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Abstract
Human visual system (HVS) can perceive color under varying illumination conditions, and Retinex theory is precisely aimed
to simulate and explain how the HVS perceives reflectance regardless of different illumination conditions. In this paper,
we introduce a reflectance and illumination decomposition model for the Retinex problem via total generalized variation
regularization and H1 decomposition. The total generalized variation regularization ameliorates the staircasing artifacts that
appear in the reflectance component of existing total variation-based models and H1 norm guarantees smoother illumination.
We analyze the existence and uniqueness of the proposedmodel and employ an alternatingminimization scheme based on split
Bregman iteration. We present numerous numerical experiments on both grayscale and color images to make comparisons
with several state-of-the-art methods and demonstrate that our method is comparable both quantitatively and qualitatively.

Keywords Retinex theory · Image decomposition · Total generalized variation regularization · Alternating minimization
scheme

1 Introduction

Retinex theory is originally proposed by Land and McCann
[34] to deal with compensation for illumination effects in
images, whose idea is to simulate how human visual system
(HVS) automatically perceives color under varying illumi-
nation conditions. An important feature of HSV is our visual
system tends to see the same color in a given image regardless
of the light. The primary goal of Retinex theory is to decom-
pose a given image I into two components, reflectance R and
illumination L, such that

I (x) = R(x) × L(x), (1)

at each pixel x ∈ � where � ⊂ R
2 is the image domain.

Equation (1) exactly explains why regionA of Fig. 1a is visu-
ally darker than region B, while they have the same intensity
value just shown in Fig. 1b. This is because, by Retinex the-
ory, they are in different illumination conditions. Actually,
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the region B is in the shadow of the green cylinder so that the
illumination of the regionA is stronger than that of the region
B, i.e., L(A) > L(B); thus, the reflectance of the region A
is smaller than that of the region B, i.e., R(A) < R(B).

To simulate the HVS, we need to recover the reflectance
R and illumination L from a given image I accurately, and
it is a mathematically ill-posed problem since both parts
are unknown. Numerous techniques have been developed to
implement the Retinex theory in the past 40years and a first
step taken by most algorithms is the conversion to the log-
arithmic domain by i = log(I ), r = log(R), l = log(L),
and thereby, i = r + l. For example, path-based algorithm
[10,30,31,34,45,55] was proposed with the path geometry of
piecewise linear, double spirals and Brownian paths. How-
ever, these path-based methods contain a lot of parameters,
and they have high computational complexity. The recur-
sive algorithms [13,47] extend the path-based algorithms and
replace the path computation by a recursive matrix calcula-
tion which highly improves the computational efficiency, but
the result strongly depends on the number of iterations. The
center/surround algorithms [24,25] assume the illumination
component changes smoothly and the reflectance compo-
nent is computed by subtracting a blurred version of the
input image, but these methods need too many parameters.
Later on, the idea of path following is formulated into PDE-
based models [1,21,49,50] and variational models [28,38,
42,43,51,72]. The former recovers the reflectance compo-
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Fig. 1 Adelsons checker shadow illusion. a Original image. b Illusion
free image

nent by solving a Poisson equation with the assumption that
the illumination is relative small, and the latter utilizes dif-
ferent regularizations on reflectance and illumination due to
their different properties, such as total variation (TV) is intro-
duced to ensure getting piecewise constant reflectance. But
it loses too much details of the reflectance component, espe-
cially for the high-contrast regions. Recently, deep learning-
based image processing methods have been proposed in the
Retinex-based image decomposition field [39,53,60,61,70].
As there is no ground truth of the reflectance and illumina-
tion, making difficult to generating and annotating dataset of
natural images, these methods train their networks either on
synthetic dataset, real-world dataset with sparse annotations
or image pairs/sequences, and performnotwell on real-world
data.

In this paper, we consider a decomposition model in the
variational framework to recover R and L simultaneously.
In particular, we propose to use total generalized variation
(TGV) as a regularization term of the reflectance component
to capture more details, which has been successfully applied
in image restoration [27,29,63], and extract smoother illu-
mination component with H1 norm. We develop a rather
simple, efficient optimization algorithm based on split Breg-
man iteration, and the keys to our method are recovering
richly detailed reflectance and small smooth illumination
alternately.We denote ourmethod as TGVH1 reflectance and
illumination decomposition model. Compared to the state-
of-the-art methods [14,28,38,42,51], we can achieve a more
detail-preserved reflectance and smoother illumination and
increase the contrast precisely.

The rest of the paper is organized as follows. In Sect. 2,
we review several different Retinex algorithms. In Sect. 3,
we present the proposedmodel including theoretical analysis
about the existence and uniqueness of the solution. In Sect. 4,
we introduce an alternating optimization based on split Breg-
man iteration to solve the proposed model. In Sect. 5, we
present the numerical experiments on visual illusion images,
synthetic images, natural color images, medical images and
shadowed color images and make comparison with several
existingmethods. Finally, the conclusion and future work are
discussed in Sect. 6.

2 Related work

Generally, image decomposition algorithms can be classi-
fied into two categories: intrinsic image decomposition [44]
and Retinex-based image decomposition [22]. The former
focuses on recovering reflectance close to ground truth as far
as possible but losing objects’s shape, while the latter aims
to restore the reflectance with good shape and visual real-
ism. Here, we mainly work on and review Retinex-based
methods. For the past few decades, many interpretations,
implementations and improvements of the Retinex algorithm
have been studied and basically classified into four categories
(see [22,28,36,50] for details): path-based algorithms, recur-
sive algorithms, center/surround algorithms, formulas-based
algorithms and supervised deep learning-based algorithms.
These seemingly different algorithms are actually very sim-
ilar since they are all based on the assumption that the
illumination component is spatially smooth.

