3 × 3 LR image block, a local
biquadratic spline surface is constructed, namely, 9 surface
patches. Third, the weighted average of all local biquadratic
spline surfaces constitutes the overall bicubic fitting surface.
Finally, the sampling density is selected according to the
scale factor, and the output HR image is obtained by sam-
pling on the bicubic fitting surface. Subdividing a surface
into 9 surface patches gives each surface greater interpolation
flexibility. Therefore, the error is smaller in the region where
the pixel value varies greatly, which improves the accuracy
of the enlarged image. It is inevitable to have approxima-
tion error and lose part of high-frequency information when
fitting image blocks with surfaces. To overcome these two
shortcomings, we use the non-local self-similarity and data
fidelity as prior constraints to optimize the image in space
and transform domains. For each iteration, the approxima-
tion error is reduced in the transform domain by contracting
singular values of each similar block matrix. The contrac-
tion coefficient is adaptively updated in the iteration. Then
in the space domain, the high-frequency information lost in
the interpolation is made up by projecting the amplified error
image back to the HR image.

The major contributions of our work are summarized as
follows:

1. We propose a new local biquadratic spline method with
edge constraints. Each 3× 3 image block is interpolated
by nine C1 continuous surface patches, which improves
the interpolation accuracy and the flexibility of surface
to approximate the shape of the image block.

2. A newmethod for calculating the boundary conditions of
biquadratic spline surfaces is presented. The edge infor-
mation is introduced as a constraint to reduce the jagged
and mosaic effect of the enlarged image edge. The two-
step method improves the image accuracy and reduces
the computation.

3. We construct a novel adaptive optimization in transform
domain. Compared with the traditional iterative back-
projection method, the proposed model incorporates the
adaptive optimization based on SVD. By using the non-
local self-similarity, the interpolation error is reduced,
and the quality of the convergent image is improved
greatly.

The rest of the paper is arranged as follows. Section 2
describes the problems and introduces the overall process
of the proposed method. In Sect. 3, the details of local
biquadratic spline with edge constraints are described. Sec-
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tion 4 describes the adaptive optimization in transform
domain and analyzes the structure of the optimizationmodel.
Section 5 evaluates the performance of the proposed method
in terms of visual effect and quantitative measurement. A
summary of the paper is given in Sect. 6.

2 Problem description and algorithm
framework

The object of SISR is to recover HR image containing high-
frequency information from the known degraded LR image.
The image degradation process can be expressed as follows:

Y = ( fg ⊗ X) ↓s (1)

where X and Y represent HR and LR images, respectively.
fg is fuzzy filtering, and ’⊗’ is the convolution operation.
’↓s’ represents the down-sampling operation with scale fac-
tor s. Ideally, the reconstructed HR image should degrade to
produce the same image as the known LR image. However,
with only a small amount of LR information, it is difficult
to restore an ideal HR image. There will be errors between
the LR image generated by the actual generated HR image
and the input image. Iterative back-projection is a method
to obtain HR image by minimizing reconstruction errors.
Specifically, after the initial HR image X0 is obtained by
interpolation method, the back-projection operation is per-
formed iteratively. Each iteration is divided into two steps:
calculating the error image and projecting the enlarged error
image back to HR image. The formula is as follows:

Xt+1 = Xt +U ((Y − ( fg ⊗ Xt ) ↓s), s) (2)

where Xt represents the HR image obtained after the t-th
iteration, and U (·, s) represents the interpolation for super-
resolution,with the scale factor of s. The error image between
the degraded image of Xt and the input LR image Y is cal-
culated and enlarged. Then, the reconstructed error image is
projected back to Xt to complete a back-projection operation
of the error image. As the number of iterations increases,
the error between the enlarged image and the input image
decreases gradually. When the stop condition is reached, the
final HR image is output.

The optimization model of iterative back-projection is
based on the objective function of minimizing the error
between the iterative convergence result and the input image.
But the solution of this objective function is an indetermi-
nate problem. In other words, there may bemultiple different
solutions that satisfy the optimal solution. Several different
HR images may degenerate into the same LR image, and
the convergence result may be quite different from the ideal
HR image. Therefore, the interpolation function U has an

important influence on the accuracy of the output image.
Traditional image interpolation algorithms, such as bicubic
spline interpolation, construct a whole surface to interpolate
the entire image. The disadvantage of the overall construc-
tion surface is that much local information in the image is
ignored. When the pixel values are greatly different between
neighborhoods, the high-frequency components of the image
are easily damaged. Thus the details degrade due to the wig-
gle of the polynomial spline functions. The main reason for
this phenomenon is that the same kernel function is used
in different regions. The methods lack adaptability and are
prone to produce zigzag effect on the edge areas.

In addition, the errors between the HR image and the
input image are mainly distributed in the image edges and
texture areas. The back-projection operation of the recon-
structed error image canmake up themissing high-frequency
information. However, there are inevitably errors in the way
that polynomial interpolation surface is used to fit the orig-
inal image surface. After the degradation of the HR image,
partial errors will not be reflected in the error image. There-
fore, this part of errors cannot be reduced by back-projection
operation, but accumulate in the iterative process, making the
final convergence result far from the ideal image. Therefore,
ignoring the interpolation error and directly carrying out the
back-projection operation will limit the improvement of the
image accuracy, resulting in fuzzy effect.

