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Abstract
Voltage-dependent resistors (VDRs) are important circuit-protection devices. Their performance is affected by packaging 
quality. To identify VDR packaging defects more accurately and efficiently, we have proposed a convolutional neural network 
(CNN)-based VDR appearance quality inspection method that includes four stages: image acquisition, data augmentation, 
neural architecture design, and CNN training and testing. In designing the neural architecture, we have proposed two VDR-
oriented network blocks, which consist of a compressed subnet and a multiscale subnet. Then, a stacking-block-based neural 
architecture design (BlockNAD) strategy is employed to determine the number of blocks. The last block is connected to 
a classification layer composed of a global average pooling (GAP) layer and a full connection (FC) layer. Further, using a 
VDR dataset containing 8058 images, we compared the identification performances of the candidate networks with different 
structures on 12 categories of VDR defects by adopting a variety of indicators, such as the mean average precision (mAP) 
and average test time per sample. The experimental results of the proposed method demonstrate competitive results compared 
to the state-of-the-art methods in identifying VDR defects, with a mAP value of approximately 99.9% and an average test 
time per sample of approximately 3 ms.
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1 Introduction

Voltage-dependent resistors (VDRs) are important circuit-
protection devices and have been widely used in various 
fields such as household appliances, power systems, and 
security systems. A VDR has two parts: a resistor body and 
pins (Fig. 1). The former consists of a round casing, and the 
latter consists of two fine wires. Due to the fragility of the 
round casing structure, the resistor body is highly suscep-
tible to damage during the packaging process, resulting in 
defects such as surface damage, incomplete wrapping of pin 
joints, and surface protrusion; these affect VDR performance 
and may thus cause unpredictable consequences. Therefore, 
it is necessary to inspect the quality of a VDR’s appearance 
before use. The traditional manual inspection method [1] is 

prone to being influenced by subjective judgment, making it 
difficult to achieve good efficiency and accuracy.

Machine learning enables learning from empirical data 
for automatic classification. Compared with manual inspec-
tion, automatic classification has the advantages of high 
speed and high precision, has been widely used in the field 
of industrial inspection [2–4], and is gradually replacing the 
manual inspection method. Compared to common inspec-
tion objects, VDRs are unique. First, due to a VDR’s fine 
pin structure and smooth pin material, it is difficult to obtain 
a clear picture of the pins. Second, due to uneven illumi-
nation, the acquired image often has significant noise and 
poor contrast. Third, VDR defects are randomly distributed 
on the surface, and there are various defect types. These 
issues all pose challenges to VDR defect identification. Cur-
rently, machine-learning-based VDR defect recognition has 
been rarely investigated, even though there are references to 
defect-recognition methods developed in other fields. Chon-
dronasios et al. [5] used a gradient co-occurrence matrix 
to extract statistical features of an image and achieved the 
classification of surface defects of an extruded aluminum 
surface through an artificial neural network. Li and Tsai [6] 
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inspected defects of polycrystalline silicon solar cells using 
a single wavelet coefficient as a feature. Zhang et al. [7] 
used the Gaussian pyramid and Gabor filter to extract cop-
per surface-defect features to generate a saliency map and 
accomplished defect-detection tasks using a Markov model. 
Ravikumar et al. [8] used a histogram method to extract 
defect features and achieved surface-defect recognition on 
machine parts using a decision-tree method. These manual 
feature-extracting methods depend largely on the quality of 
the manually extracted features and primarily address only 
a few defect types; thus, they are unusable in VDR defect 
detection.

Deep learning [9] does not require manual feature extrac-
tion. It can automatically learn the effective features of a tar-
get based on empirical data and has allowed breakthroughs 
in solving many image-recognition problems. The deep 
convolutional neural network (CNN) [10] is a deep learning 
technique that has attracted much attention and has been 
widely applied. It was initially applied to highly challenging 
tasks such as handwritten character recognition [11]. With 
their strong learning ability, CNNs have been successfully 
used in various computer vision tasks [12–15].

