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Abstract

Efficient algorithms that support dynamic topological updates are necessary for the simulation of progressive interactive
cutting of deformable objects. Existing mesh-based techniques suffer from the generation of ill-shaped elements, whereas
voxel grid-based methods require additional cut surfaces to be generated or the use of lookup tables for pre-computed cutting
patterns. To overcome these limitations of existing methods, we propose a novel voxel-based topological operator, divide,
which divides a voxel into two voxels identical to the original voxel’s size by dynamically distributing its voxel elements
(nodes, edges) into the newly divided voxels until the cutting of the original voxel is completed. The connectivity between the
divided voxels and the neighbors of the original voxel is retained during the cut, and new connectivity between the adjacent
divided voxels is generated to represent the continuity of the cut. As a result, the cut surface can be generated directly from
the divided voxels on the fly, and the correspondence between the cut surface and the simulation voxels is maintained without
any additional effort. We use several example problems to demonstrate the efficiency of our method and compare it with other

existing approaches.
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1 Introduction

The ability to interactively modify the geometry of soft
deformable objects as a result of progressive cutting is a
popular field of research in computer graphics [42]. There
are numerous applications of interactive cutting including
surgical procedure simulation, video games, and computer
animations.

Cutting simulation is challenging due to its algorithmic
and computational complexity. The simulation of cuts in a
deformable object involves two major tasks: the modeling of
the cut itself, which includes updating the geometrical and
topological representation of the deformable object, and the
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simulation of the deformable body. Moreover, the capability
of simulating progressive cutting of soft tissue is essential for
many interactive applications such as virtual surgical simu-
lation, where the user requires immediate feedback during a
dissection operation. Specifically, the cut should occur pro-
gressively as the user moves a scalpel through the individual
elements which need to be updated in real time and not after
the cut is completed. This type of interactive cutting demands
an efficient cutting algorithm that supports dynamic updates
in deformable objects.

A significant volume of research focuses on mesh-based
methods, in which cuts are modeled by splitting mesh ele-
ments along the cutting surfaces [3,5,23]. For instance,
Bielser et al. presented a tetrahedral-based splitting method,
where each cut tetrahedron is split into 17 smaller elements
by inserting a vertex on each edge and face [S]. The subdivi-
sion algorithm is further improved to support progressive
cutting using a state machine [3]. Although the cut sur-
face can be accurately created, these remeshing methods
lead to a large number of tetrahedra generated along the
cut, which increases the computational complexity. More-
over, the mesh-based approaches are prone to generating
ill-shaped elements, which lead to numerical inaccuracies
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[35] during deformation simulation [42] and visual artifacts
[14]. To address this issue, the virtual node algorithm (VNA)
[22] decouples the simulation domain and geometrical rep-
resentation of the deformable object. Each cut tetrahedron is
first subdivided into sub-elements to determine which portion
is material. A triangulation of those sub-elements’ boundary
is then added into a triangle list for building the cut surface
mesh; the triangulation across the neighboring sub-elements
must be carefully checked to ensure consistency. For the sim-
ulation domain, a virtual copy of an element node (vertex)
is created when the node has a “scoop” out of its one ring.
Since at least one of the elements sharing the node must be
completely cut, VNA therefore cannot handle partial cut and
progressive cut within an element.

Recentworks [2,7,11,20,21,27,30,33,34,41] address these
computational complexity and stability issues by employing
astructured voxel grid of hexahedral elements. The voxel grid
structure allows more straightforward topological changes
resulting from cuts while maintaining well-shaped elements.
On the other hand, to render the surface of the deformable
object including the additional surfaces generated by cutting,
a surface mesh must be reconstructed from the voxels. In
addition, to deform the surface according to the simulation
performed on the underlying voxels, their correspondence
needs to be established and maintained. Simulating cutting
with this structure poses the problem of efficiently generat-
ing the cut surface and matching the new surface with the
underlying voxel grid.

To resolve this, recent works [7,13,41] use “splitting
cubes” [33] to model cuts in a deformable object by associat-
ing each voxel that is cut with a specific pre-defined cutting
pattern of a voxel; the cutting surfaces are then reconstructed
and mapped to the individual simulation voxels based on their
cutting patterns recorded in a lookup table (LUT). However,
in interactive cutting, each voxel is cut progressively and
potentially can be cut in different ways, so the actual cutting
pattern can only be confirmed when the cutting of the voxel
is completed, contrary to what is necessary for these kinds
of applications.

In this paper, we propose a novel voxel-based topologi-
cal operator, divide, which can dynamically model a cut in a
voxel to support partial cutting and progressive cutting. This
operator divides a voxel into two voxels identical in size to
the original voxel, by dynamically distributing the original
voxel nodes and edges into the new divided voxels until the
cutting of the original voxel is completed. The connectivity
between the divided voxels and the neighbors of the orig-
inal voxel is retained during the cut, and new connectivity
between the adjacent divided voxels is constructed to repre-
sent the continuity of the cut. Since the topological change
and connectivity of the cut are effectively represented by the
new divided voxels, the cut surface can be generated directly
from the divided voxels using the dual contouring algorithm
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[15], in which a surface mesh is constructed by connecting
surface vertices in adjacent voxels sharing the edges with
sign changes. The correspondence between the cut surface
and the simulation voxels is retained without any additional
effort.

To clearly focus our work on the efficient voxel-based
cutting algorithm that can model partial cut and progressive
cut within voxels, collision detection and response are not
considered in this paper. However, any surface mesh-based
collision detection method can be used and external force for
collision response can be integrated into our algorithm.