Through the above analysis, we propose a SISR method
based on local biquadratic spline with edge constrains and
adaptive optimization model in transform domain. The pro-
posed algorithm first obtains the initial HR image by local
biquadratic spline with edge constraints (LBSEC), and then
iteratively optimalizes it to obtain the final HR image. Fig-
ure 1 shows the overall process.

Each iteration is divided into two steps: optimization in
transform domain and back-projection of the error image.
First, the optimization in the transform domain is carried out.
The similar block matrices are obtained by matching blocks.
And the singular values of each matrix are contracted adap-
tively to get the updated image blocks. Then we aggregate
the blocks to obtain the optimized HR image. Second, back-
projection is accomplished by enlarging the error image with
LBSEC and then projecting it to the reconstructedHR image.
Continue iterating until the stop condition is reached, and
output the final HR image.

3 Local biquadratic spline with edge
constraints

The traditional interpolation algorithms use the method of
constructing the whole surface, and uses the same kernel
function in different areas. In this way, the high-frequency
information of the image is easily lost, resulting in smooth
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Fig. 1 The flowchart of the proposed algorithm. LBSEC represents the
local biquadratic splinewith edge constraints. X0 is the initial HR image
amplified by LBSEC from the input LR image, and Xt is the optimized

HR image obtained in the tth iteration. Mse denotes the mean square
error between the degraded HR image and the input LR image, and T
is the maximum of iterations

and ringing effect. Therefore, we propose a new local
biquadratic spline with edge constraints method. We con-
struct a local biquadratic spline surface containing 9 surface
patches on each 3×3 grid. Different boundary conditions are
adopted in different areas. This way improves the shape pre-
serving ability of the surfaces, and reduces the loss of the high
frequency components in the regions with large image gradi-
ent. Because the biquadratic spline surface is constructed on
a small 3× 3 image block containing 9 pixels, the boundary
conditions have great influence on the shape of the surface.
They are the key to construct an ideal surface. The meaning
of the ideal surface here is that the surface not only approx-
imates the image block with high precision, but also has the
shape of the image block. Constructing biquadratic spline
surface is divided into two steps: calculating the boundary
conditions and constructing surface. After constructing all
local biquadratic spline surfaces, the integral bicubic fitting
surface is formed by surface fusion.

3.1 Calculate the boundary conditions

The boundary conditions to be computed are the first partial
derivatives at the pixel points. The interpolation accuracy
of biquadratic splines can reach the accuracy of biquadratic
polynomials. Therefore, the computational boundary condi-
tions need to have the precision of biquadratic polynomials.
When calculating the boundary conditions, we introduce the
structure information of the image as a constraint. So the first
partial derivative not only has high accuracy, but also keeps
the shape of the edge, thus reducing the sawtooth effect of the

edge region. Assuming that the pixel values of the input LR
image are sampled per unit area on the continuous original
surface. The piecewise surface gi, j is used to approximate
the original surface. Then, the pixel value can be defined as

Pi, j =
∫ j+0.5

j−0.5

∫ i+0.5

i−0.5
gi, j (x, y)dxdy (3)

To make the boundary conditions have biquadratic polyno-
mial accuracy,weuse the biquadratic polynomial to construct
gi, j on the 5 × 5 image block (Fig. 2). That is, in the
[i−2.5,i+2.5]×[ j−2.5, j+2.5] region of xy plane. gi, j (x, y) can
be written as

gi, j (x, y) = a0u
2v2 + a1u

2v + a2uv2 + a3u
2

+a4uv + a5v
2 + a6u + a7v + a8 (4)

where u = x − i, y = y− j , a0, a1, . . . , a8 are the unknown
surface coefficients.

The first partial derivatives a6, a7 in the surface patch
gi, j (x,y) are the boundary conditions to be solved. There are
9 unknowns in (4). If they all participate in the calculation
of a6 and a7, a large amount of calculation is required. To
reduce the calculating amount, we solve a6 and a7 through
the first-order difference quotient. There are 25 pixels on the
5× 5 image block in Fig. 2. According to (3) and (4), 8 first-
order difference quotients including a1, a2, a6 and a7 can be
obtained from 8 directions in Fig. 2. And a6 and a7 can be
solved by the 8 first-order difference quotients. In order to
improve the fitting accuracy, we hope that the pixels on the
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Fig. 2 First-order difference quotients in eight directions on the 5 × 5
image block

inner 3 × 3 image block play a greater role in determining
a6 and a7. Therefore, we use the following two-step method
to calculate a6 and a7.

Next, we introduce the solution method of a6, a7. Based
on (3) and (4), the following four equations can be obtained
from the first-order difference quotient:

1
12a2 + a6 = Pi+1, j − Pi−1, j

2
= c1,

1
12a1 + a7 = Pi, j+1 − Pi, j−1

2
= c2,

13
12a1 + 13

12a2 + a6 + a7 = Pi+1, j+1 − Pi−1, j−1

2
= c3,

13
12a1 − 13

12a2 − a6 + a7 = Pi−1, j+1 − Pi+1, j−1

2
= c4

(5)

As shown in Fig. 2, c1, c2, c3, c4 represent the first-order
difference quotients in the four directions indicated by the
red arrows, respectively.

