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Abstract
Shadow removal is a challenging problem due to its sensitivity to lighting and material conditions. In this paper, we propose
a shading-aware shadow processing algorithm, which can automatically detect and remove complex shadows from a single
color image. Our framework consists of two key steps.We firstly conduct a shadow-preserving filter upon the imagewhichwill
effectively remove the image texture while preserving the shadow and shading information. Shadow regions are estimated by
establishing a confidence map from the filtered image incorporating depth cue.We then develop a shading-aware optimization
framework to remove shadows and recover shading in these regions. The extensive experimental results show that the proposed
algorithm produces visually compelling results in a series of challenging images and it can handle complex shadows in
both indoor and outdoor scenes. Quantitative and qualitative comparisons with current state-of-the-art methods strongly
demonstrate the efficacy of our proposed approach.
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1 Introduction

Shadow is a ubiquitous natural phenomenon in our daily
life. Although shadows can provide useful clues for illumina-
tion estimation [46], scene depiction [20] and object shapes
[32], shadows also degrade the performance of some applica-
tions, such as object recognition [7], object tracking [29] and
intrinsic image decomposition [25]. Therefore, it is a funda-
mental problem to detect and remove shadows from single
images and will definitely be beneficial for computer vision
and graphics communities.

Shadow removal involves three main challenges. First, for
the image with complex shadows like a surface with both
soft and hard shadow, accurate shadow detection is chal-
lenging. Second, there are usually texture details losing on
hard shadowboundaries,whichwill induce visual artifacts on
these boundaries during shadow removing [40,48]. Finally,
to obtain visually consistent shadow removal results, the
shading information should be preserved in the shadow-free
image [42].

To overcome the above challenges, we propose an auto-
matic shadow detection and removal method by jointly
exploring color cues aswell as depth information. First, based
on the observation that shadows essentially appear as smooth
and continuous regions, we develop a shadow-preserving
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(a) (b) (c)

Fig. 1 Our visualization results of shadow detection and removal. From
left to right are a input images, b shadow confidencemaps and c shadow
removal results.

filter which effectively removes the image texture while
preserving the shadow and shading information. This filter
enables to estimate more accurate shadow confidence map
and benefits better shadowdetection results. Second, to effec-
tively detect the complex shadow including both hard/soft
shadow and local/global shadow, we develop a shadow con-
fidence propagation scheme for shadow detection, which
works well on detecting shadows in various environments.
Finally, based on the shadow confidence, we present a novel
shading-aware shadow removal optimization model. It can
effectively remove the shadows while preserving the shad-
ing information of the shadow regions well. Moreover, the
chromaticity and texture details under the shadow regions
are well recovered, as illustrated in Fig. 1.

In summary, our major contributions are threefold as fol-
lows:

• We propose a novel shadow-preserving texture filter.
Such a filter is immune to texture, boundary and noise,
and enhances shadow and shading information which
enables to better shadow confidence estimation.

• We design a shadow confidence propagation scheme,
which propagates the local shadow boundary confidence
to the global scene adaptively, enabling to detect both
local and global complex shadows.

• Wepropose a shading-preserving shadow removal frame-
work which can effectively remove the complex shadow
as well as recovering the shading, chromaticity and tex-
ture details under the shadow regions.

Our proposed method have been demonstrated on a series
of challenging images, including indoor and outdoor scenes

with hard and soft shadows. We also compare it with current
state-of-the-art methods and show its superior performance
in both shadow detection and removal.

2 Related work

Shadow detection methods Several user assistance-based
shadow detection methods [2,14,48] work well on simple
shadow scenes, whereas they often require extra tedious
user interaction for complex scenarios. Many automatic
shadow detectionmethods have been proposed. For example,
Lalonde et al. [22] built a shadow detector for photographs of
outdoor scenes, and this method focused on detecting ground
shadow. Guo et al. [15] compared pairs of regions and deter-
minedwhether theywere in the same illumination conditions.
Nevertheless, this detectormay group soft shadowswith non-
shadow regions and may fail in the case of multiple light
sources. Shadow detection for complex shadows is still a
challenging problem.