In recent years, CNNs have also been used in the field 
of defect identification. To detect surface defects in steel, 
Soukup and Huber-Mörk [16] designed a CNN that con-
sists of two convolutional layers and two pooling layers 
and uses one fully connected layer to integrate the features. 
This method can identify only a few categories of image 
defects and is not suitable for multi-category defect clas-
sification. Tao et al. [17] introduced CNNs into the field of 
spring wire defect detection for the first time. They used the 
convolutional and pooling layers of a VGG-16 network to 
extract a region of interest (ROI) feature map [18] that was 
introduced to an ROI inspection module and a classifica-
tion module with full connection and softmax classifiers, 
respectively. The results of the inspection and classification 
modules were combined to detect the spring wire defects, 
achieving good detection results. Feng et al. [19] detected 
infrastructure surface defects based on the Resnet [20] and 
AL technologies [21], which can reduce the number of 
images that need to be annotated and thus reduce the work-
load of field experts. Huang et al. [22] proposed a surface 

defect detection model, mainly using U-net as the backbone 
network, combined with a saliency image generator and a 
defect localization network. Good results have been achieved 
in the surface defect detection of magnetic tiles, and the time 
cost has been significantly reduced. Wang et al. [23] used 
a multilayer CNN to conduct two-stage classification on 
six-category defect samples in the DAGM2007 dataset and 
achieved good results. Faghih-Roohi et al. [24] established a 
CNN containing three convolution layers, three pooling lay-
ers, and three fully connected layers for rail-surface-defect 
detection tasks and achieved a recognition rate of 92% on 
their dataset. Chen et al. [25] constructed a cascading detec-
tion network from thick to fine sizes to detect defects in 
high-speed rail fasteners; it uses the SSD [26] and YOLO 
[27] detectors to locate the cantilever node and its fasteners 
and then employs a classifier containing four convolution 
layers and two fully connected layers to classify the fastener 
defects. Tao et al. [28] designed an automatic metal-surface 
defect detection system with inspection and classification 
modules that uses a cascaded automatic encoding structure 
for the location segmentation of defects and then exports 
the semantically segmented images into a CNN with five 
convolutional layers, three maximum pooling layers, and a 
fully connected layer for classification; it is very effective on 
industrial defect datasets.

All of the above methods rely on fully connected layers 
to integrate features for classification at the classification 
stage. However, fully connected layers have many param-
eters and primarily rely on the dropout technique to prevent 
overfitting. Yu et al. [29] developed a fully convolutional 
network (FCN) framework based on the FCN to detect 
surface defects in an industrial environment; it combines 
image segmentation and inspection tasks and has achieved 
good results. Cha et al. [30] used a combination of CNN and 
the sliding-window technique to scan images to perform a 
two-category inspection of concrete cracks; the first three 
convolutional layers are used for feature extraction of input 
images and the last convolutional layer is used to output the 
two-category feature map, which is ultimately classified by 
the softmax classifier; this achieves classification without 
using a fully connected layer, which reduces the number of 
network parameters while producing good results. However, 
these CNNs are constructed layer by layer manually, which 
requires considerable effort to adjust the network architec-
ture and parameters.

To construct CNN more efficiently and to identify VDR 
appearance quality defects more accurately and efficiently, 
we propose here a CNN-based VDR defect detection 
method. The main contributions of this paper are as follows:

(1) We propose an efficient and effective neural architec-
ture design method based on stacking blocks, named 
BlockNAD, for VDR appearance quality inspections.

Fig. 1  VDR structure: a front view, b back view, and c side view
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(2) Using BlockNAD, two blocks have been designed and 
applied to VDR defect detection. Each block consists 
of a compressed subnet and a multiscale subnet. The 
compressed subnet adjusts the number of feature-map-
ping channels of the input block to maintain the size of 
the block parameters. The multiscale subnet contains 
three branches to extract and merge features of differ-
ent scales. They have a mean average precision (mAP) 
of approximately 99.9% on the VDR test set and an 
average inspection time per sample of approximately 
3 ms, which meets the requirements of online real-time 
inspection.