The expressions of a6, a7 as linear combinations of a1, a2
are obtained by using the least square method with con-
straints. The objective function is defined as

G1(a1, a2, a6, a7) = w1(
1
12a2 + a6 − c1)

+ w2(
1
12a1 + a7 − c2)

+ w3(
13
12a1 + 13

12a2 + a6 + a7 − c3)

+ w4(
13
12a1 − 13

12a2 − a6 + a7 − c4)

(6)

where w1, w2, w3, w4 are the weights. By minimizing the
objective function G1(a1,a2,a6,a7), that is, setting its partial
derivatives with respect to a6, a7 as zero, we can obtain the
expression of a6, a7 as follow:

a6 = β11a1 + β12a2 + β13,

a7 = β21a1 + β22a2 + β23
(7)

Fig. 3 The 3×3 image block is divided into 9 regions, and the adjacent
regions are separated by different colors. The red arrows represent the
boundary conditions. They are the first partial derivatives of the corre-
sponding pixels. The arrow direction is the partial derivative direction

The second step is to solve a1, a2. From (3) and (4), we
can get that

13
6 a1 + 49

12a2 + a6 + 2a7 = Pi+1, j+2 − Pi−1, j−2

2
= c5,

13
6 a1 − 49

12a2 − a6 + 2a7 = Pi−1, j+2 − Pi+1, j−2

2
= c6,

49
12a1 + 13

6 a2 + 2a6 + a7 = Pi+2, j+1 − Pi−2, j−1

2
= c7,

49
12a1 − 13

6 a2 − 2a6 + a7 = Pi−2, j+1 − Pi+2, j−1

2
= c8

(8)

where c5, c6, c7, c8 correspond to the first-order difference
quotients in the four directions indicated by the blue arrows
in Fig. 3.

Substitute (7) into (5) and (8) to get the 8 equations
hi (a1, a2) = ci , i = 1, 2, . . . , 8 about a1, a2. And the a1, a2
are determined by least square method again, namely, by
minimizing the following formula:

G2(a1, a2) =
8∑

i=1

wi (hi (a1, a2) − ci )
2 (9)

The weights in (6) and (9) are defined as follows:

wi = 1

1 + (�i/di )2
(10)

where �i is the second-order difference quotients in corre-
sponding directions, and di is the distance between adjacent
pixels. The image edges have a significant impact on the
visual effect. To reflect the image edge features better, the
approximate surface should be closer to the original one in
the edge directions than in other directions. A smaller change
of the pixel values means that the direction is more likely to
be the direction of the image edge, which should be given
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Table 1 PSNR (dB) and running time results of LBSEC based on over-
all and two-step solutions on Set5, Set14, BSD100 and Urban100 by a
factor of 2

Image set Overall solution Two-step solution

PSNR (dB) Time (ms) PSNR (dB) Time (ms)

Set5 34.57 642 34.75 486

Set14 30.63 1199 30.98 862

BSD100 29.93 820 30.19 599

Urban100 26.96 934 27.37 843

The best results are shown in bold

a larger weight. Finally, the a6, a7 are obtained by bringing
a1, a2 into (7).

In the two-step solution, a6 and a7 are expressed as func-
tions of other coefficients a1, a2. This way makes full use
of the structural information of the image, so that the pix-
els on the inner 3 × 3 image block play a greater role in
determining a6 and a7. Thereby, the calculated boundary
conditions are more reasonable. Compared with the over-
all solution, the two-step one improves the fitting precision.
In addition, the overall solution is that 9 unknown coeffi-
cients are all involved in the calculation. For each pixel, the
unknown coefficients are solved by a nine-element linear
equation set. The two-step solution is to obtain a6 and a7 by
solving the binary linear equation set twice, which requires
less calculation. In order to test the performance, wemagnify
images by LBSEC based on overall and two-step solutions
respectively. As shown in Table 1, the latter can effectively
improve the quality of enlarged images while reducing the
time cost.

3.2 Construct local biquadratic spline surface

For each 3×3 image block, we construct a biquadratic spline
surface patch, which consists of 9 subsurface patches. As
shown in Fig. 3, the neighborhood [i−1,i+1]×[ j−1, j+1] of pixel
point (i, j) is divided into 9 subregions, each containing a
pixel point. We construct a biquadratic surface patch on each
subregion, denoted by sm,n , and the formula is as follows:

sm,n(x, y) = bm,n
0 u2v2+bm,n

1 u2v+bm,n
2 uv2+bm,n

3 u2

+bm,n
4 uv+bm,n

5 v2+bm,n
6 u+bm,n

7 v+bm,n
8

(11)

where (m,n) is the coordinates of pixel points contained in the
subregion,m = i±1, i, n = j±1, j . u = x−m, v = y−n,
and bm,n

0 ,bm,n
1 ,...,bm,n

8 are the unknown surface coefficients.
Because of C1 continuity of biquadratic spline surface,

the function value and first partial derivative of subsurface
patches are continuous at the junction. For example, at the
boundary curves x=i±0.5 in the y direction, the function value

being continuous is the sufficient condition for ∂sm,n
∂ y being

continuous. So here, we only consider the continuity of ∂sm,n
∂x ,

regardless of ∂sm,n
∂ y . Then, the adjacent subsurface patches at

the junction of x=i±0.5 satisfy the following conditions:

sm,n(m + 0.5, y) = sm+1,n(m + 0.5, y),

∂sm,n

∂x
(m + 0.5, y) = ∂sm+1,n

∂x
(m + 0.5, y)

(12)

where m = i − 1, i, n = j ± 1, j . The same is true for the
interface curves in the x direction. In addition, for each pixel
value Pm,n,m = i ± 1, i, n = j ± 1, j ,

sm,n(m, n) = bm,n
8 = Pm,n (13)

