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Abstract
Single image deraining is a highly ill-posed problem. Existing deep neural network-based algorithms usually use larger deep
models to solve this problem, which is less effective and efficient. In this paper, we propose a deep neural network based on
feature pyramid to solve image deraining. Our algorithm is motivated that the features at different pyramid levels share similar
structures. Based on this property, we develop an effective deep neural network, where the deep models at different feature
pyramid levels share the same weight parameters. In addition, we further develop a multi-stream dilation convolution to deal
with complex rainy streaks. To preserve the image detail, we develop dense connections that can maintain important features
from different levels. Our algorithm is trained in an end-to-end manner. Quantitative and qualitative experimental results
demonstrate that the proposed method performs favorably against state-of-the-art deraining methods in terms of accuracy as
well as model sizes. The source code and dataset will be available at https://supercong94.wixsite.com/supercong94.

Keywords Single image deraining · Deep neural network · Shared parameters · Pyramid network · Dense connections

1 Introduction

Lots of vision and multimedia systems usually rely on high-
definition images or videos, e.g., object detection [30], object
tracking [40], autonomous driving [1] and so on. However,
the images and videos captured in a rainy environment usu-
ally contain significant rainy streaks, which fails most vision
and multimedia tasks. Thus, it is necessary to develop algo-
rithms that can automatically restore clear images from rainy
images.

Image deraining has attracted much attention in the past
years. A lot of methods have been proposed to solve this
problem. The main success of these algorithms is due to the
use of kinds of image priors [2,21,25] or deep neural net-
works [9,19,20,32,35]. Mathematically, a rainy image can be
modeled as a linear combination of a rain streak component
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with a clean background image:

O = B + R (1)

where O, B and R denote rainy image, clear image and rainy
streaks, respectively.As only the rainy image is available, this
problem is highly ill-posed.

To make this problem well proposed, numerous algo-
rithms use prior knowledge about rainy streaks and clear
images, e.g., low-rank prior [2], sparse representation [25],
Gaussianmixturemodel [21], to constrain the solution space.
Although these algorithms achieve promising performance,
the prior knowledge used in these algorithms does not hold
for some cases. Hence, more adaptive and efficient methods,
which can deal with the problem of different rainy streaks in
any case, are needed.

Motivated by the success of convolutional neural networks
(CNNs) in many computer vision tasks, e.g., object detec-
tion [30], object tracking [40], semantic segmentation [24],
super-resolution [5,6], style transfer [10,14], deblurring [33],
dehazing [7,18,27,34,37–39], theCNNshavebeendeveloped
to solve image deraining [8,9,19,20,32,35]. These derain-
ing methods generally model the problem as a pixel-wise
image regression process which directly learns to map an
input rainy image to its clean one or a negative resid-
ual map in an end-to-end trainable CNNs. Among them,
[8,9,19,20] proposed different network structures by consid-
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ering property of rain or rain streak feature. Different from
designing network structure, [32,35] considered rain streak
detection or estimating rain streak density into rain streak
removal procedure. Although considerable progress has been
made in comparison with traditional methods, existing algo-
rithms [19,20,32,35] usually use larger deep models that are
less effective and efficient. For example, Fig. 1 shows the
results of ours and other state-of-the-art deraining methods.
We can see that other state-of-the-art methods are inefficient
and our algorithm generates better deraining performance
utilizing small size network depending on the shared fea-
tures that can be obtained through the different levels of the
pyramid network.

Moreover, spatial pyramid features have been applied to
many vision tasks and achieve excellent results. The pyramid
manner usually utilizes max pooling or mean pooling opera-
tion to obtain. In [3,22,26,29], these methods take advantage
of the pyramid to improve the performance of corresponding
visual problems. However, these algorithms have a common
disadvantage that the parameters in different levels of the
pyramid are independent, which enlarges the model sizes.
Hence, in this paper, by the proposed pyramid-based net-
work, we have explored the dependency between the network
levels which helps to shrinkage the proposed model size.

To overcome these problems, we develop an effective
deep neural network based on the feature pyramid for image
deraining. Our algorithm is motivated that the features at
different image pyramid levels share similar structures. By
assuming that the deep models at different pyramid lev-
els share the same weight parameters, the proposed deep
model is able to remove rain streaks and has a smaller model
size. To deal with complex rainy streaks and preserve the
image details, we develop a multi-stream dilation convolu-
tion (MSDC) and dense connections that can get a larger
receptive field to obtain more rain streak information and
maintain the important features from different levels, respec-
tively, as shown in Fig. 1. By training in an end-to-end
manner, the proposed algorithm performs favorably against
state-of-the-art methods in terms of accuracy and model
sizes.

The contributions of this paper are summarized as follows:

– We propose an effective deep neural network based on
the feature pyramid for image deraining, where the deep
models at different pyramid levels share the same weight
parameters.

– We develop a multi-stream dilation convolution and
dense connections that can maintain the important fea-
tures from different levels to deal with complex rainy
streaks and preserve the image details.

– We create a synthetic rainy Pascal VOC 2012 dataset to
evaluate the improvement of performance by incorpo-
rating with deraining methods for the high-level vision

tasks. As we know, the rainy evaluative dataset for high-
level vision is firstly synthesized by us.

– We show that the proposed algorithm is able to remove
rain streaks and preserve image details. Quantitative
and qualitative experimental evaluations on both syn-
thetic datasets and real-world datasets demonstrate that
the proposed algorithm outperforms the state-of-the-art
methods.

2 Related work

In this section, we present a brief review of the recent related
works.

2.1 Single image deraining

As aforementioned, the single image deraining methods can
be grouped into two categories: prior-based methods and
deep learning-based methods.