The remainder of the paper is organized as follows. In 
Sect. 2, the VDR image acquisition process and the dataset 
are introduced; in Sect. 3, the proposed method is described 
in detail; in Sect. 4, the algorithm evaluation criteria are 
introduced, and the experimental results are presented; and 
the final section contains a summary.

2  Materials

This section describes the details of our VDR dataset. 
Firstly, VDR images were collected using a designed 3-angle 
camera. Then, the collected images were subjected to data 
augmentation operations such as rotation and brightness 
adjustment. Finally, a 12-class VDR dataset was produced.

2.1  VDR image acquisition

VDR images were acquired using 0.3 M-pixel industrial 
cameras and the image acquisition device shown in Fig. 2; 
it consists of three imaging devices, separately capturing 
images of the VDR from three angles (front, back, and side). 
Each imaging device consists of a camera, lens, and coaxial 
light source. The coaxial light source avoids reflection from 
the smooth VDR surface, enabling the acquisition of clean 
VDR 640 × 480-pixel color images.

The acquired VDR images were then divided into two 
types according to the VDR body diameter: R14 (body 
diameter: 14 mm) and R10 (body diameter: 10 mm). For 
each VDR sample, three images from three angles (front, 
back, and side) were acquired, as shown in Fig. 3.

2.2  Data augmentation

To train a more reliable CNN model, we performed a 
series of data augmentation operations, including rotation, 
flipping, brightening, and dimming, on the acquired raw 
VDR images. First, the raw VDR image was augmented 
through rotations (45° and 90°); second, its brightness 
was adjusted through a gamma correction with gamma 
values of 0.6 and 1.4; third, the raw VDR image and the 
adjusted image were augmented through flipping. Some of 
the results of the data augmentation are shown in Fig. 4.

Fig. 2  Image acquisition device that takes VDR pictures from three 
angles (front, back, and side)

Fig. 3  Examples of VDR images. Nondefective R14 sample images 
in a front, b back, and c side views; defective R14 sample images in 
d front view, showing the surface and damaged pins, e back view, 
showing bent pins, and f side view, showing damaged pins. Nonde-
fective R10 sample images in g front, h back, and i side views; defec-
tive R10 sample images in j front view, showing missing pin wrap, k 
back view, showing an insufficient pin wrap, and l side view, showing 
a protruding surface. The positions of the defects are indicated with 
red dashed circles
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2.3  VDR dataset

We acquired a total of 1344 images from three angles (front, 
back, and side) of 448 VDR samples collected from a pro-
duction line using the image acquisition device described 
above. These images were then subjected to data augmenta-
tion to generate 8058 images that composed the final VDR 
dataset, which included 3894 R14 samples (2214 nonde-
fective and 1680 defective samples) and 4164 R10 samples 
(2160 nondefective and 2004 defective samples). The VDR 
samples of the two models (R14 and R10) were divided into 
two categories (nondefective and defective samples), and 
images from the three angles (front, back, and side) were 
divided into three categories, for a total of 12 categories, 
as shown in Table 1. The samples in each category were 
divided into training, validating, and test sets in a ratio of 
approximately 7:1:2. All images were scaled to a size of 
64 × 64.

3  Method

Next, we constructed a CNN suitable for VDR appearance 
defect identification. The structures of conventional CNNs 
generally include several convolution layers and several 
pooling layers that alternately connect with each other and 
one or several fully connected layers. Considerable time was 

spent in choosing the layers, layer-to-layer connections, and 
parameters. To design a proper neural architecture more effi-
ciently and effectively, we used a stacking-block strategy for 
neural architecture designing we call BlockNAD.

