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Abstract
In this paper, a joint restoration convolutional neural network (JRCNN) is proposed to produce a visually pleasing super
resolution (SR) image from a single low-quality (LQ) image. The LQ image is a low resolution (LR) image with ringing,
blocking and blurring artifacts arising due to compression. JRCNN consists of three deep dense residual blocks (DRB). Each
DRB comprises of parallel convolutional layers with cross residual connections. The representational power of JRCNN is
improved by depth-wise concatenation of feature representations fromeach of theDRBs.Moreover, these connectionsmitigate
the problem of vanishing of gradients. Different from the previous networks, JRCNN exploits the contextual information
directly in the LR image space without using any interpolation. This strategy improves the training efficiency of the network.
The exhaustive experimentation on different datasets show that the proposed JRCNN produces state-of-the-art performance.
Furthermore, ablation experiments are performed to assess the effectiveness of JRCNN. In addition, individual experiments
are conducted for SR and compression artifact removal on benchmark datasets.

Keywords Blocking artifacts · Cross residual connections · Dense residual blocks · Ringing · Skip connections

1 Introduction

In this era of information explosion, transfer of multi-
media content among different networks and devices have
become more popular. Compression and down sampling are
the most common image degradations. Images are available
in degraded form on the web due to the availability of low
storage space. Furthermore, images are compressed while
being transmitted through low bandwidth channels. Down
sampling exploits the spatial redundancy (duplicate pixels) in
an image while compression further exploits the correlation
in frequency (DCT coefficients) and temporal domains for
frames in a video. Even though the degraded image requires
less storage space, it contains unpleasant visual artifacts,
i.e., ringing, blocking and blurring. These complex visual
artifacts severely affect the user experience (e.g., Fig. 1).
Accurate reconstruction of the super resolution (SR) image
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from a single LQ image is a challenging task. There is a
huge requirement for improvement in visual quality of recon-
structed SR image.

The lossy Joint Photographic Experts Group (JPEG) com-
pression [32] standard introduces blocking artifacts (e.g.,
Fig. 2) due to discontinuities between the adjacent 8×8 pixel
blocks, while the ringing and blurring artifacts occur dur-
ing the coarse quantization of high frequency details. The
JPEG 2000 compression standard uses wavelet transform
and avoids the blocking artifacts but still suffers from the
ringing and the blurring artifacts. The main objective of this
paper is to address super resolution (SR), compression arti-
fact removal (CAR) and compressed image super resolution
(CISR) from a single low-quality image. SR focuses mainly
on the estimation of missing high frequency details (e.g.,
Fig. 3), while CAR focuses on the removal of ringing and
blocking artifacts from the images compressed using the
JPEG standard that’s widely adopted on the internet. CISR
focuses on the SRof low resolution (LR) compressed images.
In this paper, a joint restoration convolutional neural network
(JRCNN) architecture is proposed to address all the three
tasks, i.e., SR, CAR and CISR.

Figure 1 represents the SR of a LQ image for a JPEG
quality factor (QF) of 10 and an up scaling factor of 2 (×2).
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Fig. 1 Super resolution by ×2
for a JPEG compressed image
with a quality factor of 10

Fig. 2 Artifacts removal from a
JPEG compressed image with a
quality factor of 10

Fig. 3 Super resolution by ×4

From Fig. 1, one can notice that the LQ image is an LR and
compressed image. Bicubic interpolation amplifies the com-
pression artifacts and produces visually unpleasant outputs,
whereas the image produced by JRCNN is visually pleas-
ant. Figure 2 represents the CAR of a JPEG compressed
image with a quality factor of 10. The lower quality fac-
tors represent the higher compression. From Fig. 2, one can
observe that the visually annoying artifacts are present in the
JPEG decompressed image. These artifacts are removed in
the image produced by the JRCNN. Similarly, Fig. 3 repre-
sents the SR of a LR image for ×4. Blurring artifacts can
be clearly observed in the bicubic interpolated image. These
blurring artifacts are removed using the JRCNN. In all Fig-
ures 1, 2 and 3, it can be observed that the outputs of the
JRCNN are much more visually pleasant than the LR input
image and the bicubic interpolated image.

Nowadays deep learning-based methods are able to pro-
duce state-of-the-art performance. An end-to-end learning
strategy is adopted in this paper using deep convolutional

neural network (DNN). The CISR involves two different
tasks, i.e., removal of complex artifacts and increasing the
spatial resolution of the image. If these operations are per-
formed one after the other, i.e., SR followed by CAR or CAR
followed by SR, perceptually unpleasant images will be pro-
duced. In SR followed byCAR strategy, the complex artifacts
are amplified in the SR stage and CAR stage is not able to
remove these artifacts. Similarly, in CAR followed by SR,
the CAR stage removes some of the essential information
like edges and textures which are required in SR stage for
accurate reconstruction. So, in this paper a joint restoration
DNN is proposed to learn an end-to-end mapping function
betweenLQ image ILQ and the corresponding residual image
IRes formed by subtracting bicubic interpolated image IBic
[15] from the original image IHR. The ILQ can be obtained
from compression and down sampling of IHR and is formu-
lated as follows:

ILQ = CH IHR (1)
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where C is the composite operator of compression and
decompression and H is the down sampling operator. The
aim of CISR is to obtain IHR from ILQ. Out of many existing
compression standards for still images, the JPEG is one of the
widely used compression standard. In this paper, the JPEG
compression standard is taken as an example. In JPEG com-
pression standard, quality factor (QF) decides the amount
of compression and perceptual quality of an image. Lower
value of QF corresponds to higher compression and reduced
storage size of the image.

In Eq. 1, if C is an identity matrix then ILQ is just the down
sampled version of IHR. SR of ILQ produces IHR. If H is an
identity matrix then ILQ is just the compressed and decom-
pressed version of IHR. In this case different artifacts must be
removed from ILQ occurred during compression and decom-
pression operations on IHR. If none of C and H are identity
matrices then the operation is simultaneous removal of com-
pression artifacts and SR. To perform all these operations
individually, a joint restoration convolutional neural network
(JRCNN) is proposed in this paper. The novel contributions
in this paper are as follows;

– Deep dense residual blocks (DRB) with parallel convo-
lutional layers (PCL) are proposed for efficient training
of the JRCNN.

– Cross residual connections (CRC) are introduced in each
dense residual block to ease the training and to improve
the training efficiency. Moreover, these connections mit-
igate the problem of gradient explosion.