Prior-Based Methods: Prior-based methods are the pre-
vious pioneers of the deraining problem. Kang et al. [15]
assumed that rain streaks were a high-frequency structure
and separated the rain streaks by utilizing sparse coding
from HOG features in high-frequency layer. Kim et al. [16]
directly regarded it as an image filtering problem and solved
it by resorting to nonlocal mean smoothing. Luo et al. [25]
proposed a discriminative sparse coding framework based
on image patches and separated rain streaks from rain-free
background images. Chen et al. [2] believed that the rain
streak layer was of low rank and utilized generalized a low-
rank model to separate rain streaks. Li et al. [21] developed
a Gaussian mixture model to derain using layer prior.

Deep Learning-Based Methods: Recently, several deep
learning-based deraining methods have achieved great suc-
cess. Fu et al. [8,9] are the pioneers of applying the deep
learning techniques to single image deraining. They decom-
posed rainy images into low- and high-frequency parts and
mapped high-frequency parts to rain streaks by a deep resid-
ual network, and lastly, they utilize Eq. 1 to obtain a clean
image. Yang et al. [32] proposed a joint rain streak detec-
tion and removal method. Considering the hazy condition
into the rainy model, they applied a dehazing–deraining–
dehazing algorithm to solve the complex situation. Li et
al. [19] came up with a multi-scale nonlocal enhanced
encoder–decoder network that mapped rainy images to clean
images via learning the residual by considering the pixel-
wise attention mechanism. Li et al. [20] recurrently utilized
convolutional neural networks with dilation factors and
squeeze-and-excitation [11] blocks to remove heavy rain
streaks. Zhang et al. [35] proposed a multi-stream densely
connected convolutional neural network to guide rain streak
removal by estimating rain density.
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Fig. 1 Image deraining
examples. The proposed
algorithm is able to remove rain
from the rainy images and
generates better images with
finer details. The DDN [9] does
not have a large receptive field
that results in residual rainy
streaks. The RESCAN [20]
neglects to fuse the features at
different levels among layers so
as to lose the image details

2.2 Pyramid network

Recently, the conventional spatial pyramid approaches have
been combined successfully with neural network architec-
tures to deal with various vision tasks. There are several
networks based on spatial pyramid. Ranjan et al. [26] pro-
posed a spatial pyramid network to estimate optical flow,
where they utilized a coarse-to-fine manner to estimate large
motions bywarping one image. Different from standardmin-
imization of an objective function at each pyramid level,
they computed the flow update by training one deep neu-
ral convolutional network at per level of pyramid. Lin et
al. [22] proposed a feature pyramid network for object detec-
tion that they constructed feature pyramids with marginal
extra cost by using pyramidal hierarchy of deep networks.
Chen et al. [3] came up with a cascaded pyramid net-
work for multi-person pose estimation by designing the
global-net and refine-net. In particular, in the deraining
task, Wang et al. [4] proposed a deep pyramid model
to solve the image deraining problem, where they did
not consider the shared strategy, leading to bigger model
size.

To sum up, although they have achieved well-pleasing
performance, all of them have a common characteristic that
parameters at different levels of the pyramid are independent.
The feature similarity of the pyramid is not fully utilized so
as to the heavy weight networks.

3 Proposedmethod

We develop an end-to-end convolutional neural network for
single image deraining, which is a fully convolutional net-
work that has been proved to be able to learn complex
pixel-wise mappings from a large amount of input–output
image pairs. The overall architecture of the proposed net-
work is illustrated in Fig. 2. As features at different levels
of the pyramid have similar structure (we discuss this in
Sect. 5), we introduce shared parameter strategy to differ-
ent levels of the pyramid. Each level of pyramid can learn
different rain streak information so that the overall network
are boosted to learn the most useful rain streak informa-
tion.

3.1 Overall network framework

The overall network framework is shown in Fig. 2. As rainy
streaks have simpler structure than clear images, the net-
work learns the map from rainy images to rainy streaks
and obtains final clean images by utilizing Eq. 1. To obtain
more spatial contextual information, we develop a multi-
stream dilation convolution (MSDC) as our basic component
which will be introduced in detail in Sect. 3.2. More-
over, in order to boost the information flow along with
features from different levels, we use dense connections
to connect these layers at the same level of the pyramid.
Several MSDCs and dense connections make up our net-
work.
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Fig. 2 Proposed network
framework. The parameters are
shared in the same color blocks
at the same positional layer of
different levels of pyramid. Inlet
layer is to convert image space
to feature space, i.e., F0. MSDC
denotes multi-stream dilation
convolution shown in Fig. 3.
Rain layer is estimated rainy
streaks, i.e., Fi,rain

Mathematically, we describe this overall network as fol-
lows:

F0 = Conv3×3(O), (2)

where O and F0 denote the input of rainy image and the shal-
low features, respectively. Conv3×3 denotes the convolution
operation with the kernel size of 3× 3 pixels. This operation
is to convert image space into feature space.

Then the original features at different levels of the pyramid
can be acquired by using max-pooling operation on shallow
features:

Fi,0 = Pi (F0), i = 1, 2, . . . , 2K−1. (3)

Here,Pi denotes max-pooling operation, where its stride and
the kernel size are i . K denotes the number of pyramid level,
and Fi,0 denotes the input of i th level of the pyramid.

Dense connections are used to connect MSDCs densely
to boost the information flow and preserve the image details:

Fi,l = Ml(Conv1×1(C[Fi,l−1, . . . , Fi,0])), (4)

where C denotes the concatenation operation and Conv1×1

denotes the convolution operation with kernel size of 1 × 1
pixels. M denotes MSDC operation in Fig. 3 and it will be
described in Sect. 3.2 in details. Fi,l denotes the output of lth
MSDCoperation at i th level of pyramid and l = 1, 2, . . . , L .