3.1  Block‑stacking‑based neural architecture 
design

The proposed neural architecture is designed based on block 
stacking (as shown in Fig. 5). A block is a reusable sub-
network that can be stacked K times in a network. Each block 
is followed by a maximum pooling layer (maxpool), where 
down-sampling is performed to allow the main features to 
be retained while reducing the number of parameters. To 
improve the accuracy of classification, the number of chan-
nels of all convolutional layers in the next block is set to be 
twice that in the previous block.

A classification layer is connected to the last block to 
output the classification results. The number of parameters 
of the fully connected (FC) layer is often too high, which 
causes various problems such as slow network training 
and the tendency of overfitting during training; therefore, a 
global average pooling layer (GAP) [31, 32] or GAP com-
bined with the FC [33] is used to replace the traditional FC 
layer. The proposed network was composed of three types 
of components: block layers, pooling layers and a classifica-
tion layer.

Once the CNN is established, network training and vali-
dating can be performed. Based on this method, we started 
the search from a network with one block and continued to 
increase the number of the blocks until we found a satisfac-
tory network model, which has the advantage of reducing 
the search space of the neural architecture.

Fig. 4  Results of data augmentation. a original image; b vertical flip-
ping of the original image; c horizontal flipping of the original image; 
d brightening of the original image (gamma value: 0.6); e dimming 
of the original image (gamma value: 1.4); f 90° and g 45° rotations of 
the original image; h vertical flipping of (g) and i horizontal flipping 
of (g)

Table 1  VDR dataset

D and ND represent defective and nondefective, and S, B, F represent 
side, back, and front, respectively

Category Label # Train # Validate # Test

R14 D-S 0 420 60 120
R14 D-B 1 388 54 110
R14 D-F 2 373 50 105
R14 ND-S 3 517 74 147
R14 ND-B 4 517 74 147
R14 ND-F 5 517 74 147
R10 D-S 6 469 66 133
R10 D-B 7 469 66 133
R10 D-F 8 469 66 133
R10 ND-S 9 504 72 144
R10 ND-B 10 504 72 144
R10 ND-F 11 504 72 144
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3.2  Building blocks

Two types of blocks are constructed. Each block consists 
of a compressed subnet and a multiscale subnet, including 
several convolutional layers (conv) and an average pooling 
layer (avgpool). The structure of Blocks is shown in Fig. 6.

Figure 6a shows the structure of Block-A, which con-
sists of a compressed subnet and a multiscale subnet. The 
compressed subnet has a 1 × 1 convolutional layer whose 
function is to adjust the number of feature-mapping channels 
of the input block to maintain the size of block parameters. 
After adjustment, the outputs are sent to the three branches 
of the multiscale subnet separately. The first branch has an 
avgpool to first obtain the low-frequency features and further 
uses a 1 × 1 convolutional layer for compression; the second 
branch is a 3 × 3 convolutional layer, and the third branch has 
two adjacent 3 × 3 convolutional layers, which is equivalent 
to a 5 × 5 convolutional layer [18]. All 3 × 3 convolutional 
layers use the Rectified Linear Unit (ReLU) activation func-
tion. Finally, the outputs of three branches are fused through 
the concat operator as the output of the block.

Figure 6b shows the structure of Block-B, which is simi-
lar to that of Block-A. The only difference is that the output 

of third branch and the output of the compressed subnet are 
fused first through a concat operator. That is, the shallow and 
deep features are fused first as one output; then, this output is 
fused together with the outputs of first and second branches 
through the second concat operator as the output of Block-B.