The reminder of the paper is organized as follows. Related
work is reviewed in Sect. 2. The voxel-based topological
operator, divide, that enables progressive cutting is presented
in Sect. 3. In Sect. 4, we describe cut surface meshing and
updates during progressive cutting based on the divided vox-
els. Deformation simulation and the dynamic physics model
updates are introduced in Sect. 5. Finally, some examples
are presented to demonstrate the computational efficiency of
the proposed technique in Sect. 6, followed by concluding
remarks and future directions in Sect. 7.

2 Related work

Cutting of a deformable object involves updating the geo-
metrical and topological representations of the object while
computing its deformation at the same time. A detailed
review of the field can be found in recent surveys [38,42].
In the following paragraphs, we briefly summarize the two
major classes of algorithms for modeling cuts in deformable
objects using mesh-based and voxel grid-based approaches.

2.1 Remeshing-based methods

Deformation simulation using a tetrahedral mesh has been
widely employed. The rendered surface mesh can be directly
obtained from the tetrahedral mesh by determining the trian-
gle faces on the surface. Modeling of cuts in such tetrahedral
meshes is primarily performed by mesh subdivision and
remeshing operations. Simple and fast remeshing techniques
such as element deletion [6] or splitting along element faces
[28] avoid ill-shaped elements, but they result in jagged cut-
ting surfaces. Cuts can be accurately represented by means
of element refinement (i.e., subdividing a cut tetrahedron
into several tetrahedra [3,4,23,31]), element snapping (i.e.,
snapping vertices to the cutting surface [29]), or a combi-
nation of both [37]. Nevertheless, it is necessary for these
methods to prevent generation of ill-shaped elements with
well-conditioned Jacobians [42].

To address this issue, the virtual node method [22] creates
replicas of an element that is cut, and embeds each distinct
component of the element into a unique replica. This method
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is further improved by [36,39] for arbitrarily shaped and high-
resolution cut surfaces. Although the virtual node algorithm
avoids the creation of ill-shaped elements and can be pro-
cessed in real time [12], it cannot address partial cuts which
commonly occur during progressive cutting. Moreover, spe-
cial attention must be paid to find a topologically consistent
mapping between the high-resolution surface representation
and the tetrahedral simulation domain.

Finite element methods (FEMs) are commonly employed
in mesh-based approaches for simulating deformable bod-
ies. In standard FEM, the displacement within an element
is interpolated at the element’s nodes based on shape func-
tions, which cannot capture discontinuities introduced by
cuts [42]. Polyhedral FEM and extended FEM (XFEM) are
two FEM-based methods specialized for simulating cuts in
deformable objects. Polyhedral FEM avoids the remeshing
process in standard FEM by directly working on general
convex and/or concave polyhedral elements, while shape
functions are defined on the polyhedral domain [40]. XFEM
models discontinuities introduced by cuts with introduc-
ing discontinuous enrichment functions and duplicating the
degrees of freedom (DOFs) at the nodes of the original ele-
ments [10]. Recently, a robust cutting algorithm based on
XFEM has been proposed [17]. This method presents the
construction of specialized quadrature rules for each dis-
sected element and solves the problem of ill-conditioned
matrices using a method that constrains non-contributing
DOFs, making it particularly suitable for fine structural cut-
ting. However, this approach cannot simulate progressive
cutting where the simulation elements are required to be
completely dissected. Kaufmann et al. proposed enrichment
textures for detailed cutting of shells [16]. They propose a
harmonic enrichment method, which uses only one unified
type of enrichment functions to deal with partial cuts and pro-
gressive cuts. In general, XFEM-based methods [10,16,24]
focus on the updates of shape functions to model discontinu-
ities for numerical simulation. When modeling a cut surface,
they usually employ a standard remeshing method; this usu-
ally involves non-trivial mesh remeshing.

2.2 Voxel grid-based methods

Using a structured grid of voxels is an alternative to unstruc-
tured tetrahedral meshing; it allows topological changes
introduced by cuts while maintaining well-shaped elements
[34]. In addition, it is straightforward to create a mesh hier-
archy from a voxel grid for coarsening and refinement of
discretization [11]. However, to render the surface of the
deformable object, including the cut surface, the grid struc-
ture requires a surface mesh representation. Moreover, to
deform the surface in accordance with the underlying voxels,
correspondence must be established and maintained between
the two. When incorporating cuts into a deformable object

represented by voxels, multiple surface vertices are inserted
into the same voxel. The challenge is to connect these vertices
to represent the cut surface and update the correspondence
between surface vertices and voxel nodes.

To circumvent this, Jerabkova et al. [11] model a cut by
voxel removal at the finest level, and the surface mesh along
the cut is reconstructed using the marching cubes algorithm
[19]. This method, however, makes it difficult to generate a
surface that accurately aligns with the cut. Dick et al. [7],
on the other hand, employ an octree grid that is adaptively
refined along a cut. To construct the cut surface and com-
pute its correspondence to the simulation grid, they employ
the splitting cubes algorithm [33]. In this algorithm, a cut is
modeled by associating each voxel that is cut with a specific
pre-defined cutting pattern of a voxel, and the cut surface and
its correspondence to the simulation voxels are constructed
based on pre-defined cutting patterns of voxels. By extend-
ing this work, Wu et al. [41] further improve the quality of
the surface mesh by employing the dual contouring method
[15]. Based on that, Jia et al. [13] have recently proposed
a parallel framework that makes use of both an octree and
graphical processing units (GPU) to further enhance cutting
performance. However, in interactive cutting each voxel is
cut progressively and potentially in different manners; the
actual cutting pattern can only be confirmed after the comple-
tion of cutting. Moreover, to achieve real-time performance,
these cutting pattern-based methods need a LUT [33] with
all cutting patterns pre-computed.