The rainy streak layer Fi,rain is obtained by cascading all
MSDCs in order to obtain features at different levels:

Fi,rain = Conv1×1(C[Fi,L , . . . , Fi,0]), (5)

The final estimated rain streak layer R̃ is that cascades all
rain streaks at different levels by upsampling to the original
size of rainy image:

R̃ = Conv1×1(S1(F1,rain), . . . , Si (Fi,rain)), (6)

where Si denotes the upsampling operation with the scale
factor i .

Fig. 3 Multi-stream dilation convolution (MSDC)

Finally, we obtain the estimated rain-free image B̃ via
Eq. 1:

B̃ = O − R̃, (7)

3.2 Multi-stream dilation convolution

As the spatial contextual information is important for single
image deraining [12], we use the multi-stream dilation con-
volution to capture the important features at different image
pyramid levels. For large rainy streaks, the large receptive
field is needed to capture the information, while small rainy
streaks can be estimated well by a smaller receptive field.
Based on this fact, we develop amulti-stream dilation convo-
lution (MSDC) to achieve this goal. The detailed architecture
is shown in Fig. 3.

The MSDC operation can be represented as:

Dr = Convr (I ), r = 1, 3, 5, (8)

where I and Dr denote the input feature and corresponding
output, respectively. r denotes the dilation factor based on
3 × 3 convolution.

To effectively learn the rainy streak information, we fuse
different layers by

Dk, j = σ(Conv1×1(C[Dk, Dj ])), (9)
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Fig. 4 Several examples in our
created synthetic rainy dataset
on Pascal VOC2012. They have
dozens of different sizes, shapes
and directions

where Dk, j denotes the fusion output and σ denotes the acti-
vation function. Here, we select LeakyReLU with α = 0.2
as σ .

Finally, the output of MSDC is:

MSDC = Conv1×1(C[D1,3, D3,5]), (10)

Table 1 Quantitative
experiments evaluated on three
synthetic datasets

– DSC ( [25]) LP ( [21]) DDN ( [9]) JORDER ( [32])
Dataset PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Rain100H 15.66 0.42 14.26 0.54 22.26 0.69 23.45 0.74

Rain100L 24.16 0.87 29.11 0.88 34.85 0.95 36.11 0.97

Rain1200 21.44 0.79 22.46 0.80 30.95 0.86 29.75 0.87

Parameters – – 58,175 (−45%) 369,792 (−91%)

RESCAN ( [20]) DID ( [35]) L10C6 L12C8 (default) L14C10
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

25.92 0.84 26.12 0.83 26.21 0.83 26.90 0.85 27.56 0.86

36.12 0.97 36.14 0.96 35.06 0.97 36.02 0.98 36.84 0.98

32.35 0.89 29.65 0.90 31.13 0.89 31.57 0.90 32.50 0.91

54,735 (−41%) 372,839 (−91%) 14,865 32,075 59,453

LsCt denotes the network that the number ofMSDCs is s and the number of channels is t . The best, the second
and third results are marked by bold, italic and bold italic, respectively. Please note that the JORDER [32]
and DID [35] are trained by additional data (e.g., rain density level, rain mask annotation) provided by the
datasets. The number in parentheses indicates the parameter reduction compared our default method, i.e.,
L12C8
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Fig. 5 An example in synthetic
datasets compared with
prior-based deraining methods.
The proposed method generates
a much clear image

Fig. 6 Several examples in
synthetic datasets compared
with deep learning-based
deraining methods

Fig. 7 A real-world example
compared with prior-based
deraining methods. The
proposed method is able to
remove rain and generates a
much clear image

Fig. 8 Deraining results on
real-world images. The
proposed method is able to
remove rain and generate much
better results. Note that the
DID [35] has a refinement
processing after deraining.
However, there still exist
significant rain streaks in the
restored images
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Fig. 9 More our deraining
examples

3.3 Loss function

To train the proposed network, we use themean square errors
as the loss function which is defined as:

L = 1

HWC

H∑

h=1

W∑

w=1

C∑

c=1

‖B̃h,w,c − Bh,w,c‖22, (11)

where H ,W and C denote the height, width and channel
number of a rain-free image, respectively; B̃ and B denote the
estimated clean image and ground truth image, respectively.

4 Experimental results

In this section, we demonstrate the effectiveness of the pro-
posed method by conducting various experiments on three
synthetic datasets and a real-world dataset. All the results
are compared with six state-of-the-art methods: DSC [25]
(ICCV15), LP [21] (CVPR16), DDN [9] (CVPR17),
JORDER [32] (CVPR17), RESCAN [20] (ECCV18) and
DID [35] (CVPR18).

4.1 Datasets and evaluation criteria

4.1.1 Synthetic datasets

We conduct deraining experiments on three widely used
synthetic datasets: Rain100L [32], Rain100H [32] and
Rain1200 [35]. These three datasets include various rain
streaks that have different sizes, shapes and directions.
Rain100H and Rain100L have 1800 images for training and
200 images for testing, respectively. Rain1200 has 12000
images for training and 1200 image for testing. It is ensured
that all the testing datasets have different background images

with training datasets. We select Rain100H as our ablation
study analysis dataset.

4.1.2 Real-world datasets

Zhang et al. [36] and Yang et al. [32] also provide some real-
world images, we use these images to evaluate the robustness
on real-world images.

4.1.3 Our created rainy pascal VOC2012 dataset

We first create the rainy Pascal VOC2012 dataset to evalu-
ate the improvement of performance by incorporating with
deraining methods for the high-level vision tasks. The syn-
thetic rainy images have dozens of different rainy streaks,
including sizes, shapes and directions. Several samples are
shown in Fig. 4.