We use the known conditions to solve the unknown
coefficients by group way. The first group is bm,n

3 ,bm,n
6 . The

first partial derivatives of x and y directions at point (m,n)

obtained above are am,n
6 ,am,n

7 respectively. We assign am,n
6 ,am,n

7

to bm,n
6 ,bm,n

7 , which are the first partial derivatives of the sub-
surface patches sm,n in the corresponding regions. As shown
in Fig. 3, the red arrows indicate the first partial derivatives.
Different regions adopt different boundary conditions. Then,
the boundary conditions can be expressed by the formula as
follows:

bm,n
6 = am,n

6 ,m = i ± 1, n = j ± 1, j,

bm,n
7 = am,n

7 ,m = i ± 1, i, n = j ± 1
(14)

According to (12), the coefficients of same order termon both
sides of equal sign are same, we can obtain a set of equations
about bm,n

3 ,bm,n
6 :

1
4b

m,n
3 + 1

2b
m,n
6 +bm,n

8 = 1
4b

m+1,n
3 − 1

2b
m+1,n
6 +bm+1,n

8

bm,n
3 +bm,n

6 =−bm+1,n
3 +bm+1,n

6

(15)

wherem = i−1, i , n = j±1, j . Substitute (13) and (14) into
(15), and the solutions of the rest bm,n

3 , bm,n
6 can be obtained.

Similarly, bm,n
5 , bm,n

7 can be obtained.
Then, we solve for bm,n

0 , bm,n
1 , bm,n

2 , bm,n
4 . We set the second

mixed partial derivatives of the surface at four vertices of the
rectangular region as zero, which can be formulated as

∂2sm,n

∂x∂ y
= bm,n

4 = 0,m = i ± 1, n = j ± 1 (16)

A set of equations about bm,n
0 , bm,n

1 , bm,n
2 , bm,n

4 can be derived
from the continuity constraint at the junction of x and y direc-
tions. Substituting the known bm,n

4 , bm,n
6 and bm,n

7 into them, the
unknown bm,n

0 , bm,n
1 , bm,n

2 , bm,n
4 can be solved.

The nine subsurface patches are jointed together to form
the fitting surface patch at the center pixel point, denoted as
fi, j (x,y).

123



Single-image super-resolution based on local biquadratic… 125

3.3 Surface fusion

Each biquadratic spline surface patch fi, j (x,y) is divided into
nine subsurface patches. In this way, the surface can fit the
image block more flexibly and the interpolation precision
is higher. All biquadratic spline surfaces are fused into the
overall bicubic fitting surface F(x,y) by weighted average.
The formula is as follows:

qi, j (x, y) = (1 − u)(1 − v) fi, j + u(1 − v) fi+1, j

+ (1 − u)v fi, j+1 + uv fi+1, j+1
(17)

where u = x − i , v = y − j , fi, j , fi+1, j , fi, j+1 and fi+1, j+1 are
the surfaces at four vertices of quadrilateral region. The rep-
resentation of F(x,y) in this region is qi, j (x,y). All the surface
qi, j (x,y) joint together to form the whole fitting surface F(x,y).
The HR image is obtained by sampling at the corresponding
density on F(x,y).

4 Adaptive optimizationmodel in transform
domain

The adaptive optimization model in transform domain is
improved on the basis of traditional iterative back-projection
framework. Before the operation of back-projection, we
optimize the interpolated image by using the non-local self-
similarity, which effectively reduces the approximation error
of the interpolation surface. Compared with the traditional
framework, the proposed model further improves the accu-
racy of enlarged image and reduces the sawtooth and mosaic
effect of image edges.

4.1 Adaptive optimization in transform domain

In the process of biquadratic spline interpolation, the fitting
surface inevitably has approximation errors, which make the
sampled HR pixel easily distorted. Therefore, we design a
new adaptive optimization in transform domain to reduce
the error. The interpolation algorithm which uses only local
information of the image cannot reconstruct HR images
with high quality. So we use the non-local self-similarity to
optimize the image. The optimization includes three steps:
similar block matching; calculating the contraction coeffi-
cient and contracting the singular value; block fusion.

First, similar blocks are searched in a search window
centered on the reference block Ri , i = 1, 2, . . . , n. By com-
paring the distance between Ri and all blocks in the window,
we find K blocks which are most similar to the central one
and form a similar block matrix Mi .

Second, due to the similarity between the blocks, the col-
umn vectors of the similar blockmatrix are highly correlated.
Thus, the similar block matrix is low-rank. Moreover, the

singular value often contains important information of the
correspondingmatrix, and the importance is positively corre-
latedwith the singular value. Thus, the low rank indicates that
most energy of the matrix is contained in a few large singular
values. However, the fitting error will cause the fluctuation of
singular values. This problem leads to small singular values,
and increases the rank of similar block matrices. According
to this principle, we contract the singular values to ensure the
low rank of the matrices and reduce the errors. The formula
of SVD for similar block matrices is:

Mi = Ui�i Vi , i = 1, 2, . . . , n (18)

where Mi is the similar block matrix of the reference block
Ri and�i is the singular value matrix. The greater the singu-
lar value is, the more effective information it contains, which
should be dealt with a smaller contraction. So we set the soft
threshold as thr j=ζ/(σ j+τ). σ j is the first j singular value from
big to small order. τ is a small positive number to ensure
that the denominator is not zero. ζ is the contraction factor.
The greater ζ the more information amputated, and the opti-
mized image will be smoother. We design the contraction
factor to be adaptively updated, rather than predetermined.
The formula is as follows:

ζ =
∥∥∥Y − ( fg ⊗ X) ↓s

∥∥∥2
2

2m
(19)

where Y denotes the input LR image,and X is the HR image
to be optimized. fg represents a fuzzy filter, ”↓s” is a down-
sampling operation with scale factor s, and m is the number
of pixels in Y. In the initial iteration, the fitting error of
interpolation surface and the error between the degraded HR
image and the input LR image are both large, so a larger scal-
ing factor is applied. As the number of iterations increases,
the sawtooth of HR images decreases, and fitting errors are
gradually eliminated. Then, a smaller contraction factor is
applied. So ζ shrinks gradually in the iterations. The diago-
nal matrix of contracted singular value is donated as �̂i . And
the first j diagonal element of it is as σ̂ j=max{σ j−thr j ,0}. Then,
by replacing �i with �̂i in (18), the updated similar block
matrix is obtained.

Third, for different estimates pk ,k = 1,2,...,K of the image
block p, their weights are set according to the ranks rk of
the matrices where they are located. The low rank matrix
contains blockswith high similarity, and the estimated results
are more reliable. So we set a larger weight for it. The fused
image block p̂ is obtained by weighted averaging of multiple
estimates as follows:

p̂ = 1

W

K∑
k=1

(1 − rk

N + 1
)pk (20)

123



126 D. Zhou et al.

0 10 20 30 40 50 60
Number of iterations

33

34

35

36

37

PS
N

R
(d

B
)

BP
BP+Opt(e)
BP+Opt(h)

Fig. 4 Performance comparison of ‘BP’, ‘BP+Opt(e)’ and ‘BP+Opt(h)’
optimization sructures on woman image with the magnification ×2

where r ≤ N , and the denominator is set as N + 1 to ensure
weights are not zeros. 1

W is the normalization factor. After the
fusion of different estimated blocks, we fuse the overlapped
pixels of image blocks with a simple averaging strategy.
Then, the complete reconstructed HR image is obtained.

4.2 Analysis of optimizationmodel structure

In this section, three different optimization model structures
are compared. We use ’BP’ to represent the traditional itera-
tive back-projection structure, that is, each iteration contains
only the back-projection operation of the reconstructed error
image. The optimization model structure in [34] is to first
optimize the enlarged error image, and then project it back
to the HR image in each iteration. We call this structure
’BP+Opt(e)’. Different from [34], we carry out the opti-
mization for the intact HR image instead of the error image.
We call it ’BP+Opt(h)’. We test the performance of three
different structures of optimization model, as show in Fig. 4.

Compared with ’BP’ that only has a back-projection oper-
ation, the optimization of HR image can reduce the fitting
error and make the image accuracy higher when iterative
convergence. It can be seen from the figure that ’BP+Opt(h)’
effectively increases the growth rate of PSNRduring iteration
and further improves image quality.

In addition, it can be seen from the figure that ‘BP + Opt
(h)’ achieves much better amplification effect than ’BP +Opt
(e)’. Through adaptive optimization in transform domain,
‘BP+Opt(e)’ structure can use the non-local self-similarity
of the image to guide the direction of iterative convergence.
It can improve the quality of the final output image. However,
because HR images contain more complete structural infor-
mation, the results of non-local optimization for HR images
are more reliable than those for error images. In this way, the
error image obtained from the optimized HR image contains
more useful information than that from the non-optimized
HR image. Thus, the improvement space will be larger when
the error image is back projected. In summary, we adopt the
‘BP + Opt (h)’ optimization model structure.

The overall process of the proposed single-image super-
resolution algorithm based on local biquadratic spline with
edge constraints and adaptive optimization in transform
domain (LBSAO) is shown in Algorithm 1.

Algorithm 1: LBSAO algorithm

Input: LR image Y , scaling factor s
Output: HR image X
1) t = 0, initialize ε, T ;
2) Compute the boundary conditions on Y;
3) Construct local biquadratic spline surface on each 3× 3 grid;
4) Fuse surface patches into global bicubic surface;
5) Sample to get HR image X0;
6) while (mse > ε) && (t < T ) do
7) If (t%10 == 0), update the location of similar blocks;
8) Calculate contraction factor ζ t by (19);
9) Singular value contraction for similar block matrices of
Xt ;
10) Aggregate the updated image blocks to get X̂ t ;
11) Compute the error image, Et

l = Y − ( fg ⊗ X̂ t ) ↓s ;
12) Compute the boundary conditions on Et

l ;
13) Construct local biquadratic spline surface on each 3 × 3
grid;
14) Fuse surface patches into global bicubic surface;
15) Sample to get HR image Et

h ;
16) Project Et

h back to X̂ t , Xt+1 = X̂ t + fg ⊗ Et
h ;

17) Calculate the mean square error (mse) between the
degraded image of Xt+1 and Y ;
18) t=t+1;
19) end while

5 Experiments and analysis

This section verifies the effectiveness of the proposed algo-
rithm.Wefirst test the performanceof local biquadratic spline
with edge constraints (LBSEC) and adaptive optimization
in transform domain (AOTD) respectively. Second, we give
the setting of experimental parameters. Finally, the overall
effectiveness of the proposed SISR method is verified by
comparing it with different state-of-the-art methods in terms
of quantitative measurement and visual effect.