Recently, deep learning based on convolutional neural
network has achieved great success in computer vision com-
munity and also has been exploited in shadow detection
[17,24,31,49]. For example, Nguyen et al. [31] detected
shadow using conditional generative adversarial networks.
Hu et al. [17] analyzed image context and detected shadow
in direction-aware manner. To obtain satisfying results, deep
learning methods depend on large and good training data.
For some complex scenes, the training data are difficult to
collect, and the results are not satisfactory.
Shadow removal methods Traditional shadow removal meth-
ods were proposed mainly based on gradient domain manip-
ulation [11,26,30]. To receive satisfactory results, these
methods depend on accurate shadow edges detection for
shadow-free image reconstruction. Shadowmatting was also
exploited in shadow detection and removal [6,14,23,39],
while these methods do not preserve the shading well in the
shadow-free image. Inspired by the color transfer theory [34],
several shadow removal methods have been proposed based
on illumination or color transferring [35,41,47,48]. To gener-
ate good results, for each patch in the shadow regions, these
methods need to find corresponding non-shadow regions for
illumination transferring.

Several deep learning-based shadow removal methods
have also been proposed [9,18,33,37,45]. Ding et al.[9]
removed the shadow in an attentive recurrent way, and Wei
et al. [38] preprocessed the shadow image with inpainting
method. To address the lack of training data, Hu et al. [18]
adopted unpaired data to diverse the samples, and Cun et
al. [8] designed a shadow matting generative adversarial
network to synthesize realistic shadow images. Obviously,
the performance of those learning-based methods heavily
depend on the training dataset. However, for images with
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Fig. 2 Overview of the proposed shadow detection and removal

complex shadows, it is difficult to construct the ground-truth
shadow-free images, which makes these methods not suffi-
ciently adept at processing complex shadows. In contrast, the
optimization-based methods do not depend on those training
dataset and have better generalization ability to handle com-
plex scenes.

As the depth acquisition devices become more and more
popular, some researchers have resorted to depth cues for
shadow removal [42] and intrinsic image decomposition
[3,4,16,19]. Xiao et al. [42] applied depth information to
remove shadows in RGB-D image and produced impressive
shadow detection and removal results. However, this method
is not immune to image texture when performing shadow
detection and does not work well for preserving shading in
shadow removal results. In thiswork,we also fall into this cat-
egory with depth cues. To address existing defects, we make
a shadow-preserving texture filter before shadow detection
and design a shading-preserving shadow removal framework
to get the final result.

3 Shadow detection and removal

Our goal in this paper is to accurately detect the shadows in
a single image as well as to effectively remove them while
keeping the texture and shading in it. To this end, we first
propose an effective shadow detection algorithm that utilize
a shadow-preserving filter to effectively remove the textures
while preserving the shadow and shading information, and
shadow regions are estimated by establishing a confidence
map from the filtered image incorporating the depth map
(Sect. 3.1). Then, we develop a shading-aware optimization
algorithm to remove the shadows and recover the shading in
these regions. The details of the image will be recovered by

adding the detail layers in aweighted averageway (Sect. 3.2).
The framework of the overall algorithm is shown in Fig. 2.

3.1 Automatic shadow detection

Natural photographs usually contain complex textures which
will affect the accuracy of shadow detection. Inspired by
[5,43], we propose a shadow-preserving bilateral filter for
shadow detection. The pipeline of our proposed automatic
shadow detection is shown in Fig. 3.

For a complex image, the depth map of the scene would
be helpful for shadow confidence estimation. To obtain more
accurate shadow confidence map, we apply the depth infor-
mation of the image into our method. We can acquire the
depth map using low-cost depth sensors, such as MS Kinect,
or via learning-based methods. Recently, many image depth
estimation methods have been proposed [12,13,21,27,43]. In
this paper, for input image without depth map, we apply the
method [12] to estimate the depth map.