4.1.4 Evaluation criteria

We use the peak signal-to-noise ratio (PSNR) [13] and struc-
ture similarity index (SSIM) [31] to evaluate the quality of
the restored images on synthetic datasets. As there are no
ground truth images for real-world images, we only show
visual comparisons on the real-world datasets.

4.2 Experimental settings

We empirically set L = 12, K = 3 and the number of
channels be to 8. We use the LeakyReLU with α = 0.2 as
the nonlinear activation function. We randomly crop image
patches with size of 128×128 pixels from the training image
datasets as the inputs and set the mini-batch size to be 10 to
train the network. The ADAM [17] optimizer is used. The
learning rate is initialized to be 0.001, and it will be divided
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Table 2 Quantitative
experiments evaluated on three
synthetic datasets compared
with NLEDN [19]

– NLEDN ( [19]) L10C6 L12C8 (default) L14C10
Dataset PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Rain100H 28.42 0.88 26.21 0.83 26.90 0.85 27.56 0.86

Rain100L 38.84 0.98 35.06 0.97 36.02 0.98 36.84 0.98

Rain1200 32.98 0.92 31.13 0.89 31.57 0.90 32.50 0.91

Parameters 1,005,379 (−97%) 14,865 32,075 59,453

Number in parentheses indicates the parameter reduction compared our default method, i.e., L12C8

Fig. 10 Real-world examples
compared with NLEDN [19].
We note that our method has
better deraining performance
than NLEDN [19], while
decreasing 97% parameters
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Table 3 Ablation study on basic component

Metric Single No dense No dilation Ours

PSNR 26.59 15.56 26.06 26.90

SSIM 0.84 0.33 0.83 0.85

Parameters 32,027 26,219 32,075 32,075

by 10 at 240K and 320K iterations. We train the network
using 400K iterations on a PCwith an NVIDIAGTX 1080Ti
GPU. As our entire model is fully convolutional, the testing
process only takes 0.024 seconds when handling a test image
with 512 × 512 pixels on a PC with a GTX 1080Ti GPU.

4.3 Results on synthetic datasets

We compare our proposed network with six state-of-the-
art methods, including two prior-based methods: DSC
(ICCV15) [25] and LP (CVPR16) [21], and four deep
learning-based methods: DDN (CVPR17) [9], JORDER
(CVPR17) [32],RESCAN(ECCV18) [20] andDID (CVPR18)
[35]. The results are shown in Table 1 and corresponding
parameters are also specified. We can observe that the results
of ourmethodwith the least parameters achieve better perfor-
mances comparable to that of state-of-the-art methods. Note
that the parameters are reduced by 91 percent compared with
the newest state-of-the-art method: DID [35]. Our network is
trained without any label; meanwhile, the JORDER [32] and
DID [35] use the rainy streak mask and rainy streak density

as label to guide the training, respectively. We also show the
results on the version of our lightweight model, i.e., L10C6.
This model has the advantage of the least parameters, while
the decrease in performance is very small comparable with
other state-of-the-art methods and even surpass them. Fur-
ther, we also provide the version of our heavyweight model,
i.e., L14C10, it is obvious that themodel outperforms all state-
of-the-art methods, while the parameters are almost the same
with that of DDN [9] and RESCAN [20] and much less than
JORDER [32] and DID [35].

We also provide several examples as visual comparison.
Figure 5 shows the results compared with prior-based meth-
ods [21,25]. It is obvious that our result is the best and the
other results are unacceptable.

We further compare with deep learning-based methods,
shown in Fig. 6. It can be observed that our results, shown in
Fig. 6f, always obtain clearer texture information and have
less artifacts. The other results either maintain residual rain
streaks, e.g., Fig. 6b and c, or leave over more artifacts, e.g.,
Fig. 6d and e.

4.4 Results on real-world datasets

To verify the robustness, we compare our algorithm with
state-of-the-art methods on real-world datasets. Firstly, we
present one example compared with prior-based meth-
ods [21,25], illustrated in Fig. 7.

The other results hand down a mass of rainy streaks,
while ours is the clearest and cleanest. Secondly, we display

Fig. 11 Comparisons of the
results by different baseline
models. The proposed method
generates a much better image
as shown in (e)

Table 4 Results on different
number of levels and dilation
convolutions

Metrics K = 2 K = 3 (default) K = 4

D = 2 PSNR 26.19 26.23 26.24

SSIM 0.83 0.83 0.83

Parameters 21,779 21,803 21,827

D = 3 (default) PSNR 26.79 26.90 26.92

SSIM 0.84 0.85 0.85

Parameters 32,051 32,075 32,099

D = 4 PSNR 26.83 26.96 26.93

SSIM 0.85 0.85 0.85

Parameters 39,059 39,083 39,017

K and D denotes the levels of pyramid and dilation convolutions, respectively

123



1860 C. Wang et al.

Table 5 Results on different
number of channels and MSDCs

Metrics C = 6 C = 8 (default) C = 10

L = 10 PSNR 25.91 26.48 26.93

SSIM 0.82 0.84 0.85

Parameters 14,865 26,139 40,573

L = 12 (default) PSNR 26.28 26.90 27.28

SSIM 0.83 0.85 0.86

Parameters 18,225 32,075 49,813

L = 14 PSNR 26.30 26.97 27.55

SSIM 0.83 0.85 0.86

Parameters 21,729 38,267 59,453

C and L denotes the number of channels and MSDCs, respectively

Table 6 Result on object
detection and semantic
segmentation are in the tables
above and below, respectively