Path-based algorithms The key idea of path-based algo-
rithms was the lightness of each pixel depending on the
multiplication of ratios along random walks. Land’s orig-
inal works [30–32,34] used piecewise linear paths and laid
out a time-consuming algorithm. Later,Marini andRizzi [45]
implemented the original Retinex algorithm using Brownian
motion to approximate each path and greatly improved the
effectiveness of the Retinex algorithm. Provenzi et al. [56]
presented a detailed mathematical analysis of the original
Retinex algorithm to describe the behavior of the algorithm.
Base on this work, Provenzi et al. [57] proposed a “random
spray Retinex” in which paths were replaced by 2-D pixel
sprays, and achieved faster performances than the path-wise
one.

Recursive algorithms As a variant of path-based algorithms,
recursive algorithms replaced the path computation by a
recursive matrix comparison where the comparison between
pixels could be calculated simultaneously. Frankle–McCann
Retinex [13] used single pixel comparisons with variable
separations where a single pixel eventually averages differ-
ent products from all other pixels data. McCann99 Retinex
[47] created a multiresolution pyramid from the input by
averaging image, and pixel comparisons and lightness esti-
mates are in an alternate progress from high level to low level
until the pyramids bottom level. Both implementations were
presented in [15], and the parameter determinations were
discussed in [9].

Center/surround algorithms The center/surround approach
was first proposed by [33] and later improved by Jobson
et al. [24] with an easy implementation and better result.
Single-scale Retinex (SSR) [25] and multiscale Retinex
(MSR) [58] were the representative algorithms of the cen-
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ter/surround approach, and both were based on the idea
that lightness values could be computed by subtracting a
blurred version of the input image from the original image.
Because of their simplicity and effectiveness,many improved
algorithms [7,8,23,54,68] were proposed. For example, the
multiscale Retinex with color restoration (MSRCR) [59] was
an improvement in the MSR while there were halo artifacts
near strong edges.

Formulas-based algorithms Formulas-based algorithms
were proposed to translate the Retinex principles into a
physical model solving by a set of equations or an opti-
mization problem. Poisson equation-typeRetinex algorithms
were developed by solving a Poisson equation under the
assumptions that reflectance was a piecewise constant and
illumination was spatially smooth [34]. Horn [21] applied
the Laplacian to get �i = �r + �l and then used a thresh-
old function clipping the finite parts to get a Poisson equation,
namely

�r(x) = τ(�i), (2)

where the threshold function is defined by

τ(x) =
{
x if |x | > t

0 otherwise
(3)

The Poisson equation (2) was solved by an iterative scheme
of a low-pass filter. Blake [1] introduced an improvement
in Horn’s method, extracting the discontinuities from the
image gradient magnitude instead of the Laplacian with bet-
ter boundary conditions. Funt et al. [16] improved Horn’s
method by applying a new curl-correction technique at the
thresholded locations. Additional algorithmic improvements
[49,50] by Morel constructed a very tight connection with
Horn’s and Blake’s method and yielded an exact and fast
implementation using only two fast Fourier transforms.

By the same assumption with Poisson equation-type
Retinex algorithms, variationalRetinex algorithms have been
applied to image decomposition in the past 2 decades. Let
� ⊂ R

d be a bounded open domain with a compact Lips-
chitz boundary, the primary variational model was proposed
by Kimmel [28], only focusing on the penalty functional of
the illumination component l, and the followed H1 + L2

model is

l̂ = argmin
l

∫
�

{
|∇l|2 + α(l − i)2 + β |∇(l − i)|2

}
dx,

s.t. l ≥ i, < ∇l,n >= 0 on ∂�

(4)

which was a quadratic programming problem solved by the
project normalized steepest descent method. Ma and Osher

[43] proposed total variation (TV) model to recover piece-
wise constant reflectance component r , namely

r̂ = argmin
r

∫
�

(
t |∇r | + 1

2
|∇r − ∇i |2

)
dx, (5)

where parameter t > 0. Afterward, Ma [42] improved a L1-
based model on reflectance r , which reads

r̂ = argmin
r

∫
�

|∇r − δt (∇i)| dx, (6)

where δt (∇i) was gradient threshold function with respect
to t . Both models were solved effectively by Bregman itera-
tion, but the penalization on the magnitude of image gradient
caused the loss of reflection’s details and contrast. The same
was to optimize reflectance r , Zosso et al. [72] extended the
TV-based models to a unified nonlocal formulation of the
reflectance, and Li et al. [37] applied an adaptive perceptu-
ally inspired variational model to adjust the uneven intensity
distribution.

Several decomposition models have been developed by
considering both reflectance r and illumination l simultane-
ously. For instance, Ng and Wang [51] added an L2 fidelity
term and some constraints in the proposed energy functional,
namely

min
r≤0,
l≥i

∫
�

{
|∇r | + α

2
|∇l|2 + β

2
(i − r − l)2 + μ

2
l2

}
dx, (7)

where the constraint r ≤ 0 corresponded to the assumption
0 < R < 1. Recently, decomposition models combined var-
ious kinds of techniques upon r or l with formulation (7)
aiming to estimate the reflectance with more details. For
example, Chang et al. [5] used sparse and redundant repre-
sentations of the reflectance component replacing of the TV
term. Similarly, Wang et al. [67,69] used nonlocal bounded
variation (NLBV) and variational model with barrier func-
tionals upon the reflectance, respectively. Liang and Zhang
[38] adopted higher-order total variation L1(HoTVL1) on
the illumination component. Wang et al. [64] constructed
a variational Bayesian model with Gibbs distributions for
both reflectance and illumination and the gamma distribu-
tions for the model’s parameters. In addition, a weighted
variational model was proposed in [14] to eliminate impact
of log-transform and a variational model with hybrid hyper-
Laplacian priors was presented in [6]. Guo et al. [20] andGao
et al. [17] only estimate illumination with structure priors.
Gu et al. [19] integrate ASR to represent image large-scale
structures and SSR to represent image fine-scale textures.