Another class of voxel-based methods [20,21,27,34]
embed a detailed surface mesh into a voxel grid, and a cut
is modeled by remeshing the surface mesh, updating the
voxel connectivity, and carefully maintaining their corre-
spondence. It is essential but challenging to find a consistent
mapping between different representations [11]. Seiler [34]
simulates a non-progressive cutting scenario, where the cut
is modeled by removing all the material within a volumet-
ric blade at once, and the boundary surface reconstruction
is extremely simplified, but this process simulates stamp-
ing rather than cutting. Manteaux et al. [20] propose a
novel method for simulating interactive detailed cutting in
deformable thin sheets. Recently, Mitchell et al. [21] have
simulated soft tissue cutting for plastic surgery by embed-
ding a pre-cut surface mesh into a simulation grid, where
the incision on the surface mesh is modeled by subtracting a
thickened cutting path pre-defined by the user. This method
is not applicable to progressive cutting.

3 The Divided Voxels algorithm

When incorporating cuts into a deformable object repre-
sented by voxels, previous approaches [7,13,41] employ
splitting cubes algorithm [33] to model the cuts by associat-
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Fig. 1 PBD model construction and cutting updates. a Simulation vox-
els (blue) that are constructed from a coarse level of the initial voxel grid
are associated with particles (blue circles) and constraints. Each simula-
tion voxel contains (2/)3 voxels (black) sampled from the densest level
of the grid, and each surface vertex corresponds to exact one voxel. b
Simulation voxels being cut are divided with the Divided Voxels algo-
rithm. The original stretching constraints are rendered with solid blue
lines, while the newly added stretching constraints are rendered with
dashed lines. When simulation voxels are not cut through, e.g., V, their
divided simulation voxels, e.g., V, and Vg, share the same particles (i
and j) and stretching constraints

ing each voxel that has already been cut to a pre-defined
cutting pattern in a LUT with all cutting patterns pre-
computed to realize real-time performance. However, in
interactive cutting, each voxel is cut progressively, and the
actual cutting pattern is finalized only after the cutting of
the voxel is completed, not during the cutting process. This
may be appropriate for very fine voxel grids, but it is unac-
ceptable in real-time simulation with relatively coarser grids.
To solve this problem, we propose a new voxel-based topo-
logical operator, divide, which can dynamically update the
topology of the voxel being cut, while it is being cut to sup-
port progressive cutting.

In this work, a deformable object is represented by a set of
edge-sharing voxels sampled from the densest level of a uni-
form grid, and simulation voxels are built from a coarse level,
1, of the same initial grid. As illustrated in Fig. 1a, each simu-
lation voxel (in blue) contains (21)3 voxels (in black), where
! = 0 denotes the finest level of the grid. For each voxel
containing the boundary (including the cutting surface) of
the deformable object, see Fig. 1b, one surface vertex can be
generated based on the dual contouring algorithm and asso-
ciated with the voxel via its barycentric coordinates. The
correspondence between a surface vertex and its containing
voxel and the correspondence between a voxel and its con-
taining simulation voxel are retained automatically during
cutting.

In the following, a non-manifold voxel grid structure facil-
itating topology changes is introduced in Sect. 3.1. The
divide operator that enables progressive cutting in voxels is
described in Sect. 3.2. The data structure of the non-manifold
voxel grid is presented in Sect. 3.3. The cut surface genera-
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tion and surface vertices updates are explained in Sect. 4. In
Sect. 5, we discuss how to construct simulation voxels from a
coarse level of the initial grid, how to deform the voxels and
the surface mesh based on the simulation voxels, and how to
update simulation voxels during cutting.

3.1 A non-manifold voxel grid

We employ a structured grid of hexahedral elements to sim-
ulate deformable objects similar to other methods [8,11,27].
However, due to the presence of disconnected components
appearing in the same voxel resulted from a cut, a standard
voxel grid is unable to present such topology using regular-
shaped voxels, unless an additional surface part is included
into the voxel such as in the case of splitting cubes [33].
Hence, various ways of cutting a voxel must be defined case
by case in the splitting cubes-based approaches [7,13,41]. We
thus adopted a non-manifold voxel grid aiming to represent
connectivity of the disconnected components using regular
voxels.

Non-manifold grids are often used in embedding simu-
lations [20,21] to simulate objects with changing topology,
where a separate surface mesh is embedded in a voxel grid.
When a cut is made, the surface mesh is cut first, and each cut
voxel is duplicated as many times as it contains disconnected
parts as in the virtual node algorithm [22]. Each duplicate
has a specific connectivity based on material continuity.
Although the use of non-manifold grid improves the topo-
logical expressive ability of regular voxels, it is challenging
for these methods to find a consistent mapping between two
different representations. Moreover, the procedure of cutting
the surface mesh and voxels separately and then maintaining
their correspondence increases the computational complex-
ity. The novelty of this work is that such structure is generated
differently by using the divide operator.

As illustrated in Fig. 2a, a uniform Cartesian voxel grid is
used to embed the deformable object. We distinguish between
voxels that are inside the body and those that include the
boundary of the body. Voxel nodes are labeled with two signs:
in (black circle) and out (empty circle), indicating whether
it is inside or outside of the body. We define inner voxels as
those voxels all of those nodes are in (e.g., voxel C). Simi-
larly, boundary voxels are voxels with nodes that are both in
and out (e.g., voxel D). Boundary voxels contain the bound-
ary surface including the new cut surface of the deformable
object.