Metric Rain Derain

mIU 0.311 0.466

mAP 0.66 0.74

three examples compared with deep learning-based meth-
ods [9,20,32,35], shown in Fig. 8. Our results shown in
Fig. 8f have the least artifacts. For the first example, the
results of JORDER [32], shown in Fig. 8b, DDN [9], shown
in Fig. 8c, and DID [35], shown in Fig. 8e, have lots of resid-
ual rainy streaks, while the result of RESCAN [20], shown
in Fig. 8d, leave over many artifacts. For the second exam-
ple, our result almost removes all the rain streaks, while the
results of DDN [9], RESCAN [20] and DID [35], shown in
Fig. 8c, d and e, respectively, hand down some rain streaks.
Please note that the DID [35] has a refinement processing
after deraining that it can be seen as dehazing procedure, so
their results look like fog-free, while there exists fog in our
result, because we do not have any post-processing. For the
third example, our method gains better texture information in
masked boxes, while JORDER [32] and RESCAN [20] lose
the detail information. Moreover, DDN [9] and DID [35]
maintain some rain streaks and our method is able to remove
all rain streaks to obtain the cleanest image.

We provide more our deraining examples in Fig. 9. It can
be seen that our method is able to process various rain streaks
to generate better rain-free images.

4.5 Comparison with NLEDN

In particular, we compare our method with NLEDN [19] on
synthetic datasets in Table 2. We note that our results are
comparable with NLEDN, while the parameters are drasti-
cally reduced. Our model only has 32,075 parameters, while
NLEDN has more than 1,000,000 parameters.

Moreover, we also provide several examples on real-world
dataset comparedwithNLEDN[19] shown inFig. 10.Wecan

observe that our method is able to generate better and clearer
deraining performance using only about 30,000 parameters,
while NLEDN maintains a number of rain streaks and it has
more than 1,000,000 parameters.

4.6 Ablation study

As our network consists of multi-stream dilation convolu-
tion, dense connections and multi-level shared pyramid, it is
meaningful to discuss their effectiveness on image derain-
ing. For simplicity, we use the following abbreviations for
the baseline methods.

– Single: one-level pyramid network.
– No dense: our proposed network without dense connec-
tions.

– No dilation: our proposed network without dilation con-
volution.

– Ours: our proposed shared pyramid network that is of 3
levels.

The results are shown in Table 3; compared with the one-
level network, our sharing strategy improves the PSNR and
SSIM by 0.31db and 1%, respectively, while the parameters
have barely changed. This also demonstrates that our shared
parameter strategy boosts the learning processing between
different levels of the pyramid. So we believe that the shared
parameter strategy is more worthy of promotion. In addition,
it is observed the dense connections and dilation convolu-
tion also can be used to improve the performance. Specially,
the dense connections greatly improve the expressive ability
of the model. We also provide one example as visual com-
parison, shown in Fig. 11. Our proposed method obtains the
highest PSNR and SSIM and has fewer artifacts compared
with other methods.

123



Single image deraining via deep… 1861

Fig. 12 Visual examples on
object detection and semantic
segmentation in synthetic
dataset

Fig. 13 Visual examples on
object detection and semantic
segmentation in real-world
dataset

4.7 Effect of the pyramid levels and the numbers of
dilation convolution

It is worth exploring the effect of different levels of the
pyramid (K ) and the numbers of dilation convolution of
MSDC (D). Table 4 shows the results of different selection
sets of the levels of the pyramid and the numbers of dila-
tion convolution. It can be seen that the results are almost
barely changed for the same number of dilation convolution.
Moreover, there are obvious changes for the same levels of
the pyramid with different numbers of dilation convolution.

Although the parameters are less when D = 2, the results
are unsatisfactory. While they have better performance when
D = 4, the parameters are too many. We select K = 3 and
D = 3 as our network set, because the parameters are less
and the results are well-pleasing.

4.8 Analysis on themodel size

In this section, we evaluate the effect of the model size. We
show the results in Table 5. It can be observed that the per-
formance of our method is improved with the channels and
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Fig. 14 Several preprocessing
examples of semantic
segmentation

Fig. 15 Several preprocessing
examples of object detection

the length of the network increasing,while the parameters are
increased substantially. For lightweight network, i.e., L = 10
and C = 6, the result also is comparable with that of other
state-of-the-art methods by combining with Table 1. Fur-
ther, the results are far better than all state-of-the-art methods
when the network has heavyweight parameters, i.e., L = 14
and C = 10. We select L = 12 and C = 8 as our network
set; in this case, the network has fewer parameters and the
results are satisfactory.

4.9 Applications on high-level vision tasks

Most CNN-based models for the high-level computer vision
tasks, such as object detection and semantic segmentation,
are trained in a good scenario. Therefore, rainy streaks will

decrease the performance of these tasks. Figure 12a shows
that under a rainy condition, SSD [23] fails to detect one of
the planes, and FCN [28] cannot segment the planes. We cre-
ated a Rainy Pascal VOC 2012 dataset, in which the images
are synthesized to various rainy streaks with different sizes,
directions and shapes. Incorporating our derainingmethod as
a preprocess model for SSD and FCN, we conduct the exper-
iments on this synthetic dataset, and the results are shown
in Table 6. The mAP of SSD on the rainy validation set is
0.66, and after deraining, the mAP is improved to 0.74. And
for FCN, the mIU is improved from 0.311 to 0.466 on the
validation set. We also illustrate the results of detection and
segmentation on synthetic and real-world images, respec-
tively, in Figs. 12 and 13.
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Fig. 16 In the shared parameter
condition, the visualizations of
feature maps on the F1,0, F2,0
and F4,0 are from top to bottom.
Our method is motivated that the
features at different pyramid
levels share similar structures. It
can be observed that they indeed
have similar structures at
different pyramid levels

We also provide more examples in the applications of
object detection and semantic segmentation in Figs. 14 and
15, respectively. It is obvious that these high-level tasks
almost fail to work, while our method removes all of rain
streaks and improves their accuracy with a large margin. So
it is meaningful to develop a better deraining algorithm.