5.1 LBSEC and AOTD performance

This section is divided into two parts to evaluate the effec-
tiveness of the proposed LBSEC and AOTD respectively.

In the first part, we compare LBSEC with bicubic, CCEM
[3], and EDD [32]. CCEM combines the edge information
to construct the cubic fitting surface, which makes the edge
of the interpolation image smoother and the visual effect is
better. EDD can effectively preserve the edge structure of
the image through directional filtering and data fusion based
on linear minimum mean square-error estimation (LMMSE)
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Table 2 PSNR (dB) comparison among different SISR interpolation
algorithms on Set5 by a factor of 2

Image Bicubic CCEM EDD LBSEC

Baby 37.03 37.24 36.38 37.76

Bird 36.77 37.67 36.86 38.09

Butterfly 27.43 28.30 28.29 28.54

Head 34.84 35.00 33.85 35.29

Woman 32.13 32.88 32.46 33.18

Average 33.64 34.22 33.57 34.57
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Image number

23
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Fig. 5 PSNR (dB) comparison among different SISR interpolation
algorithms on Set14 by a factor of 2

a original b Bicubic c CCEM

d EDD e LBSEC

Fig. 6 Performance of different SISR interpolation algorithms on Baby
image (×3)

technology. Table 2 shows the PSNR comparison result on
Set5. It can be seen that LBSEC achieves the highest magni-
fication accuracy for each image. Also as shown in Fig. 5, in
the PSNR comparison results on Set14, our method also sur-
passes other methods. Figure 6 is a visual comparison of the
methods. At the texture of the woolen cap in the image, the

Table 3 PSNR (dB) comparison between NMF and AOTD on Set5 and
Set14 (×2,×3,×4)

Image set NMF AOTD

×2 ×3 ×4 ×2 ×3 ×4

Set5 35.85 32.41 30.28 37.17 33.38 30.90

Set14 31.85 28.95 27.29 32.69 29.51 27.68

The best results are shown in bold

a original b NMF c AOTD

Fig. 7 Performance of NMF and AOTD on ppt3 image (×3)

results of bicubic and CCEM have different degrees of blur-
ring. In comparison, the texture of LBSEC result is clearer.
There are some color blocks in the result of EDD, while the
result of LBSEC has more delicate texture and better visual
effect. From the above, the proposed LBSEC can reduce the
interpolation error effectively and improve the accuracy of
the enlarged images.

Then, we compare the AOTD with non-local mean filter
(NMF). NMF reconstruct the image by replacing the ref-
erence block with weighted average of the similar blocks.
Both of NMF and AOTD make use of the self-similarity of
the image and operate in blocks. Themain difference of them
is that the former operates in the spatial domain, while the
latter operates in the transform domain. We replace AOTD
of the proposed algorithm with NMF and compare it with
the original algorithm. The comparison results in Table 3 are
about Set5 [2] and Set14 [31] by different scale factors. It
shows clearly that the SISR algorithm using AOTD has a
improvement of magnification accuracy than the one using
NMF, and achieves better performance. As can be seen from
the results in Fig. 7, for the letter ”D” in the figure, the edge of
NMF result is blurred, and artifacts appear at the connection
with the letter ”o”. However, the results of the method in this
paper have a sharper and smooth edge, and the letters ”D”
and ”o” are clearly separated, which is obviously better than
the NMF result. Therefore, the enhancement of similarity in
the transform domain can reduce the approximation error of
interpolating surface and achieve sharper edges.
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Table 4 PSNR (dB) comparison among different image block sizes
(3 × 3 ∼ 8 × 8) on lena image (×2,×3,×4)

Block size 3 × 3 4 × 4 5 × 5 6 × 6 7 × 7 8 × 8

×2 36.34 36.78 36.72 36.62 36.56 36.51

×3 33.49 33.75 33.67 33.58 33.48 33.43

×4 31.39 31.67 31.64 31.56 31.48 31.40

The best results are shown in bold

5.2 Experimental setting

To verify the effectiveness of the proposed algorithm, experi-
ments for three different scale factors (2, 3 and 4) are carried
out on the test images. The publicly available image sets
Set5 [2], Set14 [31], BSD100 [1]and Urban100 [16] are used
as the test benchmarks,which arewidely used in performance
testing of super- resolution methods. In the experiment, the
correspondingLR images are obtained from theseHR images
by bicubic interpolation.

The proposed method is compared with eight different
methods, which include interpolation-based methods and
learning-basedmethods for SISR. Bicubic is a classical inter-
polation algorithm. And rational fractal interpolation (RFI)
[35] is a method combining rational interpolation and frac-
tal interpolation for image super-resolution. NLFIBP [34] is
based on non-local feature interpolation and iterative back
projection. LPRGSS [33] utilizes low-rank patch regular-
ization and global structure sparsity for image restoration.
SelfEx [16], FSRCNN [12], MMPM [17] and DLD [9] are
four learning-based methods. Among them, FSRCNN and
MMPM train the model by using external training data while
SelfEx and DLD depend on internal data.

The parameter setting will affect the performance of the
algorithm, and we choose the appropriate parameter values
through experiments.With similar blockmatching, the larger
the search window is, the more non-local information of the
image will be obtained. However, it is alsomore likely to find
blockswith small distances but different structures.We chose
a compromise size 45×45 by experimental comparison. The
selection of image block size also has a crucial impact on the
performance of the method. Similar blocks matched with
larger block size are more reliable, but the cost is that the
algorithm will require more computation. According to the
data in Table 4, we select the block size 4 × 4.