3.1.1 Shadow-preserving texture filter

The proposed shadow-preserving texture filter is defined as

Jp = 1

kp

∑

q∈�p

f (‖q − p‖)g(∥∥Sq − Sp
∥∥)Iq , (1)

where p represents the current pixel,�p is the local neighbor-
hood of p, q represents a pixel in �p, S is the shadow-aware
texture measure of input image I and kp is a normalizing
parameter. The spatial kernel f and the range kernel g are
Gaussian functions. This is a modification of the bilateral
texture filter [5] with the shadow-aware texture similarity
instead of structure-aware texture similarity. With the guid-
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 3 Overview of our shadow detection. Given an input image (a),
we first compute the initial shadow confidence (b) and the initial non-
shadow confidence (c) with the method in [42], and further estimate the
initial shadow boundary (d). Then we estimate the shadow confidence
map (f) and the non-shadow confidence map (g) of the filtered image

(e) obtained by our shadow-preserving texture filter. Finally, we design
a structure-aware confidence propagation scheme to interpolate (f) and
(g) around the boundary to other pixels, and obtain the final shadow
confidence map (h)

ance of S, our filter can preserve the shadow boundaries, as
shown in Fig. 4.

We assume that texture signal usually has smaller ampli-
tude than shadow boundary. So we first find the patches
which contain the shadow boundary, and compute the like-
lihood of these patches �p via estimating its shadow range
�(�p) = Cmax

B (�p)−Cmin
B (�p). CB is the shadow bound-

ary confidence and it will be introduced in the next section.
Cmax
B (�p) andCmin

B (�p) denote themaximum and themini-
mum shadow boundary confidence in�p. Intuitively, a patch
with the maximum shadow range means a maximal proba-
bility of containing the shadow boundary. The shadow-aware
texture measure Sp at p is:

Sp = Cavg
B (�q), (2)

where the pixel q has the largest �(�q) among the neighbor
pixels of p. Cavg

B (�q) is the average shadow boundary con-
fidence of the region �q , and �q is the local neighborhood
of q.

3.1.2 Shadow confidence estimation

For each pixel p, the shadow confidence is related to the
feature similarity between the pixel and its neighbor pixels
q, which is defined as:

αpq = αc
pq · αn

pq · αd
pq , (3)

where αc
pq , αn

pq and αd
pq represent the similarity of chro-

maticity, normal and spatial location between p and q.

αc
pq = exp(−‖ch(Ip)−ch(Iq )‖2

2σ 2
ch

) , αd
pq = 1 − ‖ p̄−q̄‖

max
q∈�p

‖ p̄−q̄‖ ,

and αn
pq is estimated by solving the following optimization

function:

argmin{
αn
pq

}
∑

pε I

∥∥∥n(p) − ∑
q∈�p

αn
pqn(q)

∥∥∥
2
.

Here, ch(Ip), n(p) and p̄ are the chromaticity, normal and
3D spatial location of the pixel p, σch is a positive parameter
controlling the sensitivity of the similarity (typically is set to
0.1), and �p denotes the local neighborhood of p.

With the feature similarity between p and its neighbors,
we calculate the corresponding weighted average intensity
mp = 1∑

q∈�p αpq

∑
q∈�p

αpq Iq and then estimate the initial

shadow confidence CS and the non-shadow confidence CU

using the method in [42]. The functions are as follows:

CS =
1 − exp

(
−max(mp−Ip,0)2

2σ 2

)

∣∣�p
∣∣

∑

q∈�p

αpq , (4)

CU =
1 − exp

(
−max(Ip−mp,0)2

2σ 2

)

∣∣�p
∣∣

∑

q∈�p

αpq . (5)

The visual maps of these two variables are shown in
Fig. 3b, c, respectively. The shadow boundary confidence
CB (Fig. 3d) can be obtained by computing the windowed
total variation and windowed inherent variation with CS and
CU .

The shadow-preserving filtered image (Fig. 3e) effectively
removes the texture and noise. We can estimate more accu-
rate shadow confidence CS and non-shadow confidence CU

with the shadow-preserving filtered image, and the results
are illustrated in Fig. 3f, g.