Supervised deep learning-based algorithms With the
rapid development of deep neural network, supervised deep
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learning-based algorithms have been proposed in the low-
light image enhancement. Lore et al. [39] use stacked-sparse
denoising autoencoder to learn adaptively enhance and
denoise from synthetically darkened and noise-added train-
ing data. Shen et al. [60] analyze the property of MSR algo-
rithm in the sense of convolutional neural network (CNN) and
proposedMSR-net to enhance the low-light image trained on
synthetically high quality and low-light images pairs. Park
[53] combine the stacked and convolutional autoencoders
on illumination and reflectance, respectively, also trained
on synthetic high-contrast and low-light images. However,
those synthetic data are quite different from the real world
data, so those methods cannot generalize well to real-world
images. To overcome above difficulties, Wei et al. [70] adopt
a deep end-to-end Retinex-Net including a Decom-Net and
an Enhance-Net, learning without ground truth decomposi-
tions under the key constraints that the consistent reflectance
is shared by paired low/normal-light images and Shi [62]
proposed a generative adversarial network (GAN).

3 TGV + H1 decompositionmodel

In this section, we first review the TGV regularization in
Sect. 3.1 and Hilbert space H1, then formulate the opti-
mization for reflectance and illumination decomposition in
Sect. 3.3 and show existence and uniqueness of solution for
the above problem in Sect. 3.4.

3.1 Background of total generalized variation

The total generalized variation (TGV) was proposed by
Bredies et al. [2], as a generalization of the infimal convolu-
tion of TV and second-order TV regularizers [4] is written
as follows:

TGVk
α(u) = sup

ν

{ ∫
�

udivk(ν)dx | ν ∈ Ckc(�,Symk(Rd)),

‖div j (ν)‖∞ ≤ α j , j = 0, . . . , k − 1

}
,

(8)

where α = (α0, α1, . . . , αk−1) is fixed positive vector,
Symk(Rd) denotes the space of symmetric k-tensors on
R
d as Symk(Rd) = {ξ : R

d × · · · × R
d | ξ is k −

linear and symmetric}, and Ckc(�,Symk(Rd)) is the space
of compactly supported symmetric tensor fields. Especially,
it is equivalent to the TV regularizer when k = 1, α0 = 1.

It has been shown in [2] that TGVk
α can be interpreted

as a k-fold infimal convolution by employing the Fenchel–
Rockafellar duality formula, as follows:

TGVk
α(u) = inf

u j

k∑
j=1

αk− j

∫
�

|E(u j−1) − u j | dx, (9)

where u0 = u, uk = 0, u j ∈ Ck− j
c (�,Sym j (Rd)) for

j = 1, . . . , k, and E represents the distributional sym-

metrized derivative, i.e., E(u j−1) = ∇u j−1+(∇u j−1)
T

2 . Thus,
TGVk

α automatically balances the first to the kth derivatives
of u among themselves and reduces the staircasing effects
of the TV. Similar to the definition of the bounded variation
space (BV) on a non-empty open set � ⊂ R

d in [52], the
space of functions of bounded generalized variation of order
k with α is defined on � in [2] is a Banach space, as follows:

BGVk
α(�) =

{
u ∈ L1(�)|TGVk

α < ∞
}

, (10)

equipped with the norm ‖u‖BGVk
α

= ‖u‖1 + TGVk
α(u). For

instance, when k = 2,TGV2
α involves the l1-norm of E(u0)−

u1 = ∇u − u1 and E(u1) via the Radon norm.
In this work, we particularly utilize the second-order

TGV denoted by TGV2
α and corresponding Banach space

BGV2
α(�) and their mainly analytical properties [2,3] to

obtain the existence and uniqueness of the solutions of our
proposed model in the last subsection of this part.

3.2 Background of Hilbert Space H1

We first present some preliminaries for Sobolev spaces pro-
posed in [26,46]. Let � be an open subset of R

n with
Lipschitz boundary, the Sobolev space Wk,p(�) consists of
functions u ∈ L p(�) such that for every multi-index with
|α| ≤ k, the weak derivative Dαu (same with the classical
derivative∇u for smooth function) exists and Dαu ∈ L p(�).
Thus,

Wk,p(�) = {u ∈ L p(�) : Dαu ∈ L p(�), || ≤ k},

equipped with the norm

‖u‖Wk,p(�) =
⎛
⎝ ∑

|α|≤k

∫
�

|Dαu|pdx
⎞
⎠

1
p

, 1 ≤ p < ∞.

It is important to emphasize that the Sobolev spaceWk,p(�)

is a Banach space. In particular, Hk(�) = Wk,2(�) is a
Hilbert space with the inner product,

< u, v >Hk (�)=
∑
|α|≤k

< Dαu, Dαv >L2(�),

and the norm ‖u‖Hk (�) =< u, u >
1
2 . Here, we mainly focus

on the H1(�) and summarize some definitions and main
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properties in H1(�) and write the ‖u‖2 = ‖u‖L2(�) and

‖u‖1 = ‖u‖H1(�) = (‖u‖22 + ‖∇u‖22)
1
2 as a convenience.

(Lower semicontinuity) If the sequence {uk}k∈N satisfies
uk → u and ∇uk → ∇u, then ‖u‖1 ≤ lim infk→∞ ‖uk‖1.
In particular, for lim infk→∞ ‖uk‖1 < ∞, then u ∈ H1(�).

(Compactness) Suppose {uk}k is bounded in H1(�), then
there exists a subsequence {uk j } j∈N and u ∈ H1(�) such
that uk j → u and ∇uk j → ∇u as k → ∞.

(Embedding) If � has a Lipschitz boundary and it is con-
nected and u ∈ H1(�), then it can be shown that there exists
positive constant C such that ‖u‖1 ≤ C‖∇u‖2.