During progressive cutting, a partially cut voxel (e.g., C)
is divided into two voxels (Cz, Cg), both of which are con-
nected to the same edge (e) shared by voxel D; see Fig. 2b.
This results in non-manifold connectivity. In our method, the
cutting surface (contour in red) can be constructed directly
based on our non-manifold grid using the dual contour-
ing approach [15], retaining surface—voxel correspondence.
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Fig.2 Divided Voxels algorithm
for progressive cutting of a
deformable object. The top row
of figures shows the 3D
geometry, whereas the bottom
row shows the top view. In a the
object is shown being cut by a
scalpel, with the red dashed line
indicating the line of cut. For
each voxel that is cut, see (b),
two divided voxels (green and
orange) are dynamically
updated to represent the
topology and connectivity of the
progressing cut until the voxel is
completely cut (c). The red solid
curve in bottom figures indicates
the cut surface constructed from
the divided voxels

Fig. 3 2D illustration of dividing a voxel, C, in progressive cutting:
(a) — (b) and (a) — (c¢). When a cut starts in a voxel, see (a), two
topologically distinct ways of cutting through the voxel are depicted in b
and c. In progressive cutting, the divide operator dynamically distributes
the elements (nodes and edges) of the original voxel being cut into its
two divided voxels, C;, and Cg, while updating their edge-sharing con-
nectivity (indicated by double-head arrows), i.e., connections to their

Edge-sharing connectivity (i.e., voxels connected to the same
edges) is recorded explicitly in our data structure for modify-
ing voxel connectivity to reflect topological changes during
cutting.

As the cut continues, voxel C is cut through and edge e is
split. C;, and Cg are completely disconnected and attached to
new edges, ey, and eg, respectively; see Fig. 2¢c. The Divided
Voxels algorithm is detailed in the following section.

neighboring voxels (dashed quads), until the cutting of the voxel is
completed. These two new divided voxels replace the original voxel
to represent the new disconnected parts resulting from the cut. Note
that no deformation is involved at this stage, the two divided voxels are
stretched and separated just for display, and they share the same shape
as the original voxel and entirely overlap one another

3.2 The divide operator

In this section, we introduce the voxel-based topological
operator—divide—and how it dynamically updates the voxel
topology to assist progressive cutting.

When the cutting is started in a voxel, we first create two
voxels, identical in size to the original voxel, to represent
the new disconnected parts resulted from the cut. These two
voxels are called “divided voxels.” As the cut in the voxel
continues, to reflect the topological change, see voxel C
in Fig. 3a, the divide operator dynamically distributes all
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the elements (nodes, edges) of the original voxel into the
divided voxels, C; and Cg. At the same time, the divide
operator updates the edge-sharing connectivity (double-head
arrows) associated with the edges of the divided voxels until
the cutting of the voxel is completed; see Fig. 3b, ¢ for two
topologically distinct ways of cutting. Therefore, the divide
operator has two main functions: (1) voxel element distribu-
tion and (2) edge-sharing connectivity update.

e Voxel element distribution

Elements of a voxel include nodes and edges. As illustrated in
Fig. 3a, the path of a progressive cut is represented by the red
contour, whose marching direction is shown by single-head
arrows in gray. Nodes of voxel edges that are intersected by
the cut are divided into two sides along the cutting path, i.e.,
left (L) and right (R), and then distributed to the same loca-
tions of the divided voxels, C; and Cg accordingly. Nodes
whose edges are not intersected by the cut are distributed into
both divided voxels.

Similarly, the uncut voxel edges are assigned to the divided
voxels based on the L/R tags of their nodes. However, for
each edge that is cut (e.g., e), its nodes are first duplicated,
and each node replica is set to the opposite L/R tag of the
original node and tagged “out” (empty circle)—indicating it
lies outside the object. Two new edges, e;, and eg, are then
created by connecting one node with the replica of the other
node and assigned to the new divided voxels Cy and Cg,
respectively; see the bottom of Fig. 3a.

As the cut continues, more edges of the voxel are cut,
and the same voxel element distribution method is utilized
to update the divided voxels until the cutting of the voxel is
completed; see Fig. 3b.

e FEdge-sharing connectivity update

As shown in Fig. 3a, for each voxel (e.g., C) in our grid
structure, its neighboring voxels (e.g., B) can be accessed
through the edge-sharing connectivity (indicated as double-
head arrows) associated with each voxel edge. When a voxel
is cut, two divided voxels are created to replace the original
one. To preserve the existing connectivity while representing
the continuity of the new cut, the edge-sharing connectivity of
the divided voxels needs to be updated during the same time
as the voxel element distribution. When the edge distributed
to the new divided voxel (e.g., Cr) is uncut, the existing
connectivity (black double-head arrows) between the original
voxel, C, and the other voxels (e.g., E) that share the same
edge is retained by the divided voxel. In the meantime, new
connections (red arrows) between the adjacent divided voxels
(e.g., Cr and By) are constructed and associated with the new
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edges (e.g., er.), which are split from the original edges (e.g.,
e) that are cut.

When the cut progresses, more edges are cut; see Fig. 3c.
As new edges are then created and distributed into the divided
voxels, new connectivity between these divided voxels (e.g.,
Cp) and the newly created divided voxels (e.g., F1) are then
constructed to extend the cut.

3.3 Non-manifold voxel data structure

There are three basic elements in our data structure: voxel
node, voxel edge, and voxel. Similar to mesh data structures
[18], the connectivity between these voxel elements is stored
explicitly in our data structure to facilitate topology changes
during cutting. Each element contains multiple attributes:

e Voxel node stores x, y, z coordinates, a pointer to the new
replica of the node resulting from cutting, an in/out sign
according to the object, and a L /R tag with respect to the
cutting plane;

e Voxel edge stores the indices of the 2 nodes forming it
and edge-sharing connectivity, where more than 4 vox-
els can share the same edge resulting in a non-manifold
connectivity;

e Voxel stores the indices of all the 8 nodes and 12 edges
forming it. Moreover, each voxel also stores a pointer
to the voxel from which it is divided (parent) and its
divided voxels. This information can efficiently support
voxel element distribution and edge-sharing connectivity
updating from the divide operation during the progressive
cutting of voxels.