3.1.3 Shadow confidence optimization

Due to the properties of feature similarity, the shadow confi-
dence CS is better estimated around the shadow boundaries.
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 4 Image filtering comparisons. From left to right are a
input images, b result using bilateral texture filter [5], c region
of interest marked in blue in b, d result using multi-scale

shadow-preserving texture filter, e region of interest marked in
blue in d, f–h shadow detection results on a, b and d,
respectively

So as to enhance the estimation of the rest shadow regions
far from the shadow boundaries, we apply a structure-aware
confidence propagation to interpolate the confidence CS and
CU around the boundary to other regions, and get a more
comprehensive shadow confidence map.

Let n be the number of pixels in the image. The shadow
confidence si of pixel pi is then obtained by minimizing the
following function:

n∑

i=1

CS(pi )(si − 1)2 +
n∑

i=1

CU (pi )s
2
i +

∑

i, j

wi j (si − s j )
2.

(6)

The first term encourages the pixel pi with large shadow
confidence CS(pi ) to get a large value (close to 1). The
second term enables the pixel pi with large non-shadow con-
fidence CU (pi ) to take a small value (close to 0). The last
term is a smooth term. For every adjacent pixel pair (i, j),
the weight wi j is the element of matting Laplacian matrix
[1]. As the filtered image J is piecewise smoothed with no
oscillating texture variations, we can effectively propagate
the shadow confidence and non-shadow confidence using
the structure of J , and obtain higher-quality shadow con-
fidence.

As shown in Fig. 3h, the optimized shadow confidence
map CS is more accurate than the initial one. The shadow
regions are more highlighted, and the gradient information
around shadow boundary is preserved as well, which will
benefit our shadow removal in the next step.

To further remove the effects of noise and texture struc-
tures while detecting the shadows, we propose a multi-scale
shadow confidence estimation method. In each filtering, by
modifying the filter parameter (window size � and stan-
dard deviation σs), the texture is progressively smoothed,
and shadow boundary is progressively refined. The proposed
method is summarized in Algorithm 1.

Algorithms 1: Multi-scale image shadow detection

Input: Image I, Iterative niter, Parameter Ω, σs

Output: Shadow-preserved texture filter image J ,
Shadow boundary map CB , Shadow confidence map CS .
J0 = I
for i = 1 to niter do

Ci
B ← Shadow boundary detection on Ji−1

Ji ← Shadow preserving texture filter on Ji−1

guided by Ci
B

Ω, σs ← 0.5 × Ω, σs

end
CS ← Shadow confidence map computing on Jiter

The advantages of the proposed shadow detection scheme
are as follows: (1) Our method is more immune to texture,
noise, and receives better shadow and shading information
which enables to better shadow detection results; (2) with the
local shadow boundary confidence and the global shadow
propagation strategy, our method can detect not only local
shadow areas, but more complex shadows in the scene. Fig-
ures 5 and 6 show the shadow confidence map comparisons
with the method in [42].

3.2 Shading-aware shadow removal

3.2.1 Shadow removal

Like [39], the shadow factor can be modeled in the form of:

β = I/F, (7)

where F is the shadow-free image and β is a three-channel
fractional shadow factor each in [0, 1] for scaling the
respective color channel. In this paper, we use the normal
information from depth for shadow detection and removal.
Our aim is to achieve the shadow-free image F-preserving
shading and the shadow factorβ excluding shading, as shown
in Fig. 6.
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(a) (b) (c) (d) (e) (f) (g)

Fig. 5 Effect of the chromaticity term. From left to right are a input
images, b, c shadow confidence maps of method [42] and our proposed
method,d chromaticity images of a, e shadow removal results ofmethod

[42] with our shadow confidence maps c as input, and f, g our shadow
removal results without and with chromaticity term, respectively

(a) (b) (c) (d) (e) (f) (g)

Fig. 6 Effect of the shading-preserving term. From left to right are a
input images, b depth maps, c, d shadow confidence maps of method
[42] and our proposedmethod, e shadow removal results of method [42]
with our shadow confidence maps d as input, f, g our shadow removal

results without andwith the shading-preserving term, respectively. Note
that the yellow boxes are the part with poor shading, while the same
place in the blue boxes preserve the shading well