3.3 Proposedmodel

Here,wepresentTGV2
α+H1 variationalmodel for reflectance

and illumination decomposition, recovering the reflectance
component with more details by TGV2

α and the spatially
smooth illumination component penalized by H1 norm. We
also consider this problem on the logarithmic domain like
most variational methods, and the energy function E(r , l) is
defined as follows

TGV2
α(r) +

∫
�

{ c1
2

|∇l|2 + c2
2

(i − l − r)2 + c3
2
l2

}
dx, (11)

Since the number of unknowns is twice the number of equa-
tions, we further consider constraints Br and Bl on both r
and l, aiming to recover the best contrast of the inputs. So
the associated minimization problem is given as follows

(r∗, l∗) = argmin
(r ,l)∈�

⋂Br×Bl

E(r , l) (12)

where � = {(r , l)|(r , l) ∈ BGV2
α(�) × H1(�)}. c1, c2

and c3 are positive parameters, the term
∫
�
(i − l − r)2dx

is used for the fidelity and
∫
�
l2dx is the guarantee of the

theory proof. Numerically, c3 is set very small. TGV2
α(r)

is minimized over all gradients of the deformation field
p = (p1, p2) on image space �, which reads

inf
p∈C2c (�,R2)

α1

∫
�

|∇r − p| dx + α0

∫
�

|E(p)| dx, (13)

where α0 and α1 are positive parameters balancing between
the first- and the second-order derivative of r .

Remark 1 Here, we show the effect of constraints Br and Bl

we used on improving the contrast of estimated reflectance.
Figure 2 shows a contrast comparison on different constraints
by computing the intensity difference between A and B
denoted as D(A, B). (a) shows the input gray image with
the same intensity of A and B, (b) takes Br = (−∞, 0] and
Bl = [i,∞) similar with Ng and Wang [51] and (c) takes
Br = (0, 255] and Bl = [−255, 0). It can be noticed that

Fig. 2 Contrast comparisonwith different constraints.a shows the input
gray image with the intensity of masked A and B 140, D(A, B) = 0; b
shows the result of Br = (−∞, 0] and Bl = [i,∞) with the intensity
of masked A 73 and B 159, D(A, B) = 86; and c shows the result of
Br = (0, 255] and Bl = [−255, 0) with the intensity of masked A 25
and B 250, D(A, B) = 225

constraints in (c) can help to improve the contrast signifi-
cantly.

3.4 Existence and uniqueness of solution

Wegive a general existence anduniqueness result for solution
of the above minimization problem.

Theorem 1 Suppose i ∈ L∞(�) and c1, c2, c3 > 0,
then problem (12) has a unique solution pair (r∗, l∗) ∈
BGV2

α(�) × H1(�).

Proof For any (r , l) ∈ �, the objective functional of (12)
is proper and nonnegative (by the property of BGV2

α(�)),
i.e., E(r , l) is bounded below. Specifically, it is easy to see
that the functional is the correct setting since any constant
r and l will yield a finite energy. Hence, we can choose a
minimizing sequence {rk, lk}k∈N ⊂ � for the problem (12),
and there exists a constant M > 0 such that

E(rk, lk) ≤ M .

This yields that

‖∇lk‖22 < M, ‖lk‖22 < M, (14)

TGV2
α(rk) < M, ‖i − rk − lk‖22 < M, (15)

rk ∈ Br , lk ∈ Bl , (16)

for ∀k ∈ N. {lk} is uniformly bounded in H1(�) by the
bounded conditions (14). With the compact embedding of
H1(�) in L2(�), it is easy to deduce that {lk}k∈N converges
(up to a subsequence) in H1(�) to l∗. As a consequence of
the lower semicontinuity for H1(�) norm, we obtain

c1
2

‖∇l∗‖22 + c3
2

‖l∗‖22 ≤ lim inf
k→∞

(c1
2

‖∇lk‖22 + c3
2

‖lk‖22
)

.

(17)

123



82 C. Wang et al.

For {rk}, we can get

‖rk‖22 = ‖rk+lk−i+i−lk‖22 ≤ ‖rk+lk−i‖2+‖i−lk‖22 < M .

As i ∈ L∞(�) and {lk} is uniformly bounded in
L2(�), {rk} is also uniformly bounded in L2(�). By the
boundedness of�, {rk} is bounded in L1(�) and bounded in
BGV2

α(�) by the boundedness of TGV2
α(rk) in (15) and the

lower semicontinuity. Similar with {lk}, we can derive that
{rk}k∈N converges (up to a subsequence) in BGV2

α(�) to
r∗ ∈ BGV2

α(�). By the lower semicontinuity of BGV2
α(�)

norm, we obtain

TGV2
α(r∗) ≤ lim inf

k→∞ TGV2
α(rk). (18)

Since lk + rk⇀l∗ + r∗ in L2(�) and recalling the lower
semicontinuity for the L2(�) norm, we also obtain

c2
2

‖i − r∗ − l∗‖22 ≤ lim inf
k→∞

c2
2

‖i − rk − lk‖22. (19)

From the above inequations (17), (18) and (19), we have

min
(r ,l)∈�

E(r , l) = lim inf
k→∞ E(rk, lk) ≥ E(r∗, l∗).

Since the functional (11) is convex (by the convexity of
TGV2

α) and the constraint sets Br and Bl are closed, the min-
ima can be attained at (r∗, l∗). Uniqueness is straightforward
with the strict convexity of E(r , l)with respect to (r , l). This
completes the proof. �

4 Algorithm

In this section, we present the algorithm for solving the prob-
lem (12). Note that the two unknowns r and l are coupled
in (12), and our idea is to use the alternating minimization
scheme based on split Bregman iteration to fully decouple
the subproblems for r and l, which yields a simple itera-
tion procedure. The details of our algorithm are described in
Algorithm 1.

4.1 Optimizing r of (P1)

To solve the minimization subproblem containing a TGV
term in (P1), we adopt the fast split Bregman method [11,
12,18,40]. More precisely, we introduce auxiliary variables
(w, v;b,d) and penalty parameters (θ0, θ1), transforming
(P1) into the following form:

Algorithm 1 Alternating minimization scheme
1. Initialization: r0 = 0, l0 = i, k = 0 and parameters c1, c2, c3.
2. For the kth iteration:

(P1) rk+1 = arg min
r∈Br

{
TGV2

α(r) + c2
2

∫
�

(i − r − lk)2 dx

}
,

(P2) lk+1 = argmin
l∈Bl

∫
�

{ c1
2

|∇l|2 + c2
2

(i − l − rk+1)2 + c3
2
l2

}
dx .