– Skip connections are introduced among different deep
dense residual blocks to improve the representational
power of the JRCNN. Furthermore, skip connections
avoid the problem of vanishing of gradients by creating
short paths for efficient flowof gradients. In addition, fea-
ture redundancy is avoided by using skip connections.

– Different ablation experiments have been conducted on
benchmark datasets to access the superiority of the
JRCNN.

– Different experiments like super resolution (SR), com-
pression artifact removal (CAR) and compressed image
super resolution (CISR) have been performed using the
JRCNN on standard datasets.

The rest of the paper is organized as follows: Sect. 2
reviews the related works for SR, CAR and CISR. Section 3
presents the network architecture of JRCNN and the training
methodology. Section 4 shows the extensive experiments on
different datasets along with ablation studies. Finally, Sect. 5
is the conclusion.

2 Related work

Recently, deep learning-based methods have gain popularity
due to the availability of modern GPUs and they can pro-
duce state-of-the-art performance. Different methods have
been proposed for SR, CAR and CISR using DNNs. A three-
layered DNN named SRCNN has been proposed for SR
[8] with lightweight. The SRCNN cannot perform multi-
scale SR. Moreover, SRCNN takes interpolated LR image
as input. To accelerate the SRCNN, a network named FSR-
CNN [9] has been proposed. The FSRCNN improved the
speed of training and testing by directly performing SR of
LR image using deconvolution layer as output layer without
needing any interpolation. The FSRCNN also cannot pro-
vide multi-scale SR. To provide multi-scale SR, a very deep
network named VDSR [16] has been proposed with 20 lay-
ers. However, the VDSR requires bicubic interpolation of
LR image to support multi-scale SR. Similar to the VDSR,
a denoising network named DnCNN [36] has been proposed
with batch-normalization layers. The DnCNN can perform
multiple tasks like SR, CAR and denoising. Densely con-
nected DNN with deep dilation filters has been proposed in
DenseDbSR [2] to performSR, deblocking and simultaneous
deblocking, SR. To control the number of parameters, recur-
sive learning has been proposedwith local and global residual
connections in DRRN [28] for SR. The DRRN contains up
to 52 convolutional layers. In LapSRN [18], the sub-band
residuals of HR images are reconstructed at multiple pyra-
mid levels. Furthermore, the LapSRN uses recursive learning
for parameter sharing across aswell aswithin pyramid levels.

A persistent memory network [29] consisting of recur-
sive units and gate units has been proposed for three image
restoration tasks, i.e., JPEG deblocking, SR and denoising.
The optimal balance between the accuracy and the speed for
SR has been achieved with balanced two-stage residual net-
work (BTSRN) [10] with constrained depth. Different from
other methods, SRMD network [37] has been proposed for
SRwithmultiple degradations by considering blur kernel and
noise level. Amulti-level wavelet DNN (MWCNN) has been
proposed [21] to reduce the computational cost by adopting
U-Net architecture for SR. The MWCNN consists of con-
tracting sub-network for reducing the size of feature maps by
applying wavelet transform and expanding the sub-network
for constructing the HR images by deploying inverse wavelet
transform. A cascading residual network (CARN) has been
proposed [1] for accurate SR with multiple local and global
cascading connections which allow efficient flow of data and
gradients. An enhanced deep SR (EDSR) network has been
proposed [20] for performance improvement by removing
the batch-normalization layer in the residual block.
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A combination of cascading residual network (CRN) and an
enhanced residual network (ERN) has been proposed [19] for
SR. TheCRN contains several locally sharing groups (LSGs)
to promote propagation of information and gradients. The
ERN enhances the image resolution. A residual dense net-
work (RDN) has been proposed [39] for SR to fully exploit
the hierarchical features from all the layers. The RDN uses
a contiguous memory (CM) mechanism to improve the SR
performance. A residual channel attention network (RCAN)
has been proposed [38] for SR to learn high frequency infor-
mation and low frequency information is bypassed through
multiple skip connections with residual in residual (RIR)
structure. Very recently, progressive growing methodologies
have been proposed [22] for SRusing a generative adversarial
network (PG-GAN). In the PG-GAN, the training has been
stabilized and accelerated by adopting progressive grow-
ing methodologies. An embedded block residual network
(EBRN) has been proposed [26] with shallower modules for
low frequency estimation and deeper modules for estimation
of high frequency information.

In the past decade, several methods have been proposed
for the reduction of JPEG compression artifacts. Most of
the existing methods have been proposed to remove block-
ing artifacts. Recently, the DNN-based methods have been
proposed to remove visually dominating artifacts occurred
during JPEG compression and decompression, i.e., blocking,
ringing and blurring. Shape adaptive discrete cosine trans-
formation (SA-DCT) in conjunction with local polynomial
approximation (LPA) has been used [11] for deblocking and
deringing. To address JPEG compression artifacts a DNN
named ARCNN has been proposed [7] with large-stride con-
volutional and deconvolutional layers. The ARCNN has a
compact structure with just four convolutional layers but
multi-scale CAR is not possible. A filter-based deblocking
method [14] has been proposed by treating the blocking
artifacts as an outlier random variable. This method aims
at preserving the edge structures while removing the arti-
fact outliers. CONstrained non-COnvex LOw-Rank (CON-
COLOR) model has been proposed [35] by formulating
deblocking as an optimization problem within maximum a
posteriori framework.

A flexible learning framework has been proposed [6]
based on trainable nonlinear reaction diffusion (TNRD)
for various image restoration problems, i.e., SR, CAR and
denoising. A 12-layer DNN named CAS-CNN has been
proposed [4] with hierarchical skip connections and a multi-
scale loss function to suppress compression artifacts. A slight
modified version of CONCOLOR has been proposed with
two new priors, i.e., structural sparse representation (SSR)
prior and quantization constraint (QC) prior [40] for effi-
cient deblocking. In the SSRQC method, the SSR prior is
used for simultaneous enforcement of the intrinsic local spar-
sity and the nonlocal self-similarity of natural images and

QC is used to ensure a more reliable and robust estima-
tion. An adaptive distribution estimation and QC in DCT
domain has been used in addition to patch sparse modeling
in PCA domains on external images for robust deblocking
[27]. A residual encoder–decoder (RED) network has been
proposed [23] with dense skip connections among different
convolutional and deconvolutional layers for multiple image
restoration tasks.Amodified inceptionmodule-based artifact
removal DNN (IACNN) has been proposed [17] for blind and
non-blind CAR. In IACNN, the compression quality factor
is estimated first from the real compressed image and then
the corresponding trained model has been used for CAR.