As for the number of similar blocks, if it is large, the
information in the similar block matrix is more sufficient,
but some image blocks which are not similar enough may be
matched. From the comparison shown in Table 5, we set the
number of similar blocks as 30.

Table 5 PSNR (dB) comparison among different number of similar
blocks (25 ∼ 50) on lena image (×2,×3,×4)

Block number 25 30 35 40 45 50

×2 36.84 36.85 36.85 36.83 36.83 36.82

×3 33.81 33.81 33.80 33.78 33.77 33.77

×4 31.70 31.70 31.70 31.69 31.67 31.68

The best results are shown in bold

5.3 Overall quantitative comparison

For quantitative evaluation, we use PSNR (dB) and SSIM
indicators to evaluate quality. Table 6 shows the results of all
compared methods on Set5, Set14, BSD100 and Urban100
image sets. The best results are shown in red and the sec-
ondary in blue. It can be seen from the table that the PSNR
and SSIM of the proposed method are much higher than
those of the interpolation-based methods with scale factors
of 2, 3, and 4. Among the four learning-based comparison
methods, FSRCNNachieves the best results in natural images
in Set5 and Set14, while SelfEx has the most advantage in
image with high self-similarity in Urban100. Compared with
the learning-based SISR methods, the proposed method also
achieves the best results on Set5, Set14 and Urban100 image
sets with all scale factors. On BSD100 data set, the results
of our method are only worse than the best. Figure 8 shows
the comparison of PSNR of different methods on Urban100
image set. It can be seen that the proposed method achieves
the best results on most images. It is further proved that the
proposed method can improve the accuracy and quality of
enlarged image.

5.4 Overall visual comparison

Figure 9, 10, 11 and 12 shows the visual effect of test images
magnified by eight different SISRmethods with scale factors
2, 3 and 4. The corresponding PSNR (dB) and SSIM values
are below the pictures. Figure 9 shows the images with a
scale factor 2. It can be seen that the edge contour of bicu-
bic result at the butterfly wings is severely blurred, and the
edge artifacts of NLFIBP and RFI results are also heavy. The
results of the other four comparison methods show that the
image edge is improved compared with the previous three
methods, but there is also a fuzzy effect, and the proposed
method achieves a sharper edge.

Figure 10 show the results of different methods using a
scale factor 3. The bicubic and NLFIBP results show that
the edge of parrot’s beak is not clear and distorted, while the
RFI and LPRGSS results show that an edge breaks into two
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Table 6 PSNR (dB) (the first row) and SSIM (the second row) results of nine SISR methods on Set5, Set14, BSD100 and Urban100 image sets
with scale factors 2, 3 and 4. The best results are in red and the secondary is in blue

Fig. 8 PSNR (dB) comparison among nine SISR methods on Urban100 image set (×2)
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(a)PSNR/SSIM (b)27.43/0.91 (c)30.31/0.95

(d)27.30/0.92 (e)30.09/0.95 (f)32.36/0.97

(g)33.30/0.97 (h)31.90/0.96 (i)33.59/0.97

Fig. 9 Super-resolution comparison onbutterfly image (×2):a original,
b bicubic, cNLFIBP,dRFI, eLPRGSS, f MMPM. g FSRCNN, hDLD,
i proposed

(a)PSNR/SSIM (b)32.57/0.93 (c)33.03/0.93

(d)31.86/0.92 (e)33.79/0.95 (f)35.67/0.96

(g)35.93/0.96 (h)34.83/0.95 (i)36.28/0.96

Fig. 10 Super-resolution comparison on bird image (×3): a original, b
bicubic, c NLFIBP, d RFI, e LPRGSS, f MMPM, g FSRCNN, h DLD,
i proposed

(a)PSNR/SSIM (b)29.83/0.81 (c)30.93/0.84

(d)28.85/0.80 (e)29.06/0.82 (f)31.56/0.85

(g)31.63/0.85 (h)31.48/0.85 (i)31.35/0.85

Fig. 11 Super-resolution comparison on lena image (×4): a original, b
bicubic, c NLFIBP, d RFI, e LPRGSS, f MMPM, g FSRCNN, h DLD,
i proposed

parts that are not connected, both of which produce unnatu-
ral edges. The result of MMPM method can see the outline
of image edge, but it is not clear enough. The right side of
the black edge of the DLD method is fused with the green
mouth to produce a transition zone, and the resulting image
is too smooth. Compared with MMPM and DLD, the result
of FSRCNN has better details, but the edges are also fuzzy,
and the results of the proposed method can better retain the
edge details.

Figures 11 and 12 show the images with a upscaling factor
4. In Fig. 11, both the bicubic and RFI results produce severe
jagged edges in the brim, resulting in missing image details.
LPRGSS produces artifacts with severely distorted edges.
The MMPM result is sharp on the outermost brim edge, but
the brim on the upper left edge has a smooth effect, and the
image does not contain fine textures. FSRCNN result also has
a certain degree of fuzziness. The result of DLD has similar
problems, with clear outer edges, but the inner edges are also
clearly jagged and some details are distorted. Our method
effectively reduces the jagged effect of the enlarged image at
the texture and edge, and is closer to the original image.