3. Go back to step 2 until εr = ‖rk+1−rk‖2
‖rk+1‖2 ≤ ε1 and εl = ‖lk+1−lk‖2

‖lk+1‖2 ≤
ε2.

max
b,d

min
r∈Br ,
p,w,v

{
E1(r ,p,w, v;b,d) = c2

2

∫
�

(i − r − lk)2 dx

+
∫

�

(
α1|w| + θ1

2
(w − ∇r + p − b)2

)
dx

+
∫

�

(
α0|v| + θ0

2
(v − E(p) − d)2

)
dx

}
.

(20)

We discrete the energy (20) on each pixel (details can be
found in “Appendix”) and break down (P1) into five steps. In
the following, we will give a brief statement on solving each
step.

Update of r t+1 To recover r t+1, we take the partial deriva-
tive of the energy (20) with respect to r , which leads to the
following Euler equation:

c2r − θ1�r = c2(i − lk) − θ1div(wt + pt − bt ), (21)

The solution of this linear PDE is given by discrete Fourier
transform F, which namely

r t+
1
2 = R

(
F−1

(F(Gr )

ξr

))
, (22)

where F(Gr ) and ξr are derived in “Appendix”. Then, we

apply the projectionmethod to r t+ 1
2 , thus r t+1 = PBr (r

t+ 1
2 ).

Update of pt+1 Similar with r t+1, we derive the Euler
equation with respect to pt = (pt1, p

t
2). For each pt1 and pt2,

there are two discrete formulations as follows:

(
θ1 − θ0∂

+
x ∂−

x − θ0

2
∂+
y ∂−

y

)
pt+1
1 − θ0

2
∂ y+∂x− pt+1

2 = h1,

(23)(
θ1 − θ0

2
∂+
x ∂−

x − θ0∂
+
y ∂−

y

)
pt+1
2 − θ0

2
∂ y+∂x− pt+1

1 = h2.

(24)
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where the differential operators in (23) and (24) can be found
in “Appendix” and

h1 = θ1(∂
+
x r

t+1 + bt1 − wt
1) − θ0∂

+
x (vt11 − dt11)

−θ0∂
+
y (vt3 − dt3),

h2 = θ1(∂
+
y r

t+1 + bt2 − wt
2) − θ0∂

+
y (vt22 − dt22)

−θ0∂
+
x (vt3 − dt3),

By applying the discrete Fourier transformF to both sides
of (23) and (24), we get the following linear system

(
a11 a12
a21 a22

) (F(pt+1
1 )

F(pt+1
2 )

)
=

(F(h1)
F(h2)

)
, (25)

and easily obtain the analytical solution of pt+1
1 and pt+1

2
with discrete inverse Fourier transform F−1.

Update of wt+1 and vt+1 The subproblems for w and v
in (20) have closed form solutions using shrink operator as
follows:

wt+1 = shrink

(
∇r t+1 − pt+1 + bt ,

c1
θ1

)
, (26)

vt+1 = shrink

(
E(pt+1) + dt ,

c2
θ0

)
, (27)

where the shrink operator is defined as

shrink(s, t) = s

|s|1 max(|s|1 − t, 0).

Update of b and d To enforcew = ∇r −p and v = E(p),
bothBregman iterative parametersbt+1 anddt+1 are updated
as follows:

bt+1 = bt + ∇r t+1 − pt+1 − wt+1,

dt+1 = dt + E(p) − v.
(28)

Finally, the split Bregman algorithm for r subproblem (20)
is summarized in Algorithm 2.

Algorithm 2 The split Bregman algorithm for r subproblem
of (P1)
Initialization: Set t = 0, (p,w, v; b,d) = 0 and parameters
(α0, α1, θ1, θ2) > 0.
Repeat

1) Compute r t+1 according to (22),
2) Compute pt+1 according to (25),
3) Compute wt+1 according to (26),
4) Compute vt+1 according to (27),
5) Update Bregman iterative parameter b and d according to (28),

Until ‖r t+1−r t‖2
‖r t+1‖2 < ε3,

Return r t+1.

4.2 Optimizing l of (P2)

The subproblem of (P2) is rather simple since it is a quadratic
optimization under the closed constraintBl . First, Euler equa-
tion is derived with respect to l as follows:

−c1�l + (c2 + c3)l = c2(i − rk+1), (29)

then solved efficiently by discrete Fourier transformF under
the periodic boundary condition, which namely

lk+
1
2 = R

(
F−1

(F(Gl)

ξl

))
,

where F(Gl) and ξl are derived in “Appendix”. Finally, we

apply the projection method to lk+ 1
2 , thus lk+1 = PBl (l

k+1).
The final estimated reflectance and illumination are

obtained by R = exp(r) and L = exp (l), respectively. In the
next section, the experimental results are presented to show
the effectiveness of the proposed algorithm.

5 Experimental results and comparison

In this section, we compare the performance of our proposed
model with several variational Retinex methods including
VF [28], L1 [42], TVM [51], HoTVL1 [38] and WVM
[14], the state-of-the-art HDR tonemappingmethod [19] and
supervised deep learning-basedmethod [70] and consider the
decomposition problem on several classic test images includ-
ing synthetic examples, natural images with low contrast or
non-uniform lighting and medical images. All experiments
are executed with MATLAB R2011b on a windows 7 plat-
form with an Intel Corei7 at 3.2 GHz and 8 GB RAM.

For all tests, the recovered r of the VF method is obtained
via i − l since the reflection function of VF is not con-
sidered, and the recovered l of the L1 method is obtained
via i − r . For fair comparison, the parameters are set to
be optimal according to their papers. In our algorithm, we
fixed c3 = 1e−8, α0 = 1, α1 = 0.5, θ0 = θ1 = 5 and
the stopping parameters ε1 = ε2 = 5e−4. We use the
HSV Retinex model for color images with constraint sets
Br = Bl = [log(1e−10), 0] and omit the logarithm and expo-
nent process for gray images just as suggested in [50].