A highly compressed image is usually not only of low
resolution but also contains visually annoying complex arti-
facts. Direct SR of these images would also magnify the
artifacts. To solve this problem, a learning-based joint SR
and deblocking (LJSRDB) method has been proposed [13].
In the LJSRDBmethod, sparse representation of LR and HR
image patches with and without blocking artifacts have been
exploited for joint SR and deblocking. Furthermore,morpho-
logical component analysis (MCA)-based image decompo-
sition is also employed. Adjusted Anchored Neighborhood
Regression (A+) [30] method has been proposed to increase
the spatial resolution of an imagewith compression noise. SR
in compressed domain based on field of experts (SRCDFOE)
has been proposed [33] to produce visually pleasing images
from compressed and LR images. In SRCDFOEmethod, HR
image is modeled as a high-orderMarkov random field while
compression is modeled as an additive and spatially corre-
latedGaussian noise. Recently, an end-to-end learning-based
DNN has been proposed [5] with the name CISRDCNN
to address SR of a compressed as well as LR image. The
proposed JRCNN is also an end-to-end learning framework
which is used to enhance the spatial resolution of the com-
pressed low resolution images.

3 Methodology

In this section, the architecture and the structural components
proposed for compressed image SR are discussed. The archi-
tecture of the JRCNN is shown in Fig. 4. The JRCNN takes
ILQ image as input and produces the corresponding IRes of
IHR image. In SR, the input and the output images are highly
correlated. Moreover, residual learning eases the training of
the JRCNN. As shown in Fig. 4, the JRCNN consists of
47 convolutional layers and 2 transposed convolutional lay-
ers. Each of these layers are followed by a LeakyReLu layer
with a scaling factor of 0.2 except the last convolutional layer
which reconstructs IRes of IHR image. As shown in Fig. 4,
the JRCNN mainly consists of four parts: first convolutional
layer (Conv1) for low-level feature extraction, three dense
residual blocks for high level feature extraction, two trans-
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Fig. 4 Architecture of the
JRCNN

Fig. 5 Structure of dense
residual block

posed convolutional layers for up scaling operation and the
final convolutional layer for reconstruction.

3.1 Low-level feature representations

The input to the Conv1 layer is a single channel ILQ image.
The Conv1 layer extracts the low-level features like edges
and blobs from the ILQ image. The Conv1 layer has 64 filters
each of size 3× 3. The output of Conv1 layer is 64 low-level
feature representations (FO ) of ILQ image. The learned FO

is represented as follows:

FO = HLF(ILQ) (2)

where HLF(.) is the convolution operation. FO is then used
for high-level feature extraction with DRB.

3.2 Dense residual block

Dense residual block (DRB) is shown in Fig. 5. The DRB
takes FO as input and produces high-level feature represen-
tations (FH ). The FH can be formulated as follows:

FH = HDRB,3(HDRB,2(HDRB,1(FO))) (3)

where HDRB(.) is the proposedDRBstructurewhich contains
parallel convolutional layers (PCL). The PCL contains two
categories of convolutional layers. The first category con-
tains seven convolutional layers each consisting of 64 filters
of size 1 × 1. Similarly, the second category contains seven
convolutional layers each consisting of 64 filters of size 3×3.
There are residual connections between each convolutional
layers in the two categories of PCL. Furthermore, cross resid-
ual connections (CRC) are provided between two categories

to share feature representations from different convolutional
layers. This type of structure eases the training and can help
to increase the depth of DNN. A total of three DRBs are
used in the JRCNN. Moreover, skip connections are used
between each DRB to improve the representational power of
the JRCNN by learning diverse sets of features. The feature
representations learned from the previous layer are skipped
to the current layer and then transferred to the next layer. All
the feature representations are concatenated channel-wise.
This strategy mitigates the feature redundancy by avoiding
feature relearning.

In each of the DRBs, the feature representations from the
previous convolutional layers are added element-wise in PCL
to ease the training. All the feature representations from each
of the DRBs are concatenated channel-wise to extract hier-
archical features. All these features are extracted in the LR
space. The goal of SR is to recover more useful information
from the available abundant information in the LR inputs
and the features. The skip connections make short paths for
information and gradient flow thereby avoiding vanishing of
gradients. Furthermore, feature representations from differ-
ent layers are concatenated channel-wise to learn diverse set
of features and improves the representational power of the
model. In addition, feature redundancy is also avoided using
skip connections.

The features learned from the DRB are then feed into
bottleneck layer (1×1 convolutional layer) introduced after
the final DRB. The bottleneck layer reduces the number of
feature representations that are extracted from the previous
layers and reduces the burden on the transposed convolu-
tional layer. The features extracted from bottleneck layer are
formulated as follows:

FBNeck = HBNeck(FH ) (4)
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where HBNeck(.) denotes the convolution operation in the
bottleneck layer. These features are then upscaled using a
upscale module.

3.3 Upscaling

The transposed convolutional layer upsamples the features
extracted from the bottleneck layer to increase the spatial
resolution of features. In the JRCNN, two transposed con-
volutional layers are used. The upscaled features extracted
from the first transposed convolutional layer are formulated
as follows:

FUP1 = HUP1(FBNeck) (5)

where HUP1(.) and FUP1 denote the upscale module and the
upscaled features, respectively. Two additional convolutional
layers are used after the first transposed convolutional layer
to enhance the upscaled features. Different from the other
networks [38,39], the JRCNN has two transposed convolu-
tional layers. Different upscaling factors are produced using
two transposed convolutional layers as represented in Fig. 4.
The stride of the first transposed convolutional layer is 2, 3
and 2 and the second transposed convolutional layer is 1, 1
and 2 for ×2, ×3 and ×4, respectively. The output of fea-
ture enhancement layers Conv3 and Conv4 are formulated as
follows:

FEnhance = HConv4(HConv3(FUP1)) (6)

where HConv3(.) and HConv4(.) represent the convolution of
features from enhancement layers Conv3 and Conv4, respec-
tively. FEnhance is the enhanced feature representation of the
enhancement layers. The first and second transposed convo-
lutional layers have 64 filters each of size 3 × 3. Similarly,
the two convolutional layers used for feature enhancement
also have 64 filters each of size 3 × 3. To increase the spa-
tial resolution further, one more transposed convolutional
layer is introduced after the enhancement layers. The feature
representations of second transposed convolutional layer are
formulated as follows:

FUP2 = HUP2(FEnhance) (7)

where HUP2(.) and FUP2 denote the second upscale module
and the upscaled features using second transposed convolu-
tional layer, respectively. These features are then fed to the
final reconstruction layer to extract the final reconstructed
IRes image.