For more details, a 2D example is provided to explain the
non-manifold voxel grid data structure and its update during
cutting in Fig. 4.

4 Cut surface meshing and updates

Dual contouring [15] is a well-known mesh generation
approach based on voxels. In this work, dual contouring is
utilized for cut surface mesh generation due to its capability
of preserving sharp features, such as the sharp corners cre-
ated by cuts, using fewer triangles compared to the marching
cubes method [19]. In marching cubes, surface vertices are
located on the voxel edges that intersects the object bound-
ary, and the surface mesh is generated by directly connecting
those edge vertices, which usually leads to the loss of sharp
features [15]; in dual contouring, surface vertices are dis-
tributed inside the voxels, where the sharp features exist, and
surface mesh is generated by connecting the surface vertices
of the voxels sharing the same edges with sign changes. Since
both voxel node sign change and edge-sharing connectivity
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Fig.4 Data structure of the non-manifold voxel grid and updates dur-
ing cutting. Left: 2D illustration of our non-manifold voxel grid being
cut. Right: The data structure consists of three basic elements: voxel
node, voxel edge, and voxel; the connectivity between these elements
is stored explicitly. Each element also has a pointer to its parent and the

are preserved in the divided voxels during cutting, dual con-
touring can be employed for cut surface generation in our
method.

In this section, we focus on mesh generation from a
partial-cut voxel, which is not considered in the original dual
contouring algorithm. We also explain how to update the
displacement of each surface vertex to reflect a progressive
cut and partial cut within each voxel (Sect. 4.1). We then
introduce surface vertex displacement during deformation,
especially from those voxels that are partially cut (Sect. 4.2).

4.1 Cut surface meshing during progressive cut

When the voxel is completed cut, the original dual contour-
ing algorithm can be directly applied to the divided voxels;
the position of the newly created surface vertex (see v in
Fig. 5b) within each divided voxel is calculated by minimiz-
ing a quadratic function based on the intersections between
voxel edges and the cutting surface. For each voxel edge with
a sign change, a quad is formed by connecting the surface
vertices of the four voxels adjacent to that edge to present
the cut surface. For more details of the dual contouring algo-
rithm, we refer the reader to the original work of Ju et al.
[15].

In this section, we focus on mesh generation from par-
tially cut divided voxels using dual contouring algorithm, as
such voxels are not considered in the original dual contouring
work.

4.1.1 Cut surface vertex generation and update

In progressive cutting, voxels are cut gradually by the cutting
surface. However, in the dual contouring method, the posi-
tion of a cut surface vertex, v, within a voxel is calculated
based on the intersections between the voxel edges and the
cutting surface, namely edge vertices; see circles in green in
Fig. 5; the position of the surface vertex can only be updated

voxels/edges that are divided from it (DV / DE). The cut elements (e.g.,
voxel B) are shown in red; the elements whose attributes are updated
due to the cut (e.g., edge e34) are shown in yellow; the newly created
elements (e.g., By ) are illustrated in blue

«% > ..
I (a) @ (b)

Fig.5 Surface vertex update during progressive cut. a When the voxel
is partially cut, the cut surface vertex, v, is positioned in the average
position among the face vertices (e.g., vyo, vs1, circles in blue). It is
constantly updated to reflect progressive cut within each voxel. b Once
the voxel is completely cut, the position of v is then determined by
minimizing a quadratic function based on the edge vertices and their
normals (in green) according to the dual contouring algorithm

when the cutting surface intersects new edges of the voxel.
To represent a progressive cut within the voxel, as shown in
Fig. 5a, in this work cutting is started in a voxel when at least
one edge is cut, and the position of the surface vertex, v, is
constantly updated to the average position among the face
vertices, vro and vy (circles in blue), i.e., the most front
intersection points between the voxel faces and the cutting
surface with respect to the cut marching direction (dashed
arrow). Once the voxel is completely cut, see Fig. 5b, the
position of the surface vertex v is then updated to the loca-
tion minimizing a quadratic function based on all the edge
vertices and their normals (in green) according to the original
dual contouring method.

4.1.2 Mesh generation for partial-cut voxels

As depicted in Fig. 6, when dividing a cut voxel, (e.g., A, into
two voxels, Ay and Ag), all the edge vertices of the original
voxel, po and p1, are distributed to these divided voxels along
with the edges being distributed. The edge vertices (e.g., q)
that are created by cutting are distributed to both divided
voxels. For each divided voxel (see Ag in Fig. 6b), a surface
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Fig.6 2D illustration of cut surface mesh generation and update during
progressive cut based on divided voxels. a The cutting surface and its
marching direction are shown with a red curve with an arrow, and voxel
A is completely cut, while voxel B is partially cut. b For a complete-
cut voxel, e.g., A, the cut surface is generated directly based on dual
contouring, while for a partial-cut voxel, e.g., B, the edge-sharing con-
nectivity (red double-head arrows) is built between the two divided
voxels, Br and By, to generate a fully connected surface mesh. Note

vertex is created and updated constantly based on the cutting
surface as described in the above section. In accordance with
the dual contouring algorithm, for each edge of a divided
voxel with a sign change, a quad is formed by connecting the
surface vertices of the four voxels adjacent to that edge to
represent the cut surface. As illustrated in Fig. 6b, two edges
of voxel Ap are intersected and exhibit a sign change, and
AR’s surface vertex a is connected to the surface vertices, d
and b, of the voxels sharing those edges, the newly created
cut surface mesh (contour between a and b) is therefore con-
nected to the existing surface mesh (contour between a and
d).