5.1 Synthetic images

We start with two different synthetic examples, shown in
Figs. 3 and 4, respectively. In Fig. 3, we get the darker color
image by changing luminance of the ground truth. In Fig. 4,
we make a piecewise constant gray image r and a piece-
wise smooth gray image l, then get the simulated image i by
summation of them, namely i = r + l.
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Fig. 3 Synthetic example 1. a Ground truth. b Input darker image

Fig. 4 Synthetic example 2. aSynthetic reflectance image r ;b synthetic
illumination/shadow image l and c composed image i = r + l

The decomposition results are shown in Figs. 5 and 6,
respectively. To measure the accuracy of the estimated r ,
the S-CIELAB color metric [71] is adopted by drawing spa-
tial locations and histogram distribution of errors. The first

and second row in Fig. 5 shows the estimated reflectance
and illumination results of different methods, respectively.
The third row in Fig. 5 marks the pixels whose S-CIELAB
errors between the ground truth and estimated reflectance of
different methods are > 10 units, and the last row shows
the histogram distribution of S-CIELAB errors between the
ground truth and the estimated reflectance of different meth-
ods. As can be seen from the spatial locations of the errors,
the green area of our result is smaller than those of other five
methods. From the histogram distribution of errors, it indi-
cates our result achieves the lowest maximum and average
S-CIELAB error in agreement with our empirical assess-
ment. This example demonstrates that our proposed model
can recover more accurate result in dealing with darker
image. From Fig. 6, we can observe that TGVH1, L1 and
HoTVL1 produce the better visual results than other meth-
ods, where the estimated r and l better approximate the
ground truth in some properties. Intuitively, VF, WVM and
TVM either take the illumination information as details of
reflectance or lose many sharp features of reflectance, such
as the edges of rectangles shown in Fig. 6.

For these two examples, we both set c1 = c2 = 20, and
the constraint sets for the second example are Br = Bl =
[0, 255].

Fig. 5 Decomposition comparison of synthetic example 1. First row:
estimated reflectance images by VF, L1, TVM, HoTVL1, WVM and
proposed method, respectively. Second row: the spatial distribution of
S-CIELAB errors between the ground truth and estimated reflectance
components by VF, L1, TVM, HoTVL1, WVM and proposed method,

respectively. Third row: the histogram distribution of S-CIELAB errors
between the ground truth and estimated reflectance components by VF,
L1, TVM, HoTVL1, WVM and proposed method, respectively. Num-
bers in bracket denote the maximum, average of the S-CIELAB and the
proportion of pixelswhose S-CIELABerror are> 10 units, respectively
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Fig. 6 Decomposition comparison of synthetic example 2. First row: estimated reflectance images by VF, L1, TVM, HoTVL1,WVM and proposed
method, respectively. Second row: estimated illumination images by VF, L1, TVM, HoTVL1, WVM and proposed method, respectively

Fig. 7 Natural images

5.2 Natural image color correction

To demonstrate the performance of our proposed model on
natural image color correction, three tests are done on natu-
ral images in Fig. 7, and the comparison results of different
methods are presented in Figs. 8, 9 and 10.

In these three figures, we show the comparisons of dif-
ferent methods both on reflectance and illumination. One
can observe that details of the high-contrast parts are more
improved by using our proposed algorithm than other meth-
ods. The improved details include the wrinkle on the man’s
face in Fig. 8, the tree leaves and the radiators behind flower
leaves in Fig. 9, and the plants and characters in Fig. 10.
The corresponding zoomed parts are shown with enlarge-
ments in red rectangles. Note that the TVM method always
gives overenhanced reflectance with less details and adds
the details to recovered illumination. L1 and HoTVL1 suf-

fer from the loss of reflectance details and contrast due to the
penalization on themagnitude of image gradient. AsVF does
not consider reflectance directly, so the i−l always performs
poorly, especially for low-contrast color images. WVM can
estimate reflectance with finer details due to the modifica-
tion of the weight in log-transform domain, but it is failed
for some low-contrast color images, shown in Fig. 10. How-
ever, TGVH1 can successfully reveal reflectance with many
details in shadows and illumination with smooth property,
increasing the contrast simultaneously.

In addition, since the ground truth of the reflectance image
is unknown, we utilize the natural image quality evaluator
(NIQE) [48] to evaluate the results of different methods. A
lower NIQE value represents a higher image quality and the
best results are boldfaced, as shown in Table 1. It demon-
strates that our method achieves a lower average than other
methods, consistent with our empirical assessment that our
method outputs the highest quality of reflectance images.

For the first two examples, we both set c1 = c2 = 50, and
c1 = c2 = 1 for the third example.

5.3 Medical image bias field correction

Medical images such as MRI are always corrupted by bias
fields due to non-uniform illuminations, so the correction of
the bias field by removing the light effect caused by illumi-
nation is important for clinical diagnosis. Here, we test three
brain MRI images in Fig. 11 and apply different models to
recover a detail-preserved reflectance shown in Fig. 12. For
fair comparison, we replace L1 by the smoothed L1 method
[42] to recover many subtle details followed [42]. In the
original MRI images (see in Fig. 11), there is apparent bias
field effect at the neck area we hardly observe. In Fig. 12,
from left to right are the results of six methods where tissues
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Fig. 8 Decomposition comparison of natural example 1. First row: estimated reflectance images by VF, L1, TVM, HoTVL1, WVM and proposed
method, respectively. Second row: estimated illumination images by VF, L1, TVM, HoTVL1, WVM and proposed method, respectively

Fig. 9 Decomposition comparison of natural example 2. First row: estimated reflectance images by VF, L1, TVM, HoTVL1, WVM and proposed
method, respectively. Second row: estimated illumination images by VF, L1, TVM, HoTVL1, WVM and proposed method, respectively