To estimate the shadow-free image F and the corre-
sponding shadow factor β, we propose the following energy
equation for shadow removal:

E(F, β) = Edata(F, β) + λ1Esmooth(F, β)

+ λ2Echro(F) + λ3Econst(β). (8)

This energy model contains four terms: data term Edata,
shading-preserving smoothing term Esmooth, chromaticity
term Echro and constant term Econst. The balanced weights
λ1, λ2 and λ3 are set to 1, 0.5 and 1, respectively, in our
experiments.
Data term As we aim to decompose the input image into a
product of shadow-free and shadow factor components, we
enforce this as a soft constraint via the data fitting term Edata.
We assume monochromatic, white illumination and apply
the fitting constraint to per color channel, i.e., Ic ≈ Fc · βc

, c ∈ {R,G, B}. To make the decomposition more robust to

white illumination deviations, we use per-channel weights
wc in the constraint:

Edata(x) = ωiw(x)
∑

c∈{R,G,B}
ωc · ‖Ic − Fc · βc‖2, (9)

where {ωR, ωG , ωB} = {0.299, 0.587, 0.114}. In addition,
based on the observation [28] that low-intensity pixels are
more sensitive to the image noise, and pixels with higher
intensity provide more decomposition reliability, we incor-
porate the image intensityweightωiw(x) = 1−ωintensity·(1−
|I (x)|) in our data term, where |I (x)| is the image intensity
and ωintensity is the adjustable balance weight.
Shading-preserving smoothing term To obtain visually real-
istic result of shadow removal, the shading component
should be preserved in the shadow-free image F . Our basic
assumption is that pixels with similar features, including
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chromaticity, normal and spatial locations, are likely to have
the same color or illumination. Let Rs be the shadow regions
containing neighboring pixels, and two pixels p and q with a
large similarityαpq tend to have the same shadow-free image
F . We define the shading-preserving term as:

Esp =
∑

p∈Rs

CS(p) · ‖Fp −
∑

q∈�p

αpq · Fq‖2, (10)

where CS(p) is the shadow confidence for pixel p and �p

denotes the local spatial neighbors of p.
When CS(p) has a large value, which indicates the hard

shadow, the smooth constraint on shadow-free image should
bemore enforced; thus, the recovered illumination could vary
with the scene shape and produce more realistic results.

We also define shadow boundary-aware smoothness con-
straint on β. Inspired by the Retinex theory, which have
demonstrated that total variation has good performance in
promoting illumination smoothness, we adopt the relative
total variation (RTV) [44] for producing smooth β.We define
the shadow map smoothness regularizer as follows:

Esm =
∑

p∈Rs

(1 − |CB(p)|)(H(βp) + V (βp)), (11)

where H(βp) and V (βp) denote the horizontal and verti-
cal relative total variation (RTV) measure. In this equation,
when |CB(p)| has a large value, which indicates the shadow
boundary, the shading smoothness should be less enforced.

With the above smoothing constraints on both shadow-
free image F and the shadow matte β, the smoothing
constraint term is defined as:

Esmooth = Esp + Esm . (12)

Chromaticity term We assume that the chromaticity of the
input image is not altered by illumination effects such as
shading and shadows [10]. In this case, the chromaticity of
the unknown shadow-free image F should be the same as
that of the input image. With this assumption, we define the
following soft constraint as:

Echro(F) = ‖c(x) − cF (x)‖2 , (13)

where c(x) = I (x)/ |I (x)| is the chromaticity of the input
image and cF is the chromaticity of the shadow-free image
F , cF (x) = F(x)/ |F(x)|. To avoid division by zero, we
further rewrite this term as:

Echro(F) =
∥∥∥∥

I (x)

|I (x)| + ξ
− F(x)

|F(x)| + ξ

∥∥∥∥
2

, (14)

where ξ is a regularization parameter and is typically set
0.0001 in our experiments.
Constant term We pick out the reliable lit pixels that should
maintain their β colors and enforce their values to be 1:

Econst(β) =
∑

p∈Nb

∥∥βp − 1
∥∥2 , (15)

where the Nb is the reliable lit region that is neither high
shadow confidence pixels nor their neighbors.