4  Experiments

The experiments were based on CNNs constructed with caffe 
1.0 [34] to perform the training and testing. The experiments 
were implemented on a PC (Intel Core i5 CPU, 8 GB DDR4, 
and 1050Ti NVIDIA GPU) with Windows 10. The stochas-
tic gradient descent (SGD) method [35] was adopted in opti-
mization during network training in which the learning rate, 
momentum, and maximum number of iterations were set to 
0.001, 0.9, and 10,000, respectively. To evaluate the perfor-
mance of the proposed method, we conducted experimental 
comparisons from three aspects. First, through the compari-
son of GAP and GAP + FC, the classification layer of Block-
NAD was determined; then, based on the BlockNAD and 
Blocks, two types of CNNs were constructed. In the training 
and validating sets, the classification performances of CNNs 

Fig. 5  The proposed neural 
architecture is built based on 
stacked blocks with three types 
of components (block layers, 
pooling layers, and a classifica-
tion layer). Each block layer is 
followed by a maxpool

(b)(a)

1×1@48×2(n-1)

conv

3×3 avgpool

1×1@16×2(n-1)

conv

3×3@32×2(n-1)

conv
3×3@64×2(n-1)

conv

3×3@64×2(n-1)

conv

concat

1×1@48×2(n-1)

conv

3×3 avgpool

1×1@16×2(n-1)

conv
3×3@64×2(n-1)

conv

concat

concat

3×3@64×2(n-1)

conv
3×3@32×2(n-1)

conv

Fig. 6  The structures of two types of the proposed block. a Block-A 
and b Block-B. They consist of a compressed subnet and a multiscale 
subnet, including several convolutional layers and avgpool. For exam-
ple, 1 × 1@48 × 2(n−1) conv represents the convolutional layer with 

a convolution kernel size of 1 × 1 and 48 × 2(n−1) channels; n is the 
index of stacking blocks, n = 1,2,3,…; and 3 × 3 avg pool represents 
the average pooling layer with a pooling window of 3 × 3
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with different stacking blocks were compared to find the 
optimal CNN. Finally, the optimal CNN was compared with 
the state-of-the-art methods on the test set.

4.1  Evaluation indicators

We used average precision (AP) and mean average precision 
(mAP) to evaluate the performance of the proposed algo-
rithm and compare it with other algorithms. For each class, 
we first calculated its AP and then the mAP of all classes, 
using the following equations:

In these equations, the category to be calculated was 
regarded as a positive sample and the remaining categories 
were regarded as negative samples; R is the number of all 
positive samples in the test set, and

M is the total number of samples in the test set. When 
the ith sample is a positive sample, Ii = 1; otherwise, Ii = 0. 
Ri represents the number of positive samples in the first i 
samples, N represents the number of categories, and APj 
represents the average precision of the jth category.

4.2  Classification layer

First, through the comparison of GAP and GAP + FC, the 
classification layer of BlockNAD was determined. Based 
on Block-A and Block-B, 4 CNNs were constructed using 
BlockNAD with K = 2, 3 and were trained 10,000 times on 
the training set. Figures 7 and 8 show the training times—
error curves of the 4 CNNs using GAP or GAP + FC as the 
classification layer. As can be observed from the figures, 
when GAP was adopted as the classification layer, the Loss 
of the CNNs can be reduced to only approximately 2.4, 
while when GAP + FC was adopted, the Loss dropped to 
close to 0 rapidly.

Based on the above analysis, convergence of CNNs 
with GAP + FC was better than that of CNNs with GAP, 
therefore, GAP + FC was used in the classification layer of 
BlockNAD.

4.3  Block layers

Based on the proposed CNN network structures (Fig. 5) and 
BlockNAD, multiple CNNs with different stacked blocks 
were constructed and evaluated. After experimental com-
parison and analysis, we chose the representative structures 

(1)APj =
1

R

M
∑

i=1

Ii ∗
Ri

i

(2)mAP =
1

N

N
∑

j

APj

with high performance for VDR defect identification. The 
CNNs constructed based on Block-A and B were termed 
BlockNAD-A and B, respectively.

Figure 9 shows the classification accuracy of the two 
CNNs with different numbers of stacking Blocks. As can be 
observed from the figure, when K = 1–5, the mAP of the two 
CNNs generally showed an upward trend, and when K = 3, 
4 and 5, both mAPs approached 100%. When K = 1, 2, the 
mAPs of BlockNAD-B were higher than those of Block-
NAD-A, indicating the fusion of shallow and deep features 
was more effective for VDR defect detection.