For partial-cut voxels, however, since there is only one
edge being cut (see voxel B in Fig. 6a) the cut surface mesh
generated from its divided voxels is not closed based on the
original dual contouring algorithm. To address this issue,
we further build edge-sharing connectivity between the two
divided voxels derived from the same voxel; see red double-
head arrows between By, By in Fig. 6b. The surface vertices,
b and b’, of the two divided voxels are then connected to one
another based on dual contouring, and the cut surface meshes
within those two voxels are therefore seamlessly connected.

As the cut continues and intersects with more edges of the
partial-cut voxel, e.g., B in Fig. 6d, the voxel elements (e.g.,
in/out of voxel nodes) and edge-sharing connectivity of its
divided voxels (e.g., By and Bg) are kept updating by the
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that Br and By, share the same edge and entirely overlap one another
before the deformation; to clearly demonstrate the connectivity of the
new cut surface mesh, they are placed separately in this example. ¢ Dis-
placements of surface vertices within partial-cut voxels, e.g., b and b’
are synchronized based on both divided voxels to render the singularity.
d, e For a partial-cut voxel, e.g., B, the cut surfaces within its divided
voxels are kept updating with more edges being cut until the cutting of
the voxel is completed

divide operator until the cutting of the voxel is completed.
With more edges are cut, the surface vertex connectivity of
the cut surfaces within the divided voxels are updated, while
the new connectivity between the surface vertices of these
divided voxels and the newly created divided voxels are con-
structed to extend the cut surface. For instance, surface vertex
b of voxel Bp is connected to b’ of By when voxel B is par-
tially cut, but it is connected to surface vortex c¢ of voxel Cg,
when the cut passes through voxel B and extends to voxel C;
see Fig. 6e.

4.2 Surface vertex displacement during deformation

In this work, the surface mesh constructed based on the vox-
els is used to represent the boundary of a deformable object.
The surface mesh is deformed by updating the displacement
of each surface vertex based on the deformation of its corre-
sponding voxel.

To deform the surface mesh, each surface vertex is bound
to one voxel via its barycentric coordinates. For each voxel
that is cut, only one surface vertex is created for each divided
voxel, and the correspondence between each surface vertex
and its underlying voxel is still retained; see the surface ver-
tex a of voxel A is assigned to one of its divided voxels, Ag in
Fig. 6b. The displacement of each surface vertex is updated
based on the voxel nodes using trilinear interpolation (bilin-
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ear in 2D); see a and a’ in Fig. 6¢. The deformation of each
voxel is discussed in Sect. 5.

In partial-cut voxels, the cut surface meshes join to the
same points. To display this singularity, the displacements of
the two surface vertices within the divided voxels should be
synchronized during the deformation. In the current imple-
mentation, we first calculate the new position of the surface
vertex within each divided voxel using trilinear interpola-
tion. The surface vertices are then positioned to the averaged
location among their interpolated locations, see b and ' in
Fig. 6c, and their barycentric coordinates are then updated,
respectively.

5 Deformation simulation and dynamic
model updates

The position-based dynamic (PBD) method [25] has been
used to simulate the deformable objects in this paper, though
other approaches including the finite element methods could
be used. We briefly discuss the extension to the extended
finite element method in Sect. 7 to demonstrate that. The
PBD model for simulation is constructed based on the vox-
els of a coarse level of the initial voxel grid to represent
the deformable object. To simulate the deformation during
cutting, the PBD model needs to be updated simultaneously
as the voxels are being cut. Although a previous work [30]
also implements a PBD approach that accommodates the
topology modifications, whenever a cut is made, the map-
ping between surface mesh and simulation mesh needs to
be carefully reestablished before the deformation starts. In
our method, each surface vertex always corresponds to one
voxel, and each voxel always corresponds to one simulation
voxel. These correspondences are retained automatically dur-
ing cutting.

In this section, we first discuss how to construct a PBD
model based on the voxels sampled from a coarse level of
the initial grid and how to deform the voxels and the surface
mesh based on the simulation voxels (Sect. 5.1). We then
explain the update of the PBD model during the progressive
cutting using the same Divided Voxels algorithm (Sect. 5.2).

5.1 PBD model construction and deformation

In PBD, the physics model is represented by a set of parti-
cles and constraints. Each particle is associated with a set of
constraints, and its new position can be obtained by solving
all the constraints for each time step.

In this work, a deformable object is represented by a set
of edge-sharing voxels sampled from the densest level of a
uniform grid, and simulation voxels are built from a coarse
level, /, of the initial grid. As illustrated in Fig. 1a, each simu-
lation voxel (in blue) contains (2/)3 voxels (in black), where

| = 0 denotes the finest level of the grid. For each voxel con-
taining the boundary of the deformable object, see Fig. 1b,
a surface vertex is created and associated with the voxel via
its barycentric coordinates, as explained in Sect. 4.1. To con-
struct the PBD model, we assign particles (blue circles) to
voxel nodes (black circles) and apply two types of constraints
to each particle: stretching constraints [25] and shape match-
ing constraint [26] bound to eight nodes of each simulation
voxel. Each simulation voxel is therefore made of eight par-
ticles, one shape matching constraint, and twelve stretching
constraints, which are shared by other simulation voxels.
Simulation voxels are deformed when applying PBD to all
the particles and constraints of the PBD model. For more
details of the deformation, we refer the reader to the original
PBD work. For each simulation voxel, the nodes of the voxels
that are contained within the simulation voxel are updated via
trilinear interpolation based on the particles associated with
that simulation voxel; each surface vertex within each voxel
is then updated by interpolating those voxel nodes during the
deformation.