As shown in Fig. 12, the boundary between collar and
background in the bicubic image is not clear and the artifacts
are serious. Serious mosaic effect appears in RFI images.
LPRGSS results showa fault in the part below the collar edge,

123



Single-image super-resolution based on local biquadratic… 131

(a)PSNR/SSIM (b)29.38/0.87 (c)30.82/0.89

(d)28.61/0.86 (e)29.92/0.89 (f)31.88/0.91

(g)32.35/0.91 (h)32.40/0.91 (i)33.49/0.92

Fig. 12 Super-resolution comparison on foreman image (×4): a origi-
nal, b bicubic, c NLFIBP, d RFI, e LPRGSS, f MMPM, g FSRCNN, h
DLD, i proposed

resulting in image distortion, while the magnification effect
of the other four comparison methods has varying degrees of
blurring effect. Compared with other methods, the method
in this paper can better retain the edge, as shown in the col-
lar part, and the algorithm can get the sharp edge without
jagging.

5.5 Comparison with recent state-of-the-art
methods

In this section, we compare the performance of the proposed
methodwith that of recently proposed state-of-the-art denois-
ing methods, including RDN [36], SAN [8], DBPN [15].
As we know, deep-learning-based techniques for SISR have
been recently attracting considerable attentions due to its
remarkable performance, and there are many successful
schemes that have been published recently. For all the com-
peting methods, the source codes are obtained from the
original authors.

Table 7 PSNR (dB) result of different SISR methods (×3)

RDN SAN DBPN proposed

Set5 34.695 34.891 34.455 33.375

Set14 30.533 30.711 30.306 29.505

BSD100 29.310 29.365 29.274 28.538

Urban100 28.667 29.875 28.898 26.107

we compare the accuracy of the enlarged images by our
method, RDN, SAN and DBPN in Table 7. The proposed
method is lower than the other competing methods. The
learning-based approach can achieve excellent results but it
also has some problems. First, methods that rely on exter-
nal training data will be limited in the application of image
enlargement according to the type of training images. Sec-
ond, some methods need a lot of time to train the model,
especially the method based on CNN. Third, the learned
model can only be used for the magnification of a fixed scale,
and the model needs to be retrained for different scales. Our
interpolation-based method is not as good as deep learning
method in common image accuracy, which is the place we
need to learn and improve in the next work.

5.6 Running time

LBSEC is mainly divided into three steps. The first step is
to calculate the first-order partial derivatives at each pixel of
the LR image. The second step is to construct the biquadratic
spline surface at each pixel according to the boundary con-
ditions. The last is to calculate the HR image pixels by
weighting and averaging the pixels of four overlapping sur-
faces. Because the complexities of the above three steps are
all O(n), the complexity of LBSEC is O(n), which is the same
as Bicubic and Ecubic. In addition, AOTD uses the non-local
structure information of the image, which can effectively
reduce the interpolation error of theHR image. SameasNMF,
its complexity is O(n). Although it is time-consuming to find
similar blocks, the running time can be reduced by adjusting
the step size and reducing the search frequency. In summary,
the complexity of the entire algorithm is O(mn), and m is the
number of iterations.

As for running time, the maximum of iterations T will
control the times of iteratios, thus affecting the running time
of the algorithm. In a certain range, if the value of T is larger,
the magnified image will have higher accuracy, but the cor-
responding running time will be longer. So here we choose
a compromise value T = 100. Meanwhile, the threshold of
mean square error ε can also control the number of itera-
tions. Through experiments, we set ε = 0.25. We compare
the proposed method with different image super-resolution
methods. As shown in Table 8, LPRGSS takes much longer

Table 8 PSNR (dB),SSIM and running time (min) results of different
SISR methods on lena image (×3)

NLFIBP RFI LPRGSS Proposed

PSNR (dB) 31.998 31.05 31.05 33.856

SSIM 0.859 0.851 0.851 0.889

Time (min) 4.72 1.40 52.76 2.72
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time than ours, but the imagemagnification accuracy is much
lower. The block matching and SVD operations of proposed
method require a large amount of computation. So ours is
slower thanRFI, but it hasmore advantages in enlarged image
quality.

6 Conclusions

This paper presents a new method for SISR which is real-
ized by two steps. First, a local biquadratic spline surface
based on edge constraints is constructed on each small area
of the image. And then, the enlarged image generated by
biquadratic spline surface is adaptive optimized in transform
domain. Biquadratic spline interpolation computes nine C1

continuous biquadratic surface patches in the 3×3 neighbor-
ing region of each pixel, constrained by the edge information.
The whole fitting surface is constructed by weighted aver-
aging of the surface patches. The interpolation algorithm
improves the accuracy of the enlarged image, and has good
shape preserving ability, which reduces the sawtooth shape
and mosaic effect of the image. A new adaptive optimization
in transform domain is proposed to reduce the unavoidable
approximation error of the interpolation surface. The opti-
mizationmodel combines the proposed optimizationwith the
iterative back-projection framework to optimize the enlarged
image iteratively. According to the non-local self-similarity,
we compute the contraction factor and adaptively contract the
singular values of similar blockmatrices to reduce errors. The
global structure can make up for the limitation of biquadratic
spline algorithm that constructing HR pixels with only local
pixels. Finally, the reconstructed error image is projected
back to make up the lost high-frequency information. By
introducing the adaptive optimization into the traditional iter-
ative back-projection framework, the quality of output image
can be greatly improved. Compared with the state-of-the-art
methods, ourmethod achieves better results in terms of visual
effects and quantitative indicators. In future work, we will
consider adding more constraints to the optimization model
to improve the amplification effect.
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