3.4 Reconstruction

The reconstruction layer is the final convolutional layer
which has a single filter of size 3×3 to reconstruct the
required output. The reconstruction layer produces the resid-
ual of the required SR image. The reconstructed IRes image
is formulated as follows:

IRes = HRes(FUP2) (8)

where HRes(.) and IRes represent the reconstruction layer and
the reconstructed image. The loss of high frequency informa-
tion while interpolating an image results in a blurred image.
The bicubic interpolation introduces blurring artifacts. Sub-
tracting IBic from IHR produces IRes. So, IRes image contains
only the high frequency information like edges, textures and
complex patterns. The final SR image is obtained by adding
IRes to the bicubic interpolated IBic image of ILQ image. The
ISR image is formulated as follows:

ISR = IRes + IBic (9)

3.5 Training

An end-to-end mapping function is learned between the ILQ
image and the IRes image by minimizing the mean squared
error (MSE) using the JRCNN. Let {ILQi , IResi } represent
the i th training pair of N training samples and � represent
the network weight parameters of K th layer. The MSE is
formulated as follows:

L(�) = 1

N

N∑

i=1

∥∥∥HJRCNN(ILQ i ,�) − I iRes

∥∥∥
2 + λ ‖�‖2

(10)

where λ represents the weight decay (regularization) factor
used to avoid under-or-over fitting. The MSE in Eq. 10 is
minimized using Adam optimizer with 32 samples in each
minibatch. Standard gradient descent method is used on each
minibatch to optimize the error. The parameters β1 and β2 of
Adam optimizer are set to 0.9 and 0.999, respectively.

4 Experimental analysis

In this section, a complete analysis of extensive experimental
results on different datasets are provided quantitatively and
qualitatively. Furthermore, the experimental settings and the
structural comparison of the JRCNN with other methods are
also provided.
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4.1 Experimental settings

Number of filters and filter size are key factors which decide
the performance of the JRCNN. The JRCNN has a total of
47 convolutional layers and 2 transposed convolutional lay-
ers all with 64 filters of size 3×3. The convolutional layer
which serves as a bottleneck layer that has filters of size 1×1
only. The residual connections and the skip connections also
improve the performance.Moreover in the JRCNN structure,
cross residual connections are provided between the paral-
lel convolutional layers (PCL) for efficient flow of feature
representations.

Training is performed by optimizing MSE using Adam
optimizer on minibatches of size 32. l2-norm regularization
with weight decay factor (λ) of 10−5 is used. The JRCNN is
trained for 100 epochs with initial learning rate set to 10−4.
After 50 epochs, the learning rate is reduced by 10%. Gradi-
ent clipping is not used as initial learning rate is very small.
Patches of size 41×41 are extracted fromDIV2Kdataset [31]
images. A total of 16000 training pairs are extracted from
800 images of DIV2K training dataset. NVIDIA Tesla K40c
GPU is used for training. For training and testing, MATLAB
2019b framework is used.

4.2 Degradationmodel

Bicubic degradation is used for SR. JPEG compression is
used for CAR. In addition to bicubic degradation, JPEG
compression is also used for CISR. The synthetic degraded
images are formedby reducing the spatial resolution of image
using bicubic interpolation and compressing the output
image with JPEG coder. The color image is first transformed
into YCbCr space. Only the luminance component (Y) is
used for training. All the degradations are present in the Y
channel only as Cb and Cr represent the chrome components.
The following are the experiments performed on the synthe-
sized image:

– The SR with three different up scaling factors 2, 3 and 4.
– The CAR with four different JPEG quality factors QF =
{10, 20, 30 and 40}.

– The CISR with three different JPEG quality factors QF
= {10, 20 and 30} and an up scaling factor of 2.

4.3 Datasets

For comparison with state-of-the-art methods, different
benchmark datasets have been used for different applications.

4.3.1 SR datasets

For training, 800 images from DIV2K [31] images are con-
sidered as all the methods [20,37,39] used the same dataset.

For validation 100 images from validation set of DIV2K
dataset are used. For testing, the benchmark datasets are: Set5
[3], Set14 [34], B100 [24], Urban100 [12] and Manga109
[25].

Training is performed with 400 images by combining 200
training and 200 testing images from BSDS500 [24] dataset.
Validation is performed with 100 images from the validation
set of BSDS500 dataset. For testing benchmark datasets are:
classic5 [7], LIVE1 [7] and B100 [24]

4.3.2 CAR datasets

Training is performed with 400 images by combining 200
training and 200 testing images from BSDS500 ([24])
dataset. Validation is performed with 100 images from the
validation set of BSDS500 dataset. For testing benchmark
datasets are: classic5 ([7]), LIVE1 ([7]) and B100 ([24])

4.3.3 CISR datasets

For CISR training and validation are performed on same
datasets used for CAR. The testing is performed on Set10 [5]
images considered in the CISRDCNN. Furthermore, three
more datasets Set5 [3], Set14 [34] and B100 [24] are also
used to assess the performance of the JRCNN.

4.4 Comparedmethods andmetrics

The SR performance of the JRCNN is compared with
SRCNN [8], FSRCNN [9], VDSR [16], DnCNN [36],
DenseDbSR [2], DRRN [28], LapSRN [18], MemNet [29],
BTSRN [10], SRMD [37],MWCNN [21], CARN [1], EDSR
[20], CRN [19], ERN [19], RDN [39], RCAN [38], PG-GAN
[22] and EBRN [26]. The CAR performance of the JRCNN
is compared with SA-DCT [11], ARCNN [7], CONCOLOR
[35], TNRD [6], CAS-CNN [4], SSRQC [40], EPCA [27],
RED30 [23], DnCNN [36], IACNN [17] and DenseDbSR
[2]. Similarly, the baseline methods used for CISR per-
formance comparison of the JRCNN are LJSRDB [13],
A+ [30], SRCDFOE [33], CONCOLOR-VDSR [16,35],
ARCNN-TNRD [6,7], ARCNN-VDSR [7,16], ARCNN-
DnCNN [7,36], FSRCNN [9], VDSR [16], DenseDbSR
[2] and CISRDCNN [5]. The CONCOLOR-VDSR [16,35],
ARCNN-TNRD [6,7], ARCNN-VDSR [6,7] and ARCNN-
DnCNN [7,36] are cascading methods which consist of
state-of-the-art CAR and SR methods.