As illustrated in Fig. 5, using chromaticity prior, the tex-
ture and chromaticity under the shadow regions are better
recovered. In Fig. 6, we can observe that using the shading-
preserving term in the smooth term, the shadingof the shadow
regions is better reconstructed, and the recovered illumina-
tion varies with the scene shape. Figures 5 and 6 also show
the shadow removal comparisons with method [42]. For fair
comparisons on shadow removal step, both our method and
method [42] use the same shadow confidence maps as input.

3.2.2 Image detail recovering

Althoughour shadow removalmethod can recover the texture
detail well in most cases, for some extremely complicated
cases, where the shadow regions are too dark and have heavy
noise, or the edges information and texture details in the
shadow regions have been weakened seriously due to the
illumination occluding, our previous method may not work
well, as illustrated inFig. 7b.Tomake themethodmore robust
and better recover the texture details, we add a multi-scale
texture recovering in our method. In the previous steps, using
the proposed shadow-preserving texture filter, we can extract
a multi-scale detail levels Di from the original image I and
Di = J i − J i−1.We combine the details into the final results
in a spatially varying manner using the weighted average.

Let I freeini be the initial shadow removal result and I freeenhance
be the enhanced image, then:

I freeehance = I freeini + CS ·
m∑

i=1

Ui Di , (16)

wherem is the scale of the processing which is usually set to

be 3, Ui = Gσ ∗ e(|Di−Ci |) and Ci
p =

∑
q∈�p ∇|I iq |

n . �p is a
local neighborhoodof pixel p, andn is the number of pixels in
�p. Gσ is the Gaussian convolution, which is used to locally
smooth the weight. CS is the shadow confidence map, which
reflects the density of shadow in each pixel. By multiplying
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(a) (b) (c)

Fig. 7 Visualization of the recovered texture detail. From left to right
are a input images, b shadow removal results and c the detail-recovered
results

CS , the details in shadow regions can be enhanced efficiently.
In Fig. 7, we present the image detail recovering results. We
can observe that the texture details are effectively recovered
in the shadow region.

4 Experiments

To illustrate the effectiveness of our method, we perform
our shadow detection and removal on different datasets,
and compare our method with other state-of-the-art methods
quantitatively and qualitatively. All our results are imple-
mented with MATLAB R2016a, and all our experiments
are executed on the machine that equipped with Intel(R)
Core(TM) i5-7400CPU@3.00GHzwith 8GBRAM. For an
image of size 640×480, our method generally takes 5–7min
for shadow removal and detection, where it spends 30–40 s
for depth estimation and shadow detection, and takes about
4–6 min for performing shadow removal.

4.1 Datasets and evaluationmetrics

Datasets for shadow detection Two benchmark datasets are
employed in shadow detection. The first one is the SBU
Shadow Dataset [36], which contains 4089 training images
and 638 testing images. It includes a wide variety of scenes
and covers various types of pictures. The second benchmark
dataset we employed is the ISTD Shadow Dataset [37]. It
includes 1340 training images and 530 testing images, and
covers 135 different types of ground materials.
Evaluation metrics for shadow detection We employ the
accuracy (ACC) and the balance error rate (BER) metrics to
quantitatively evaluate the shadow detection performance, as
defined in [17].
Datasets for shadow removal The comparison is conducted
on SRD [33] and ISTD [37] datasets, and both of them have
the shadow-free images. The first benchmark dataset [33]

contains 3088 images, and the second benchmark dataset
[37] contains 1870 images.
Evaluation metrics for shadow removal We conduct quanti-
tative comparisons on shadow removal using the root mean
square error (RMSE) between the produced shadow removal
results and the corresponding ground-truth image in the LAB
color space, and compute RMSE values.