5.2 PBD cutting updates

When voxels are being cut, their corresponding simulation
voxels are updated simultaneously. A simulation voxel starts
to be cut when at least one of its containing voxels are being
cut. As shown in Fig. 1b, we first create two new simu-
lation voxels by following a similar manner of dividing a
voxel, and the old simulation voxel is then removed from the
dynamic system. The stretching constraints (solid blue lines)
that are not cut are directly distributed to the new simula-
tion voxels. For each stretching constraint that is split, the
two particles connected to the constraint are first duplicated,
and two new stretching constraints (dashed blue lines) are
created by associating the original particles (solid blue cir-
cles) with the duplicated particles (empty blue circles), and
then distributed to the new simulation voxels, respectively;
see p and ¢’ of voxel Uy, in Fig. 1b. In the meantime, a
new shape matching constraint is constructed by including
all the particles mapped to each new simulation voxel. As
the cut continues within a simulation voxel, its containing
voxels and their divided voxels are distributed into the cor-
responding divided simulation voxels of the same L/R; see
voxels AR, Bg, and Cg are assigned to simulation voxel Ug
in Fig. 1b.

When the simulation voxel is not cut through, the newly
created simulation voxels share the same particles and
stretching constraints, e.g., V7 and Vg share the same stretch-
ing constraints connecting particle i and j in Fig. 1b. As the
cut progresses, more stretching constraints are split, and these
simulation voxels are updated dynamically by following the
same procedure as described above. When the simulation
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voxel is completely cut, the two new simulation voxels are
entirely separated.

When dividing a simulation voxel, all the nodes (particles)
are duplicated and distributed into the new simulation vox-
els. In this work, when dividing a simulation voxel, we split
the mass of each original node, e.g., p in Fig. la, equally
to the node and its duplicate, p and p’ in Fig. 1b, as they
are distributed to the new divided voxels to achieve to mass
conservation.

6 Results

In this section, we conduct a series of experiments to ana-
lyze the performance of our approach for interactive cutting
of deformable objects. We further compare our work with
other real-time cutting methods [30,41]. Lastly, we conduct
another experiment to analyze the mesh quality after cut-
ting and compare our work with other methods based on
internal angle metrics. The Divided Voxels algorithm was
implemented in C++. All the experiments were run on a stan-
dard desktop with Intel 17-6850K, 3.6 GHz CPU, and 16.0
GB RAM.

6.1 Experiment results and performance analysis

To analyze the performance of our cutting algorithm, we
present two types of interactive cutting experiments: (1)
cutting deformable objects represented by increasing voxel
resolution and (2) cutting the same deformable object with
increasing length of cut.

Experiment 1: Interactive cutting with increasing voxel res-
olution. Table 1 shows the data of cutting simulation time for
three example models, including a Stanford bunny, armadillo,
and a liver model (see Fig. 7), represented by different num-
bers of voxels (second column). For each model, two levels
of uniform voxel grid are used: the finest level of voxels for
cutting and a coarse level for deformation simulation. For all
the following examples, the simulation voxels are sampled
from the same coarse level, i.e., 16 x 16 x 16, of the ini-
tial grid. The third column shows the number of simulation
voxels for each example, which is also the number of shape

Fig. 7 Example problems a Stanford bunny, b armadillo, and ¢ liver
model
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matching constraints. The number of simulation voxel edges,
which is also the number of stretching constraints, is listed
in the fourth column. The fifth column shows the number of
triangles of the surface mesh that are reconstructed from the
voxels.

To investigate the interactive cutting performance by
increasing the number of voxels that are used to represent
a model, the cutting length remains the same for each exam-
ple model. Since cutting is always performed progressively,
in a sense that in every frame the scalpel is moved only
a small distance through the model, we measure computa-
tion time by averaging over simulation frames where cutting
occurs. The average time (in milliseconds, ms) spent on cut-
ting, deformation, and their sums (total) are listed in the last
three columns of Table 1. The time for cutting indicates the
computation time spent on both cutting of voxels and recon-
structing the surface mesh. The deformation includes both
performing PBD on simulation voxels and deforming the
surface mesh.

To maintain 30 frames per second (FPS) real-time render-
ing speed, the whole computation needs to be done in 33.3 ms.
The data indicate that the proposed cutting method is, there-
fore, suitable for real-time applications even when a high
voxel resolution (256 x 128 x 128) is utilized. This is clearly
shown in Fig. 8, where the times for cutting the armadillo
model (Fig. 7b) is plotted with an increase in the number of
voxels, with the cutting length remaining the same. It can
be observed that by increasing the number of voxels for an
object, all the curves of cutting, deformation, and total time of
these two show an overall linear growth. Compared to the cut-
ting time, the deformation time only increases slightly as the
initial resolution of the simulation voxels for all examples is
the same, and the increase in the number of voxel constraints
that participate in the simulation is relatively small.
Experiment 2: Interactive cutting with progressive increase
in cut length. As shown in Fig. 9, we conduct another experi-
ment by cutting the same model with a fixed voxel resolution
(64 x 64 x 64), but increasing the length of the cutting
path, which leads to an increase in the number of cut voxels.
Both the bunny and the armadillo are chosen for this exper-
iment; their initial voxel resolutions are 64 x 64 x 64 and
128 x 128 x 128, respectively.

We plot the cutting time with an increase in the number of
cutting voxels in Fig. 10, which shows that although different
resolutions are adopted, the cutting times for both models
show an overall linear growth with approximately the same
slope. This demonstrates that the cutting time of the Divided
Voxels algorithm is proportional to the number of voxels that
are cut.