In this paper, the widely used Peak Signal to Noise Ratio
(PSNR) andStructural SIMilarity (SSIM) index [41] are used
for objective performance comparison with the other state-
of-the-art methods.
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Table 1 The average of performance metrics on different datasets for SR. The metrics in bold indicates the best values

Method Scale Set5 [3] Set14 [34] B100 [24] Urban100 [12] Manga109 [25]

Bicubic [15] ×2 33.66/0.9299 30.24/0.8688 29.56/0.8431 26.88/0.8403 30.80/0.9339

SRCNN [8] 36.66/0.9542 32.45/0.9067 31.36/0.8879 29.50/0.8946 35.60/0.9663

FSRCNN [9] 37.05/0.9560 32.66/0.9090 31.53/0.8920 29.88/0.9020 36.67/0.9710

VDSR [16] 37.53/0.9590 33.05/0.9130 31.90/0.8960 30.77/0.9140 37.22/0.9750

DnCNN [36] 37.58/0.9590 33.03/0.9128 31.90/0.8961 30.74/0.9139 –/–

DenseDbSR [2] 37.65/0.9605 33.09/0.9130 31.97/0.8965 30.79/0.9145 –/–

DRRN [28] 37.74/0.9591 33.23/0.9136 32.05/0.8973 31.23/0.9188 –/–

LapSRN [18] 37.52/0.9591 33.08/0.9130 31.08/0.8950 30.41/0.9101 37.27/0.9740

MemNet [29] 37.78/0.9597 33.28/0.9142 32.08/0.8978 31.31/0.9195 37.72/0.9740

BTSRN [10] 37.75/0.9243 33.20/0.8322 32.05/0.8005 31.63/0.8389 –/–

SRMD [37] 37.79/0.9601 33.32/0.9159 32.05/0.8985 31.33/0.9204 38.07/0.9761

MWCNN [21] 37.91/0.9600 33.70/0.9182 32.23/0.8999 32.30/0.9296 –/–

CARN [1] 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256 –/–

EDSR [20] 38.11/0.9602 33.92/0.9195 32.32/0.9013 32.93/0.9351 39.10/0.9773

CRN [19] 38.17/0.9610 33.84/0.9203 32.30/0.9012 32.69/0.9334 –/–

ERN [19] 38.18/0.9610 33.88/0.9195 32.30/0.9011 32.66/0.9332 –/–

RDN [39] 38.24/0.9614 34.01/0.9212 32.34/0.9017 32.89/0.9353 39.18/0.9780

RCAN [38] 38.27/0.9614 34.12/0.9216 32.41/0.9027 33.34/0.9384 39.44/0.9786

PG-GAN [22] 38.33/0.9630 34.05/0.9190 32.44/0.9010 33.12/0.9380 39.33/0.9760

EBRN [26] 38.35/0.9620 34.24/0.9226 32.47/0.9033 33.52/0.9402 39.62/0.9802

JRCNN 38.36/0.9623 34.29/0.9226 32.43/0.9031 33.56/0.9405 39.66/0.9805

Bicubic [15] ×3 30.39/0.8682 27.55/0.7742 27.21/0.7385 24.46/0.7349 26.95/0.8556

SRCNN [8] 32.75/0.9090 29.30/0.8215 28.41/0.7863 26.24/0.7989 30.48/0.9117

FSRCNN [9] 33.18/0.9140 29.37/0.8240 28.53/0.7910 26.43/0.8080 31.10/0.9210

VDSR [16] 33.67/0.9210 29.78/0.8320 28.83/0.7990 27.14/0.8290 32.01/0.9340

DnCNN [36] 33.75/0.9222 29.81/0.8321 28.85/0.7981 27.15/0.8276 32.03/0.9342

DenseDbSR [2] 33.80/0.9226 29.86/0.8323 28.89/0.7984 27.22/0.8286 –/–

DRRN [28] 34.03/0.9244 29.96/0.8349 28.95/0.8004 27.53/0.8378 32.74/0.9390

LapSRN [18] 33.82/0.9227 29.87/0.8320 28.82/0.7980 27.07/0.8280 32.21/0.9350

MemNet [29] 34.09/0.9248 30.01/0.8350 28.96/0.8001 27.56/0.8376 32.51/0.9369

BTSRN [10] 34.03/0.9243 29.90/0.8322 28.97/0.8005 27.75/0.8389 –/–

SRMD [37] 34.12/0.9254 30.04/0.8382 28.97/0.8025 27.57/0.8398 33.00/0.9403

MWCNN [21] 34.17/0.927 30.16/0.841 29.12/0.8060 28.13/0.851 –/–

CARN [1] 34.29/0.9255 30.29/0.8407 29.06/0.8034 28.06/0.8493 –/–

EDSR [20] 34.65/0.9280 30.52/0.8462 29.25/0.8093 28.80/0.8653 34.17/0.9476

CRN [19] 34.60/0.9286 30.48/0.8455 29.20/0.8081 28.62/0.8620 –/–

ERN [19] 34.62/0.9285 30.51/0.8450 29.21/0.8080 28.61/0.8614 –/–

RDN [39] 34.71/0.9296 30.57/0.8468 29.26/0.8093 28.80/0.8653 34.13/0.9484

RCAN [38] 34.74/0.9299 30.64/0.8481 29.32/0.8111 29.08/0.8702 34.43/0.9498

JRCNN 34.67/0.9293 30.61/0.8476 29.35/0.8110 28.93/0.8671 34.30/0.9491

Bicubic [15] ×4 28.42/0.8104 26.00/0.7027 25.96/0.6675 23.14/0.6577 24.89/0.7866

SRCNN [8] 30.48/0.8628 27.50/0.7513 26.90/0.7101 24.52/0.7221 27.58/0.8555

FSRCNN [9] 30.72/0.8660 27.61/0.7550 26.98/0.7150 24.62/0.7280 27.90/0.8610

VDSR [16] 31.35/0.8830 28.02/0.7680 27.29/0.7238 25.18/0.7540 28.83/0.8870

DnCNN [36] 31.40/0.8845 28.04/0.7672 27.29/0.7253 25.20/0.7521 28.87/0.8873

DenseDbSR [2] 31.48/0.8876 28.12/0.7679 27.34/0.7258 25.24/0.7531 –/–

DRRN [28] 31.68/0.8888 28.21/0.7720 27.38/0.7284 25.44/0.7638 23.60/0.7420
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Table 1 continued