Fig. 10 Decomposition comparison of natural example 3. First row: estimated reflectance images by VF, L1, TVM, HoTVL1, WVM and proposed
method, respectively. Second row: estimated illumination images by VF, L1, TVM, HoTVL1, WVM and proposed method, respectively
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Table 1 NIQE values of Figs. 8, 9 and 10

Images Figure 8 Figure 9 Figure 10 Average

Input 2.9320 4.4922 5.5415 4.3219

VF 3.5981 3.7245 5.3905 4.2377

L1 5.5415 7.0833 8.8603 7.1617

TVM 2.8592 5.3776 4.7948 7.0895

HoTVL1 3.7471 4.7656 4.7295 4.4141

WVM 2.7344 2.6968 4.1582 3.1965

TGVH1 2.7292 2.7005 4.0316 3.1538

Fig. 11 Medical examples

and vessels are significantly improved. It is obvious that the
HoTVL1 method gets the piecewise constant results where
some small details are lost, and theWVMmethod introduces
some noises, especially in the black background. Other

methods produce good bias field corrections, especially for
the details near the lower neck area and the edge of the MRI
slice are significantly visible byTGVH1with the suppression
of noises in the background.

For these two examples, we both set c1 = c2 = 0.5,
and the constraint sets for the these examples are all set to
Br = Bl = [−255, 0].

5.4 Shadow removal of color images

The final explanatory example is the removal of shadowed
color images. Figure 13 gives two color images with differ-
ent kinds of shadow, and the comparison results of different
methods are shown in Figs. 14 and 15. Note that the L1
method can eliminate shadow effectively, but always recov-
ers reflectancewith big color difference,mainly due to the the
value of one pixel fixed in solving a Poisson equation for the
sake of a unique solution. VF, TVM and WVM can perform
better for images with milder shadows, but fail to remove
the adequate shadows shown in Fig. 15. The HoTVL1 and
TGVH1 method can give visually accurate results where the
shadow effect can be partially removed. Moreover, TGVH1
can simulate the shadows spread all over the whole image,
including the shadow area of two signboards in Wall image.

For the first example, we set c1 = c2 = 50, and c1 =
0.1, c2 = 5 for the second example.

Fig. 12 Comparison of Medical image bias field correction. First row:
the results of view 1 by VF, L1, TVM, HoTVL1, WVM and proposed
method, respectively. Second row: the results of view 2 by VF, L1,

TVM, HoTVL1, WVM and proposed method, respectively. Third row:
the results of view 3 by VF, L1, TVM, HoTVL1, WVM and proposed
method, respectively
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Fig. 13 Color images for shadow removal

5.5 Comparison with HDR tonemappingmethod

We compare our method with the state-of-the-art HDR tone
mapping method JCAS [19] aimed to reproduce a low
dynamic range (LDR) image with fine details and colors of
the HDR counterpart. The source code is obtained from the
original authors, and parameters are set following the paper.

Figure 16 shows visual comparison on two natural images.
It is easy to see that JCAS can recover most of the details
in the HDR image, but the results are too overexposed and
blurry, while our method generates higher quality reflectance
withmore details and faithful colors benefited from the edge-
preserving property of TGV regularization.

5.6 Comparison with supervised deep
learning-basedmethod

We also compare our proposed method with Retinex-Net
[70], which is the most state-of-the-art supervised deep
learning-based method for low-light image enhancement
built on Retinex theory, on real-scene images from public
DICM [35] dataset collected 69 images with commercial
digital cameras. We get all Retinex-Net’s results with the
trained model provided by author. Figure 17 shows visual
comparison on two natural images. As shown in each result,
our method estimates the reflectance with more details with-
out overexposure, especially for the objects buried in dark

Fig. 14 Comparison of shadow removal on Text image. First row: estimated reflectance images by VF, L1, TVM, HoTVL1, WVM and proposed
method, respectively. Second row: estimated illumination images by VF, L1, TVM, HoTVL1, WVM and proposed method, respectively

Fig. 15 Comparison of shadow removal on Wall image. First row: estimated reflectance images by VF, L1, TVM, HoTVL1, WVM and proposed
method, respectively. Second row: estimated illumination images by VF, L1, TVM, HoTVL1, WVM and proposed method, respectively
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Fig. 16 Comparison with JCAS [19]

Fig. 17 Comparison with Retinex-Net [70]

Table 2 Average NIQE values on several public datasets

DICM Fusion LIME MEF NPE

Input 3.8597 4.2050 4.3521 5.1891 3.7388

Retinex-Net 4.6753 4.3809 4.6609 5.7145 4.7079

TGVH1 2.7632 2.7814 3.0709 3.3918 2.9656

lightness, which benefits from the edge-preserving property
of TGV regularization. In addition, our method is succeeded
in suppressing noise in dark areas, while Retinex-Net con-
tains so many noises. In other words, our proposed method
outperforms Retinex-Net.

We also evaluate the reflectance component of ourmethod
quantitatively on real-scene images from public DICM [35],
Fusion [65], LIME [20], MEF [41] and NPE [66]. Table 2
shows the corresponding average NIQE values of the five
datasets and demonstrates that our method has the lower
NIQE value on natural images than Retinex-Net, which indi-
cates that our model estimates the reflectance with high
quality.

Fig. 18 Change of εr and εl with the number of iterations on a 512×512
image

5.7 Convergence

Since our energy function is locally convex with respect
to r and l, it is effective to apply alternating minimization
scheme to decrease the energy monotonically. However, it
should be mentioned that it is difficult to prove the conver-
gence of Algorithm 1 because of the bound box constraints
on r and l. Furthermore, in real computations, we do not
employ many inner loop iterations of Algorithm 2 and in the
numerical tests, we set the max iterations as 5. Figure 18
shows the change of εr , εl with the number of iterations on a
512 × 512 image. From the error curve, it is clear that both
errors drop severely during the optimization and asymptoti-
cally goes toward 0 with increasing number of iterations.