4.2 Comparison with shadow detectionmethods

In Fig. 8, we compare our results with some state-of-the-art
shadow detection methods [15,17,37,42,48] on the bench-
mark datasets and some other images. Among thesemethods,
the method [15] is based on handcrafted features, the method
[42] applies the RGB-D images, and the method [48] incor-
porates user interactivity; the last two [17,37] are deep
learning-basedmethods. In order to achieve the best results of
those paper, the existing results in the paper are directly used
as the comparison results, and the rest results are generated
using implementations provided by the authors or reproduced
according to the paper with recommended parameter setting.
Also, note that, in these examples, the depth map used for
both [42] and our method is estimated using [12]. It can
be observed that incorporating shadow-preserving filtering
techniques as well as depth maps, our methods work bet-
ter for these images. Due to deep learning methods heavily
depend on the variety of the training data, for some scenes
that are hard to obtain the ground-truth training data, these
methods do not work well.

Table 1 presents the quantitative comparisons with the
state-of-the-art methods on the shadow detection accuracy
for the two benchmark datasets. Note that we normalize the
shadow confidence map and generate binary masks for [42]
and our method for comparisons. We compare the binary
mask against the ground truth on both the ISTD dataset [37]
and SBU dataset [36]. The two datasets include lots of large-
scale scenes,which canbenefit to evaluate the performance of
our algorithmcomparatively and objectively.Ourmethod has
achieved one of the best performances on the both datasets.

4.3 Comparison with shadow removal methods

In Fig. 9, we compare our results with various kinds of state-
of-the-art shadow removal methods [15,33,35,37,42,48] on
the benchmark datasets and some other images we collect.
The last three [33,35,37] are deep learning-based shadow
removal methods. For fair comparison, the shadow removal
results of othermethods are generated using implementations
provided by the authors or reproduced according to the paper
with recommended parameter setting.

In Table 2, we can see the quantitative comparisons on
shadow removal using the root mean square error (RMSE)
in theLABcolor space.The comparison is conductedonSRD
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 8 Visual comparison on shadow detection results. From left to right are a input images, b results of Guo [15], c results of Xiao [42], d results
of Zhang [48] incorporating user interactivity, e results of Wang [37], f results of DSC [17], g our refined shadow confidence maps and h the binary
results based on g

Table 1 Quantitative
comparisons on shadow
detection using BER and ACC
(BER: smaller is better, ACC:
larger is better)

DA MD Guo [15] Xiao [17] Zhang [42] Wang [48] DSD [37] Ours

SBU ACC 0.86 0.765 0.96 0.93 0.97 0.98

BER 25.03 31.11 7.13 11.34 5.59 3.62

ISTD ACC 0.84 0.734 0.95 0.98 0.93 0.97

BER 27.16 30.37 8.56 3.85 12.21 5.33

The best and second best results are marked in textbold and textitalic, respectively. MD is shorthand for
method

dataset [33] and ISTD dataset[37]. We evaluate the perfor-
mance of different methods on shadow regions, non-shadow
regions and thewhole image, as shown in Table 2. The results
demonstrate that our removal results perform better for illu-
mination recovery in shadow regions and have the smallest
difference from ground-truth shadow-free images.
User study As some images have no ground truths, we eval-
uated the quality of 40 shadow removal images by user
tests. We performed a user study with 50 random volun-

teers to validate the effectiveness of our proposed method.
For each volunteer, we randomly show them the shadow
removal results of our approach and other six methods
[15,33,35,37,42,48]. All the results are labeled to avoid
potential unfair comparison. Once a volunteer has finished
browsing all the shadow removal results for each image, a
survey is conducted to collect the feedbacks on the following
questions:
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 9 Visual comparison on shadow removal results. From left to right are a input images, b results of Guo [15], c results of Xiao [42], d results
of Zhang [48], e results of Qu [33], f results of Wang [37], g results of AGAN [35] and h results of our proposed approach

• Q1: Which one exhibits the best overall shadow removal
result?

• Q2: Which one best recovers the illumination of the
shadow regions?

• Q3: Which one introduces the least visual artifacts?
• Q4: Which one has the least destruction on the non-
shadow regions?

• Q5: Which one preserves the clearest textures?