Method Scale Set5 [3] Set14 [34] B100 [24] Urban100 [12] Manga109 [25]

LapSRN [18] 31.54/0.8850 28.19/0.7720 27.32/0.7270 25.21/0.7560 29.09/0.8900

MemNet [29] 31.74/0.8893 28.26/0.7723 27.40/0.7281 25.50/0.7630 29.42/0.8942

BTSRN [10] 31.85/0.8898 28.20/0.7721 27.47/0.7286 25.74/0.7738 –/–

SRMD [37] 31.96/0.8925 28.35/0.7787 27.49/0.7337 25.68/0.7731 30.09/0.9024

MWCNN [21] 32.12/0.894 28.41/0.7816 27.62/0.735 28.13/0.8514 –/–

CARN [1] 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837 –/–

EDSR [20] 32.46/0.8968 28.80/0.7876 27.71/0.7420 26.64/0.8033 31.02/0.9148

CRN [19] 32.34/0.8971 28.74/0.7855 27.66/0.7395 26.44/0.7967 –/–

ERN [19] 32.39/0.8975 28.75/0.7853 27.70/0.7398 26.43/0.7966 –/–

RDN [39] 32.47/0.8990 28.81/0.7871 27.72/0.7419 26.61/0.8028 31.00/0.9151

RCAN [38] 32.62/0.9001 28.86/0.7888 27.76/0.7435 26.82/0.8087 31.21/0.9172

PG-GAN [22] 32.63/0.8980 28.90/0.7900 27.77/0.7410 26.82/0.8050 31.44/0.9150

EBRN [26] 32.79/0.9032 29.01/0.7903 27.85/0.7464 27.03/0.8114 31.53/0.9198

JRCNN 32.84/0.9033 28.92/0.7888 27.88/0.7476 27.09/0.8131 31.58/0.9203

Table 2 The average of quantitative metrics on different datasets for compression artifacts reduction

QF Method classic5 [7] LIVE1 [7] BSDS100 [24]
PSNR/PSNR-B/SSIM PSNR/PSNR-B/SSIM PSNR/PSNR-B/SSIM

10 JPEG [32] 27.82/25.21/0.7800 27.77/25.33/0.7905 27.58/24.97/0.7694

SA-DCT [11] 28.88/28.16/0.8071 28.65/28.01/0.8093 –

ARCNN [7] 29.03/28.75/0.8111 28.96/28.69/0.8220 28.73/28.40/0.7967

CONCOLOR [35] 29.20/29.14/0.8140 28.77/–/0.7991 28.49/28.43/0.7864

TNRD [6] 29.28/29.00/0.8174 29.15/28.80/0.8255 28.80/28.47/0.7990

CAS-CNN [4] – 29.36/28.92/0.8300 –

SSRQC [40] 29.08/29.03/0.8112 – 28.37/28.31/0.7824

EPCA [27] 29.37/–/0.8019 28.94/–/0.8071 –

RED30 [23] 29.35/–/0.8041 29.28/–/0.8177 –

DnCNN [36] 29.40/29.13/0.8201 29.19/28.90/0.8262 28.84/28.44/0.8007

IACNN [17] 29.43/–/0.8070 29.34/–/0.8199 28.87/–/0.7816

DenseDbSR [2] 29.52/29.19/0.8231 29.30/28.95/0.8297 28.92/28.51/0.8032

JRCNN 30.01/29.27/0.8289 29.41/29.10/0.8335 29.18/28.67/0.8137

20 JPEG [32] 30.12/27.50/0.8541 30.07/27.57/0.8683 29.73/26.97/0.8519

SA-DCT [11] 30.92/29.75/0.8663 30.81/29.82/0.8781 –

ARCNN [7] 31.15/30.60/0.8694 31.29/30.69/0.8875 30.81/30.16/0.8682

CONCOLOR [35] 31.34/31.24/0.8709 31.00/–/0.8669 30.54/30.24/0.8598

TNRD [6] 31.47/31.06/0.8749 31.46/31.02/0.8910 30.94/30.26/0.8709

CAS-CNN [4] – 31.67/30.84/0.8940 –

SSRQC [40] 31.23/31.13/0.8696 – 30.43/30.23/0.8578

EPCA [27] 31.58/–/0.8583 32.45/–/0.9008 –

RED30 [23] 31.61/–/0.8611 31.65/–/0.8833 –

DnCNN [36] 31.63/30.67/0.8775 31.59/31.07/0.8936 31.05/30.29/0.8741

IACNN [17] 31.64/–/0.8628 31.73/–/0.8848 31.08/–/0.8621

DenseDbSR [2] 31.71/31.20/0.8793 31.64/31.08/0.8953 31.09/30.31/0.8756

JRCNN 31.83/31.39/0.8809 31.76/31.14/0.9003 31.21/30.47/0.8839
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Table 2 continued