5.8 Parameters impact

We do some tests about the parameters impact on the
proposed model (Eq. (12)). c1 and c2 are related to the reg-
ularization of illumination, and we found the algorithm is
relatively stable when they are equal for most examples in
our tests and the example is donewith c1 = c2 = 50 shown in
Fig. 8. To test the impact of different parameters, respectively,
we set both parameters to 1 and 5 to compare. As can be seen
in Fig. 19, details of estimated reflectance are fuzzed since
the penalty of illumination decreases as c1 and c2 decreases,
leading to the estimated illumination with more details while
reflectance with poor details. Conversely, we can get a detail-
preserved reflectance and smooth illumination.

5.9 Computational time

As an important factor of an algorithm, computational time
of different methods is compared. Among the methods, the
VF method is the fastest and the L1 method is the sec-
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Fig. 19 Examples of parameters impact. First row: estimated
reflectance images. Second row: estimated illumination images

ond since they both consider only one variable. The TVM
and WVM methods are the third and fourth where both r
and l are considered. HoTVL1 and our method both are
time- consuming mainly because the former involves the
second-order TV regularization and the latter involves TGV
regularization. Specifically, our algorithm is a two-step alter-
natingminimization scheme including r and l update, and the
most time-consuming part is the r update which consists of
three subproblems. For example, in Fig. 10 with image size
713 × 357, it takes 7.6 s for the VF method, 9.5 s for the
L1 method with 112 iterations, 71.3 s for the TVM method
with 175 iterations, 466.5 s for the WVM method with 249
iterations, 920.1 s for the HoTVL1 method with 5342 itera-
tions and 890.2 s for our method with 477 iterations. Since
the experiments are performed by unoptimized MATLAB
implementation, the computational time can be improved by
C programming or trying other algorithms.

6 Conclusion

In this paper, we have presented a reflectance and illumi-
nation decomposition model for the Retinex problem via
total generalized variation regularization and H1 decomposi-
tion, which nicely separates the smoother global illumination
from richly detailed reflectance. We proved the existence
and uniqueness of the minimizers for the proposed model
and provided an alternating minimization algorithm based
on split Bregman iteration to handle the convex optimiza-

tion under some constraints. Compared with state-of-the-art
methods, the proposed algorithm performed effectively to
capture more detailed structures or features of the reflectance
and extract HVS preferable illumination for both inhomoge-
neous background removal and color shadow correction.

In the future, we hope to consider the decomposition prob-
lem on some low-quality images, such as severe noised,
blurred images in low-light conditions. How to extend these
techniques to the digital images of wall paintings which are
captured in the dark conditions will also be a future work.
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Appendix

In this appendix, we introduce detailed discretization of first-
order and second-order differential operators using finite
difference scheme.

The first-order forward and backward difference schemes
are first given. Let � → R

M×N denote the two-dimensional
grayscale image space with size M and N . The coordinates x
and y are oriented along columns and rows, respectively. So
the first-order forward differences of u at point (i, j) along
x and y directions are, respectively,

∂+
x ui, j =

{
ui, j+1 − ui, j if 1 ≤ i ≤ M, 1 ≤ j < N ,

ui,1 − ui, j if 1 ≤ i ≤ M, j = N .

∂+
y ui, j =

{
ui+1, j − ui, j if 1 ≤ i < M, 1 ≤ j ≤ N ,

u1, j − ui, j if i = M, 1 ≤ j ≤ N .

The first-order backward differences are, respectively,

∂−
x ui, j =

{
ui, j − ui, j−1 if 1 ≤ i ≤ M, 1 < j ≤ N ,

ui, j − ui,N if 1 ≤ i ≤ M, j = 1.

∂−
y ui, j =

{
ui, j − ui−1, j if 1 < i ≤ M, 1 ≤ j ≤ N ,

ui, j − uM, j if i = 1, 1 ≤ j ≤ N .

And thediscrete second-order derivatives ∂−
x ∂+

x u, ∂+
x ∂−

x u,

∂−
y ∂+

y u and ∂+
y ∂−

y u at point (i, j) can bewritten by the corre-
sponding compositions of the discrete first-order derivative,
as follows
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∂+
x ∂−

x ui, j =
⎧⎨
⎩
ui,N − 2ui, j + ui, j+1 if 1 ≤ i ≤ M, j = 1,
ui, j−1 − 2ui, j + ui, j+1 if 1 ≤ i ≤ M, 1 < j < N ,

ui, j−1 − 2ui, j + ui,1 if 1 ≤ i ≤ M, j = N .

= ∂−
x ∂+

x ui, j

∂+
y ∂−

y ui, j =
⎧⎨
⎩
uM, j − 2ui, j + ui+1, j if i = 1, 1 ≤ j ≤ N ,

ui−1, j − 2ui, j + ui+1, j if 1 < i < M, 1 ≤ j ≤ N ,

ui−1, j − 2ui, j + u1, j if i = M, 1 ≤ j ≤ N .

= ∂−
y ∂+

y ui, j

Thus, the gradient, symmetrized derivative, divergence and
Laplace can be discretized as follows, respectively:

∇u =
(
∂+
x u, ∂+

y u
)

, (30)

E(p) =
⎛
⎝ ∂−

x p1
∂−
y p1+∂−

x p2
2

∂−
y p1+∂−

x p2
2 ∂−

y p2,

⎞
⎠ (31)

div(p) = ∂−
x p1 + ∂−

y p2, (32)

�ui, j = div(∂ui, j ) = ∂−
x ∂+

x ui, j + ∂−
y ∂+

y ui, j . (33)

So the F(Gr ) and ξr in Eq. (22) can be written as

F(Gr ) = βF(i − lk) − θ1F{∂−
x (w1i, j − b1i, j )

+ ∂−
y (w2i, j − b2i, j )}. (34)

and

ξr = β − θ1F(∂−
x ∂+

x + ∂−
y ∂+

y ),

= β − 2θ1

(
cos

2πn

N
+ cos

2πm

M
− 2

)
.

(35)
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