5 Visualization of feature maps

Our method is motivated by the fact that the features at dif-
ferent pyramid levels share similar structures. As shown in
Fig. 16, it can be observed that the features at different pyra-
mid levels indeed have the similar structures in the condition
of shared parameters. This also supports our algorithm to
workwell and can boost the deraining by learning the features
at different pyramid levels in the shared parameter condition.

6 Conclusions

In this paper, we have proposed a deep neural network based
on a feature pyramid to solve image deraining. The proposed
deep models at different feature pyramid levels share the
same weight parameters. We further develop a multi-stream
dilation convolution to deal with complex rainy streaks and
propose dense connections tomaintain the important features
from different levels. By training in an end-to-end manner,
the proposedmethod performs favorably against state-of-the-
art deraining methods in terms of accuracy as well as model
sizes.

Different loss functions may influence the deraining
results and we will explore them in the future. Moreover, we
only utilize simple rain model to solve the deraining tasks,
while more complex rain models have been proposed and we
will dig into more effective rain model and its principle to
improve the deraining performance.

Funding This work was supported by the National Science and Tech-
nology Major Project [Grant Nos. 2018ZX04041001-007].

Compliance with ethical standards

Conflict of interest All authors declare that they have no conflict of
interest.

References

1. Althoff, M., Stursberg, O., Buss, M.: Model-based probabilis-
tic collision detection in autonomous driving. IEEE Trans. Intell.
Transp. Syst. 10(2), 299–310 (2009). https://doi.org/10.1109/
TITS.2009.2018966

2. Chen, Y., Hsu, C.: A generalized low-rank appearance model for
spatio-temporally correlated rain streaks. In: ICCV, pp. 1968–1975
(2013). https://doi.org/10.1109/ICCV.2013.247

3. Chen, Y., Wang, Z., Peng, Y., Zhang, Z., Yu, G., Sun, J.: Cascaded
pyramid network for multi-person pose estimation. In: CVPR, pp.
7103–7112 (2018). https://doi.org/10.1109/CVPR.2018.00742.
URL http://openaccess.thecvf.com/content_cvpr_2018/html/
Chen_Cascaded_Pyramid_Network_CVPR_2018_paper.html

4. Cong, W., Wu, Y., Cai, Y., Yao, G., Su, Z., Wang, H.: Single image
deraining via deep pyramid network with spatial contextual infor-
mation aggregation. Appl. Intell. 50, 1437–1447 (2020)

5. Cui, Z., Chang, H., Shan, S., Zhong, B., Chen, X.: Deep network
cascade for image super-resolution. In: ECCV, pp. 49–64 (2014).
https://doi.org/10.1007/978-3-319-10602-1_4

6. Dong,C., Loy,C.C.,He,K., Tang,X.: Image super-resolution using
deep convolutional networks. IEEE Trans. Pattern Anal. Mach.
Intell. 38(2), 295–307 (2016). https://doi.org/10.1109/TPAMI.
2015.2439281

7. Fan, X., Tang, X., Hou, M., Luo, Z.: Fast example searching for
input-adaptive data-driven dehazing with gaussian process regres-
sion.Vis. Comput. 35(4), 565–577 (2019). https://doi.org/10.1007/
s00371-018-1485-y

8. Fu, X., Huang, J., Ding, X., Liao, Y., Paisley, J.: Clearing the skies:
a deep network architecture for single-image rain removal. IEEE
Trans. Image Process. 26(6), 2944–2956 (2017). https://doi.org/
10.1109/TIP.2017.2691802

9. Fu,X.,Huang, J., Zeng,D.,Huang,Y.,Ding,X., Paisley, J.: Remov-
ing rain from single images via a deep detail network. In: CVPR,
pp. 1715–1723 (2017). https://doi.org/10.1109/CVPR.2017.186

10. Gonzalez-Garcia, A., van deWeijer, J., Bengio, Y.: Image-to-image
translation for cross-domain disentanglement. In: NeurIPS, pp.
1294–1305 (2018). URL http://papers.nips.cc/paper/7404-image-
to-image-translation-for-cross-domain-disentanglement

11. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks.
In: CVPR, pp. 7132–7141 (2018). https://doi.org/10.1109/
CVPR.2018.00745. URL http://openaccess.thecvf.com/content_
cvpr_2018/html/Hu_Squeeze-and-Excitation_Networks_CVPR_
2018_paper.html

12. Huang, D., Kang, L., Yang,M., Lin, C.,Wang, Y.F.: Context-aware
single image rain removal. In: ICME, pp. 164–169 (2012). https://
doi.org/10.1109/ICME.2012.92

13. Huynh-Thu, Q., Ghanbari, M.: Scope of validity of psnr in
image/video quality assessment. Electron. Lett. 44(13), 800–801
(2008)

14. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time
style transfer and super-resolution. In: ECCV, pp. 694–711 (2016).
https://doi.org/10.1007/978-3-319-46475-6_43