QF Method classic5 [7] LIVE1 [7] BSDS100 [24]
PSNR/PSNR-B/SSIM PSNR/PSNR-B/SSIM PSNR/PSNR-B/SSIM

30 JPEG [32] 31.48/28.94/0.8844 31.41/28.92/0.9000 30.98/28.23/0.8865

SA-DCT [11] 32.14/30.83/0.8914 32.08/30.92/0.9078 –

ARCNN [7] 32.51/31.99/0.8967 32.69/32.15/0.9166 32.13/31.39/0.9011

CONCOLOR [35] 32.66/32.05/0.8962 32.35/–/0.8977 31.81/31.37/0.8930

TNRD [6] 32.78/32.25/0.8994 32.84/32.29/0.9181 32.24/31.30/0.9020

SSRQC [40] 32.50/32.36/0.8951 – 31.68/31.35/0.8918

EPCA [27] 32.87/–/0.8834 32.45/–/0.9008 –

DnCNN [36] 32.91/32.33/0.9011 32.98/32.31/0.9204 32.36/31.40/0.9049

IACNN [17] 32.93/–/0.8874 33.19/–/0.9132 –

DenseDbSR [2] 32.97/32.36/0.9025 33.03/32.33/0.9214 32.40/31.41/0.9059

JRCNN 33.14/32.49/0.9082 33.17/32.48/0.9245 32.57/31.56/0.9075

40 JPEG [32] 32.43/29.92/0.9011 32.35/29.96/0.9173 31.88/29.13/0.9057

SA-DCT [11] 33.00/31.59/0.9055 32.99/31.79/0.9240 –

ARCNN [7] 33.34/32.80/0.9101 33.63/33.12/0.9306 32.99/32.14/0.9176

CONCOLOR [35] 33.56/33.15/0.9102 33.33/–/0.9153 32.71/32.14/0.9116

CAS-CNN [4] – 33.98/32.83/0.9350 –

SSRQC [40] 33.37/33.18/0.9090 – 32.55/32.19/0.9107

EPCA [27] 33.58/–/0.8962 33.40/–/0.9170 –

DnCNN [36] 33.77/33.19/0.9141 33.96/33.25/0.9346 33.27/32.21/0.9215

IACNN [17] 33.79/–/0.9014 34.18/–/0.9283 –

DenseDbSR [2] 33.80/33.20/0.9150 33.98/33.27/0.9351 33.30/32.22/0.9221

JRCNN 33.92/33.32/0.9171 34.09/33.38/0.9383 33.48/32.45/0.9289

The metrics in bold indicates the best values

4.5 Objective evaluation on synthetic images

4.5.1 Quantitative analysis for SR

Table 1 represents the comparison of SR objective metrics on
different benchmark datasets with the state-of-the-art meth-
ods.B100 [24] dataset consists of natural scenes. The JRCNN
produces better performance onB100 [24] dataset. Urban100
dataset [12] contains 100urban imageswith complexpatterns
and restoring these patterns while up scaling the images is
a very challenging task. The proposed JRCNN outperforms
the existing state-of-the-art methods on Urban100 dataset.
The performance of the JRCNN is competitive with other
recent state-of-the-art methods. For all the up scaling fac-
tors, i.e., ×2, ×3 and ×4, the JRCNN outperforms all the
state-of-the-art methods.

The proposed JRCNN achieves 1.7dB improvement in the
PSNR on Set5 dataset for×2 when compared to SRCNN [8]
method. The proposed JRCNN outperforms the recent state-
of-the-art methods RDN [39], RCAN [38] and produces the
competitive performance when compared to PG-GAN [22]
and EBRN [26].

4.5.2 Quantitative analysis for CAR

Table 2 represents the comparison of CAR objective met-
rics on different benchmark datasets with the state-of-the-art
methods. Overall, the DenseDbSR produces second best per-
formance. The ARCNNN [7], CONCOLOR [35] and TNRD
[6] are superior to SA-DCT [11] but the gains are limited to
some extent. The DnCNN [36] and IACNN [17] are com-
petitive to each other. The proposed JRCNN achieves the
best performance for all the quality factors. A PSNR gain of
0.98dB is achieved with the JRCNN on classic5 dataset for
QF = 10 when compared to the ARCNN [7].

4.5.3 Quantitative analysis for CISR

Table 3 represents the PSNR(dB) comparison of CISR
objective metrics on Set10 dataset with the state-of-the-art
methods. Overall, the CISRDCNN [5] generates the second-
best results. The FSRCNN [9], ARCNN-VDSR [7,16] and
ARCNN-DnCNN [7,36] achieve similar performance, and
all of them are slightly inferior to the VDSR [16]. The A+
[30], CONCOLOR-VDSR [16,35] and SRCDFOE [33] are
superior to bicubic, but the gains are limited to some extent.
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Table 5 The average of
performance metrics for CISR
on different datasets for QF = 10
and ×2

Datasets Set5 [3] Set14 [34] B100 [24] Urban100 [12]

PSNR (dB)

Bicubic [15] 26.60 25.04 24.29 23.00

SRCDFOE [33] 27.24 25.45 24.60 23.34

ARCNN-TNRD [6,7] 27.63 25.61 24.87 23.79

ARCNN-VDSR [7,16] 27.83 25.86 24.90 23.93

ARCNN-DnCNN [7,36] 27.92 25.62 24.97 23.97

FSRCNN [9] 27.74 25.76 24.79 23.68

VDSR [16] 27.81 25.90 24.87 23.93

DenseDbSR [2] 27.96 25.93 24.98 24.21

CISRDCNN [5] 28.15 26.13 25.02 24.37

JRCNN 28.47 26.34 25.32 24.71

SSIM

Bicubic [15] 0.7239 0.6433 0.5863 0.6224

SRCDFOE [33] 0.7661 0.6663 0.6025 0.6512

ARCNN-TNRD [6,7] 0.7861 0.6789 0.6128 0.6698

ARCNN-VDSR [7,16] 0.7878 0.6803 0.6153 0.6774

ARCNN-DnCNN [7,36] 0.7927 0.6847 0.6162 0.6821

FSRCNN [9] 0.7915 0.6831 0.6157 0.6817

VDSR [16] 0.7931 0.6853 0.6179 0.6859

DenseDbSR [2] 0.7992 0.6887 0.6217 0.6978

CISRDCNN [5] 0.8039 0.6926 0.6238 0.7043

JRCNN 0.8051 0.6976 0.6276 0.7076

Fig. 6 Visual quality
comparison for SR (×4)

Original Bicubic SRCNN FSRCNN
PSNR/SSIM 17.63/0.5228                   18.23/0.5926                   18.27/0.6072

VDSR DnCNN DenseDbSR DRRN
18.43/0.6286 18.66/0.6371 19.57/0.7117 20.81/0.7844

LapSRN MemNet BTSRN SRMD
20.89/0.7860 20.95/0.7874 21.04/0.7926 21.12/0.7998

ETRN MWCNN CARN EDSR
21.17/0.8033 21.29/0.8068 21.46/0.8140 21.48/0.8160

RDN RCAN JRCNN
21.50/0.8168 21.70/0.8261 21.86/0.8340
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Fig. 7 Visual quality
comparison for CAR (QF = 10

Original JPEG SA-DCT ARCNN
PSNR/SSIM 21.66/0.8802 22.98/0.9003 23.36/0.9062

CONCOLOR TNRD CAS-CNN SSRQC
23.39/0.9050 23.46/0.9080 23.50/0.9087 23.53/0.9081

EPCA RED30 DnCNN IACNN
23.55/0.9093 23.64/0.9088 23.67/0.9091 23.71/0.9109

DenseDbSR JRCNN
23.79/0.9115 23.96/0.9146

Table 4 represents the SSIM comparison of CISR objec-
tive metrics on Set10 dataset with the state-of-the-art meth-
ods. The SSIM measures the structural similarity between
the restored image and the IHR image. The SSIM metric of
the JRCNN is the highest when compared to the other meth-
ods for all the images of Set10 dataset. From Table 4, one
can clearly observe that the structural content restoration of
the JRCNN is the best.