Figure 10 shows the size of parameters of the two CNNs 
when K = 1–5. It can be observed from Fig. 10 that the num-
ber of parameters of the two CNNs varied little at different 
K values. When K = 1–4, the number of parameters of the 
CNNs was less than 10 M and increased slowly. When K = 5, 

Fig. 7  The training times - error curve of the CNNs using GAP as the 
classification layer. For example, for Block-A, K = 2 means that this 
CNN has two stacked Block-As

Fig. 8  The training times - error curve of the CNNs using GAP + FC 
as the classification layer
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the number of parameters started to increase rapidly, since 
the number of channels increases as  2(n−1), where the n is the 
index of stacking blocks.

Based on the comprehensive analysis of Figs. 9 and 10, 
either BlockNAD-A-3 or BlockNAD-B-3 can be used as a 
CNN for defect detection after considering the detection 
accuracy and efficiency.

4.4  Experimental results

We compared the accuracies of the proposed networks in 
recognizing VDR defects with VGG-16 [18], Resnet-18 
[20], DBCC [36], and an 11-layer CNN [23]. Of these, 
VGG-16 and Resnet-18 are classic CNNs that perform well 
in large-scale classification tasks, such as ImageNet, and 
DBCC and the 11-layer CNN are manually constructed 
CNNs for surface-defect detection.

Table 2 shows the performance of the compared meth-
ods on the 12-category identification. The mAP, parameter 
size, and Model size of proposed networks BlockNAD-B-3 
and BlockNAD-A-3 were both in the top 2, and the average 
detection time was only half that of Resnet-18, whose mAP 
ranked in the 3rd place. The mAP of BlockNAD-B-3 was 
higher than that of BlockNAD-A-3; however, the parameter 
size and Model size were slightly larger, and the detection 
time is slightly longer (~ 0.1 ms). The parameter size and 
Model size of VGG-16 were the largest and were more than 
20 times of those of the proposed CNNs. The detection time 
of DBCC was the shortest; however, its parameter size and 
Model size were slightly larger than those of the proposed 
CNNs. The detection time of the 11-layer CNN was shorter 
than that of the proposed CNNs, however, its parameter size 
and Model size were 5 times of those of the proposed CNNs.

In addition to detection time, the results of the above 
comparison experiments demonstrate that the proposed net-
works had the best overall performance. In addition, Block-
NAD-based CNNs are simpler and more efficient than the 
CNNs constructed layer by layer manually. Additionally, the 
average detection time of approximately 3 ms can meet the 
demand of real-time detection. Therefore, in practice, the 
proposed networks can be used as models for VDR defect 
detection.

5  Conclusions

In this study, we proposed an automatic inspection method 
for VDR appearance defects based on CNN, which achieved 
VDR defect identification based on VDR images from three 
angles (front, back, and side) using a simple and efficient 
neural architecture designing method called BlockNAD. 
High classification accuracy and efficiency in the 12-cat-
egory classification of VDR defects were achieved that can 
meet the requirements of online real-time inspection. In the 
future, we will develop the classification and positioning 
methods for VDR defects in additional defect categories.

Fig. 9  The relationship between mAP and K, the number of stacking 
blocks

Fig. 10  The relationship between the size of the parameters and K, 
the number of stacking blocks

Table 2  Classification performance comparison

Method mAP (%) Paras (M) Model 
size 
(MB)

Time (ms)

VGG-16 [18] 99.38 400 152 6.5
Resnet-18 [20] 99.82 110 42.7 6.6
DBCC [36] 98.79 20 7.62 1.5
11-layer CNN [23] 99.72 97 37.1 1.8
BlockNAD-A-3 99.84 17 6.57 3.2
BlockNAD-B-3 99.92 18 6.66 3.3
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