123

https://doi.org/10.1109/TITS.2009.2018966
https://doi.org/10.1109/TITS.2009.2018966
https://doi.org/10.1109/ICCV.2013.247
https://doi.org/10.1109/CVPR.2018.00742
http://openaccess.thecvf.com/content_cvpr_2018/html/Chen_Cascaded_Pyramid_Network_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Chen_Cascaded_Pyramid_Network_CVPR_2018_paper.html
https://doi.org/10.1007/978-3-319-10602-1_4
https://doi.org/10.1109/TPAMI.2015.2439281
https://doi.org/10.1109/TPAMI.2015.2439281
https://doi.org/10.1007/s00371-018-1485-y
https://doi.org/10.1007/s00371-018-1485-y
https://doi.org/10.1109/TIP.2017.2691802
https://doi.org/10.1109/TIP.2017.2691802
https://doi.org/10.1109/CVPR.2017.186
http://papers.nips.cc/paper/7404-image-to-image-translation-for-cross-domain-disentanglement
http://papers.nips.cc/paper/7404-image-to-image-translation-for-cross-domain-disentanglement
https://doi.org/10.1109/CVPR.2018.00745
https://doi.org/10.1109/CVPR.2018.00745
http://openaccess.thecvf.com/content_cvpr_2018/html/Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper.html
https://doi.org/10.1109/ICME.2012.92
https://doi.org/10.1109/ICME.2012.92
https://doi.org/10.1007/978-3-319-46475-6_43


1864 C. Wang et al.

15. Kang, L., Lin, C., Fu, Y.: Automatic single-image-based rain
streaks removal via image decomposition. IEEE Trans. Image Pro-
cess. 21(4), 1742–1755 (2012). https://doi.org/10.1109/TIP.2011.
2179057

16. Kim, J., Lee, C., Sim, J., Kim, C.: Single-image deraining using
an adaptive nonlocal means filter. In: ICIP, pp. 914–917 (2013).
https://doi.org/10.1109/ICIP.2013.6738189

17. Kingma, D.P., Ba, J.: Adam: Amethod for stochastic optimization.
In: ICLR (2015). URL http://arxiv.org/abs/1412.6980

18. Li, B., Peng, X., Wang, Z., Xu, J., Feng, D.: Aod-net: All-in-one
dehazing network. In: ICCV, pp. 4780–4788 (2017). https://doi.
org/10.1109/ICCV.2017.511

19. Li, G., He, X., Zhang, W., Chang, H., Dong, L., Lin, L.: Non-
locally enhanced encoder-decoder network for single image de-
raining. In: ACM MM, pp. 1056–1064 (2018). https://doi.org/10.
1145/3240508.3240636

20. Li, X., Wu, J., Lin, Z., Liu, H., Zha, H.: Recurrent squeeze-and-
excitation context aggregation net for single image deraining. In:
ECCV, pp. 262–277 (2018). https://doi.org/10.1007/978-3-030-
01234-2_16

21. Li, Y., Tan, R.T., Guo, X., Lu, J., Brown,M.S.: Rain streak removal
using layer priors. In: CVPR, pp. 2736–2744 (2016). https://doi.
org/10.1109/CVPR.2016.299

22. Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie,
S.J.: Feature pyramid networks for object detection. In: CVPR, pp.
936–944 (2017). https://doi.org/10.1109/CVPR.2017.106

23. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.E., Fu,
C., Berg, A.C.: SSD: single shot multibox detector. In: ECCV, pp.
21–37 (2016). https://doi.org/10.1007/978-3-319-46448-0_2

24. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks
for semantic segmentation. In: CVPR, pp. 3431–3440 (2015).
https://doi.org/10.1109/CVPR.2015.7298965

25. Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via
discriminative sparse coding. In: ICCV, pp. 3397–3405 (2015).
https://doi.org/10.1109/ICCV.2015.388

26. Ranjan, A., Black, M.J.: Optical flow estimation using a spatial
pyramid network. In: CVPR, pp. 2720–2729 (2017). https://doi.
org/10.1109/CVPR.2017.291

27. Ren, W., Liu, S., Zhang, H., Pan, J., Cao, X., Yang, M.: Single
image dehazing via multi-scale convolutional neural networks. In:
ECCV, pp. 154–169 (2016). https://doi.org/10.1007/978-3-319-
46475-6_10

28. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional net-
works for semantic segmentation. IEEETrans. PatternAnal.Mach.
Intell. 39(4), 640–651 (2017). https://doi.org/10.1109/TPAMI.
2016.2572683

29. Wang, B., Chen, S., Wang, J., Hu, X.: Residual feature pyramid
networks for salient object detection. Vis. Comput. (2019). https://
doi.org/10.1007/s00371-019-01779-3

30. Wang, X., Shrivastava, A., Gupta, A.: A-fast-rcnn: Hard positive
generation via adversary for object detection. In: CVPR, pp. 3039–
3048 (2017). https://doi.org/10.1109/CVPR.2017.324

31. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image qual-
ity assessment: from error visibility to structural similarity. IEEE
Trans. Image Process. 13(4), 600–612 (2004). https://doi.org/10.
1109/TIP.2003.819861

32. Yang, W., Tan, R.T., Feng, J., Liu, J., Guo, Z., Yan, S.: Deep joint
rain detection and removal from a single image. In: CVPR, pp.
1685–1694 (2017). https://doi.org/10.1109/CVPR.2017.183

33. Yuan,Q., Li, J., Zhang, L.,Wu, Z., Liu, G.: Blindmotion deblurring
with cycle generative adversarial networks. Vis. Comput. (2019).
https://doi.org/10.1007/s00371-019-01762-y

34. Zhang, H., Patel, V.M.: Densely connected pyramid dehazing
network. In: CVPR, pp. 3194–3203 (2018). https://doi.org/10.
1109/CVPR.2018.00337. URL http://openaccess.thecvf.com/

content_cvpr_2018/html/Zhang_Densely_Connected_Pyramid_
CVPR_2018_paper.html

35. Zhang, H., Patel, V.M.: Density-aware single image de-raining
using a multi-stream dense network. In: CVPR, pp. 695–704
(2018). https://doi.org/10.1109/CVPR.2018.00079. URL http://
openaccess.thecvf.com/content_cvpr_2018/html/Zhang_Density-
Aware_Single_Image_CVPR_2018_paper.html

36. Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a con-
ditional generative adversarial network. IEEE TCSVT (2019)

37. Zhang, S., He, F.: Drcdn: learning deep residual convolutional
dehazing networks. Vis. Comput. (2019). https://doi.org/10.1007/
s00371-019-01774-8

38. Zhang, S.,He, F., Ren,W.,Yao, J.: Joint learning of image detail and
transmission map for single image dehazing. Vis. Comput. 36(2),
305–316 (2020). https://doi.org/10.1007/s00371-018-1612-9

39. Zhang, S., Ren, W., Yao, J.: Feed-net: Fully end-to-end dehazing.
In: IEEE ICME, pp. 1–6 (2018). https://doi.org/10.1109/ICME.
2018.8486435

40. Zhang, Y., Wang, L., Qi, J., Wang, D., Feng, M., Lu, H.: Structured
siamese network for real-time visual tracking. In: ECCV, pp. 355–
370 (2018). https://doi.org/10.1007/978-3-030-01240-3_22

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Cong Wang received the B.S.
degree from Inner Mongolia Uni-
versity, China, in 2017. He is cur-
rently pursuing the Master’s Degree
in computational mathematics with
the School of Mathematical Sci-
ences, Dalian University of Tech-
nology, China, under the super-
vision of Prof. Zhixun Su. His
current research interests include
deep learning, computer vision and
image processing.

Xiaoying Xing is a junior student
from Tsinghua University, China.
She is currently pursuing the Bach-
elor’s Degree in the department of
automation. Her current research
interests include machine learn-
ing, computer vision and image
processing.

123

https://doi.org/10.1109/TIP.2011.2179057
https://doi.org/10.1109/TIP.2011.2179057
https://doi.org/10.1109/ICIP.2013.6738189
http://arxiv.org/abs/1412.6980
https://doi.org/10.1109/ICCV.2017.511
https://doi.org/10.1109/ICCV.2017.511
https://doi.org/10.1145/3240508.3240636
https://doi.org/10.1145/3240508.3240636
https://doi.org/10.1007/978-3-030-01234-2_16
https://doi.org/10.1007/978-3-030-01234-2_16
https://doi.org/10.1109/CVPR.2016.299
https://doi.org/10.1109/CVPR.2016.299
https://doi.org/10.1109/CVPR.2017.106
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.1109/ICCV.2015.388
https://doi.org/10.1109/CVPR.2017.291
https://doi.org/10.1109/CVPR.2017.291
https://doi.org/10.1007/978-3-319-46475-6_10
https://doi.org/10.1007/978-3-319-46475-6_10
https://doi.org/10.1109/TPAMI.2016.2572683
https://doi.org/10.1109/TPAMI.2016.2572683
https://doi.org/10.1007/s00371-019-01779-3
https://doi.org/10.1007/s00371-019-01779-3
https://doi.org/10.1109/CVPR.2017.324
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/CVPR.2017.183
https://doi.org/10.1007/s00371-019-01762-y
https://doi.org/10.1109/CVPR.2018.00337
https://doi.org/10.1109/CVPR.2018.00337
http://openaccess.thecvf.com/content_cvpr_2018/html/Zhang_Densely_Connected_Pyramid_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Zhang_Densely_Connected_Pyramid_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Zhang_Densely_Connected_Pyramid_CVPR_2018_paper.html
https://doi.org/10.1109/CVPR.2018.00079
http://openaccess.thecvf.com/content_cvpr_2018/html/Zhang_Density-Aware_Single_Image_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Zhang_Density-Aware_Single_Image_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Zhang_Density-Aware_Single_Image_CVPR_2018_paper.html
https://doi.org/10.1007/s00371-019-01774-8
https://doi.org/10.1007/s00371-019-01774-8
https://doi.org/10.1007/s00371-018-1612-9
https://doi.org/10.1109/ICME.2018.8486435
https://doi.org/10.1109/ICME.2018.8486435
https://doi.org/10.1007/978-3-030-01240-3_22


Single image deraining via deep… 1865

Guangle Yao received the Ph.D.
degree from the University of Elec-
tronic Science and Technology of
China. During his Ph.D. study, he
was with the Institute of Optics
and Electronics, Chinese Academy
of Sciences. He is currently with
the Chengdu University of Tech-
nology. His research interests include
action recognition, object detec-
tion, visual tracking and deep learn-
ing.

Zhixun Su received the Ph.D.
degree in computational mathe-
matics from the Dalian University
of Technology, China, in 1993,
where he is currently a Profes-
sor. He is also a Visiting Profes-
sor with the Guilin University of
Electronic Technology. His cur-
rent research interests include com-
puter graphics, computer vision,
computational geometry and
machine learning. He is currently
a member of the Standing Com-
mittee of China Society of Com-
putational Mathematics.

123


	Single image deraining via deep shared pyramid network
	Abstract
	1 Introduction
	2 Related work
	2.1 Single image deraining
	2.2 Pyramid network

	3 Proposed method
	3.1 Overall network framework
	3.2 Multi-stream dilation convolution
	3.3 Loss function

	4 Experimental results
	4.1 Datasets and evaluation criteria
	4.1.1 Synthetic datasets
	4.1.2 Real-world datasets
	4.1.3 Our created rainy pascal VOC2012 dataset
	4.1.4 Evaluation criteria

	4.2 Experimental settings
	4.3 Results on synthetic datasets
	4.4 Results on real-world datasets
	4.5 Comparison with NLEDN
	4.6 Ablation study
	4.7 Effect of the pyramid levels and the numbers of dilation convolution
	4.8 Analysis on the model size
	4.9 Applications on high-level vision tasks

	5 Visualization of feature maps
	6 Conclusions
	References