4.6 CISR performance on benchmark datasets

To better assess the stability and robustness of the JRCNN,
the performance metrics for four widely used benchmark
datasets, i.e., Set5 [3], Set14 [34], B100 [24] and Urban100
[12] are shown in Table 5. The images in B100 [24] are
cropped to generate test images of size 256×256. Similarly,
the images in Urban100 [12] dataset are cropped to generate
test images of size 512×512. From Table 5, one can see that
the JRCNN consistently outperforms all of the compared
methods. On an average the JRCNN achieves a PNSR gain

of 0.3dB on all the datasets when compared to the next best
CISRDCNN [5] method.

4.7 Subjective evaluation on synthetic images

In this section, the visual comparison analysis of images from
standard datasets are performed. Different images from the
different benchmark datasets for SR, CAR andCISR are con-
sidered. Figures 6, 7 and 8 represent the visual comparison
for SR, CAR and CISR, respectively.

4.7.1 Qualitative analysis for SR

The visual comparison of restored images from different
state-of-the-art methods for SR is shown in Fig. 6. A small
patch from the barbara image of the Set14 [34] dataset is
cropped. The cropped portion is super resolved by a factor of
4. The cropped portion has regular structures and complex
patterns. The regular structures restored from all the state-
of-the-art methods are distorted. The reconstructed patch by
the JRCNN is visually pleasing and all the regular structures
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Fig. 8 Visual quality
comparison for CISR (×2 and
QF = 20)

Original Bicubic LJSRDB A+
PSNR/SSIM 20.76/0.3583 21.99/0.4695 22.06/0.4710

SRCDFOE CONCOLOR-VDSR       ARCNN-TNRD ARCNN-VDSR
22.11/0.4714                  22.16/0.4723 22.29/0.4739 22.46/0.4750

ARCNN-DnCNN FSRCNN VDSR DenseDbSR
22.51/0.4754                   22.56/0.4763 22.69/0.4779 22.76/0.4790

CISRDCNN JRCNN
22.91/0.4814                23.06/0.4825

Fig. 9 Test time comparison on
Set5 dataset for QF = 10 and ×2

2 4 6 8 10 12
Faster               Testing Time (Sec)            Slower

27

27.5

28

28.5

29

PS
N

R
 (d
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ARCNN-TNRD
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ARCNN-DnCNN

FSRCNN
VDSR

DenseDbSR

CISRDCNN

JRCNN
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are restored accurately. The PSNR and SSIM values are also
shown in Fig. 6. The EDSR [20], RDN [39] and RCAN [38]
achieve better PNSR but the visual quality of the restored
image is not good as it contains regular structure distortions.
Quantitatively andqualitatively the JRCNNproduces thebest
results for SR.

4.7.2 Qualitative analysis for CAR

The deblocking and deringing capability of the JRCNN is
visually analyzed by extracting a small portion from the par-
rots image of LIVE1 [7] dataset. The zoomed version of the
extracted patch is shown in Fig. 7. The JPEG decompressed
patch contains blocking and ringing artifacts. A Small 8×8
blocks can be observed in the restored patch. Similarly,
ringing artifacts can be clearly observed around the edges.
The JRCNN seamlessly attenuates the blocking and ring-
ing artifacts which can be clearly observed in Fig. 7. The
visual quality of the patches restored by the IACNN [17],
DenseDbSR [2] and JRCNN are competitive.

4.7.3 Qualitative analysis for CISR

The visual quality of the restored image patches using
different methods corrupted by compression and bicubic
degradation is shown inFig. 7. The visual quality of the image
produced by the JRCNN is visually pleasing. Moreover, the
JRCNN restores textures accurately. The visual quality of the
CISRDCNN [5] and JRCNN are competitive. The bicubic
interpolated image contains blurring, ringing and blocking
artifacts. The DNN-based cascaded methods, i.e., ARCNN-
TNRD [6,7], ARCNN-VDSR [6,7] and ARCNN-DnCNN
[7,36] produces blurred outputs. Basically, in cascadedmeth-
ods, theCARstage removes someof the information required
for SR stage and produces blurred images. Similarly, the SR
stage amplifies compression artifacts and CAR stage can-
not suppress all the amplified artifacts and produces visually
annoying output. The end-to-end learning frameworks, i.e.,
CISRDCNN [5] and the proposed JRCNN produces visually
plausible images.

4.8 Time analysis

For real time applications testing time is also one of the key
factors which decides the robustness of any network. Test
time comparisons of different DNN-based methods is shown
in Fig. 9. For fair comparison with the JRCNN only DNN-
based methods are considered. The test time plot shown in
Fig. 9 represents the average PSNR in dB and the average test
time in Sec of Set5 dataset images for QF = 10 and×2. Out of
all compared methods, the JRCNN is the fastest method. The
JRCNN outperforms the next best CISRDNN [5] method by

a margin of 0.32dB. When it comes to speed the FSRCNN
[9] is the second best method after the JRCNN.

5 Conclusion

A deep learning-based joint restoration DNN is proposed
with cross residual connections, dense skip connections and
parallel convolutional layers for an efficient super resolu-
tion of compressed and low resolution images. The cross
residual connections and dense skip connections helped to
ease the training by mitigating the problem of gradient van-
ishing/exploding. The parallel convolutional layer structure
improved the efficiency of the proposed network by per-
forming parallel convolution operations. A notable gain is
achieved in performancemetrics when compared to the state-
of-the-art methods. The visual quality of the restored images
by the proposed network is good when compared to other
existing methods. Using the proposed network, three dif-
ferent restoration tasks, i.e., super resolution, compression
artifacts removal and compressed low resolution image super
resolution are also performed. The robustness and the sta-
bility of the proposed network is assessed by performing
restoration tasks on different benchmark datasets.
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