For each image, and for each question, the volunteer
should select the best methods. Table 3 illustrates the sur-
vey results.
Discussions Deep learning-based shadow detection and
removal methods have achieved convincing results for some
input images. However, the performance of these methods

heavily depends on the training dataset. The current train-
ing data usually contain images with simple shadow regions,
as it is relatively easy to obtain the training data. For some
complex scenes, the training data are difficult to collect. For
example, as shown inFig. 9, the shadow-free images (ground-
truth data) are difficult to collect. In these cases, those
deep learning methods do not work well. In contrast, our
optimization-based method can produce satisfactory results
just by tuning a small number of parameters.
Parameter influence We have explored the effect of chang-
ing the parameter setting, as shown in Fig. 10. To illustrate
the effect of each parameter, we give each parameter a differ-
ent value at a timewhile keeping other parameters unchanged
and see how the shadow removal results varywith this param-
eter. Our method is not sensitive to parameter variations, and
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Table 2 Quantitative
comparisons on shadow removal
using RMSE (smaller is better)
on the SRD and ISTD datasets

R Iin Guo [15] Xiao [42] Zhang [48] Qu [33] Wang [37] AGAN [35] Ours

SRD S 42.38 29.89 10.16 9.56 11.78 17.82 17.63 8.63

N 4.56 6.47 7.51 6.90 4.84 5.48 7.83 5.32

A 14.41 12.60 8.13 7.24 6.64 7.95 15.97 6.13

ISTD S 32.67 18.95 11.56 9.77 12.54 10.33 9.78 9.16

N 6.83 7.46 7.75 7.12 7.44 6.93 7.67 7.23

A 10.97 9.30 8.14 8.16 8.24 7.47 8.16 7.41

Wecompute theRMSE for input images (Iin) and the corresponding shadow removal results using themethods
in different regions (S: shadow regions, N: non-shadow regions, A: all the regions). The best and second best
results are marked in textbold and textitalic, respectively

Table 3 Survey results of user
study by collecting the users’
feedback to five questions, i.e.,
Q1, Q2, Q3, Q4 and Q5

Method Question ID Mean (%)

Q1 (%) Q2 (%) Q3 (%) Q4 (%) Q5 (%)

Guo [15] 8.70 4.30 12.55 14.75 11.25 10.31

Xiao [42] 8.35 5.05 9.18 13.10 14.24 9.98

Zhang [48] 9.27 11.23 15.15 19.55 15.31 14.10

Qu [33] 1.75 1.37 3.65 6.40 7.00 4.03

Wang [37] 2.05 1.60 3.05 5.40 6.15 3.65

AGAN [35] 1.40 2.10 4.02 6.10 8.10 4.34

Ours 68.48 74.35 52.40 34.70 37.95 53.58

(a) original (b) σch=0.1 (c) σch=0.6 (d) λ1=0.5 (e) λ1=2 (f) λ2=0.05 (g) λ2=5 (h) λ3=0.5 (i) λ3=2

Fig. 10 Effect of parameters. a Result with default parameter setting
described in our main paper (σch = 0.3, λ1 = 1, λ2 = 0.5, λ3 = 1).
b–j Results with different parameter settings. Note that we only change

one parameter value at a time while keeping other parameter values
fixed

the default parameter setting we set in the main paper can be
used to tackle images from other benchmarks well.
Limitations Our methods also have some limitations. One
limitation is that as we do not incorporate the semantic object
recognition in our shadow detection and removal system.
Hence, some dark regions, such as the legs of the chair
and dark textures of the floor, will be mistakenly detected
as shadow regions. In this case, when we perform shadow
removal on these regions, it will achieve unsatisfied results,
as illustrated in the bottom of Figs. 7 and 9. In addition, com-
putational cost is currently a bottleneck to our algorithm.

5 Conclusion and future work

In this paper, we have proposed a shading-aware shadow
detection and removal algorithm. We first introduce a
shadow-preserving texture filter and apply shadow confi-
dence method for shadow confidence estimation. With the
benefits of the shadow confidence map, we then develop
a shading-aware shadow removal method. Our method can
effectively remove the complex shadows, and in particular,
our method works much better on recovering the shading of
the shadow regions. In the future, we would like to extend
our current method to handle video shadow detection and
removal.
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