To demonstrate our algorithm’s ability to handling more
complex cutting scenarios, we include another two results
in Fig. 11, where multiple cuts and a helix-shaped cut are
shown.
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Table 1 Simulation time for different models with different numbers of voxels (#voxels)*

Model #Voxels #Sim #Sim vox- #Triangles Time (ms)

Voxels Edges/nodes (k) Cutting Deformation Total

Bunny 16 x 16 x 16 1928 15.0k/7.0k 2 0.3 6.8 7.1
32 x32x 16 5.4 0.5 7 7.5
64 x 64 x 32 222 1.9 7.2 9.1
128 x 64 x 64 56.8 3 8.2 11.2

Armadillo 128 x 128 x 64 1823 14.6k/6.8k 71.4 6.1 9.1 152
128 x 128 x 128 111.4 11.2 11.1 22.3
256 x 128 x 128 184.1 17.1 14.3 314

Liver 64 x 64 x 64 2037 16.3k/7.7k 35.1 1 7.1 8.1
32 x32x32 8.6 2 7.5 9.5

*Simulation voxels for all examples are sampled from the same level, i.e., 16 x 16 x 16, of the initial voxel grid
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Fig. 8 Cutting, deformation, and total times for cutting the armadillo
model while increasing the number of voxels

6.2 Comparison with existing techniques

We also compare our approach with other real-time cutting
methods: a voxel-based composite FEM approach proposed
by Wu et al. [41] and Pan et al.’s tetrahedra-based remeshing
method that also employs PBD [30], by performing cutting
on the same examples represented by the approximately same
number of elements used in their papers.

Comparisons of simulation performance with these two
methods are shown in Tables 2 and 3, respectively. It can
be observed that our cutting method demonstrates a higher
overall performance compared to the other two. Specifically,
compared with Wu et al., where example models are repre-
sented by voxels with higher resolutions varying from 100 to
5000 k, the speedup of our method is about 3—5x, while the
speedup of our method is about 2x compared to Pan et al.,
where examples are modeled with low-resolution tetrahedra.

We further compare the cutting time (not including the
deformation time) of these three works. In comparison with
Wuetal.’s work, the cutting time we listed in Table 2 includes
both cutting of voxels and reconstructing the surface mesh;

Fig.9 Cutting time with the increase in the number of cut voxels
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Fig. 10 Increasing the number of cut voxels with the same voxel reso-
lution
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Fig. 11 Examples of multiple cuts and helix-shaped cut

the speedup of our Divided Voxels algorithm is about 3—4x
for all examples. For Pan et al.’s tetrahedra-based cutting
approach, the cutting time shown in Table 3 is composed of
both tetrahedra decomposition and surface mesh subdivision;
our method is significantly faster than Pan et al.’s work about
40x for all examples.

For deformation, the PBD-based methods that are used
by both this and Pan et al., are faster than composite FEM
employed by Wu et al., although the latter is more physi-
cally accurate. Most notably, in addition, to be the fastest,
our cutting method shows better scaling with respect to the
increasing number of voxels.

The visual comparison of the cutting results between our
work and Wu et al.’s work is shown in Fig. 12, where the
same model that is sampled with the same numbers of voxels
(~ 260k) is cut. It can be observed that the cutting results

and deformation of both works look similar, while there are
some triangles missing along the cut in Wu et al.’ result.

6.3 Cut mesh quality comparison

Ill-shaped mesh elements can cause visual artifacts and com-
promise simulation accuracies [42]. Internal angles provide
a commonly used metric to measure triangular mesh quality
[32] with equilateral triangles generally preferred [14]. To
assess the mesh quality of our algorithm and compare with
other cutting methods such as remeshing-based (i.e., element
refinement) and Wu et al.’s voxel-based approaches, we cal-
culate the minimum and maximum internal angles for each
triangle using the same cutting example; see Fig. 13, where
the same input mesh (130k triangles) and cutting plane are
used for all the methods. The result of the remeshing-based
cutting is obtained using Blender’s Boolean difference oper-
ation [1], where the triangles being cut are further refined to
small triangles. The voxel resolution used to model the cut in
Wu et al.’s method is similar to ours (~ 600k). We then cal-
culate [9] the minimum angle 0 < 6,,;,, < 60 and maximum
angle (60 < 6,4 < 180) [32] to determine the number of
triangles with extreme angels, such that 6,,,;;, < Ohreshold OF
Omax = Othreshold, after cutting for all the three methods. As
Fig. 13 shows, our algorithm produces higher-quality mesh
than both remeshing-based and Wu et al.’s methods by cre-
ating fewer ill-shaped triangles with extreme internal angles
after cutting.

Table2 Cutting simulation

. . Model #Voxels (k) Total time (cutting time) (ms)
performance comparison with
Wu et al. [41]* Wu et al. Divided Voxels Ratio
Armadillo ~ 600 43.62 (15.41) 11.29 (3.3) 3.86 (4.67)
~5000 156.92 (50.09) 31.52 (16.65) 4.99 (3.0)
Bunny ~100 26.87 (5.93) 8.54 (1.34) 3.15(4.43)
~ 800 85.75 (20.13) 14.96 (5.92) 5.73 (3.4)

* Wu et al. used the finest level of voxels for cutting, but a coarser level for simulation. The second column
shows the number of voxels used for cutting. The maximum number of simulation voxels used by Wu et al. is
around 1540, but we used about 2000 simulation voxels (with approximately 2000 shape matching constraints
and 15k stretching constraints) for all examples in this table. The time listed in parentheses is the cutting time.
Wau et al.’s statistics were obtained under the desktop with Intel Xeon-X5560, 2.80 GHz CPU, 8 GB RAM

Table 3 Cutting simulation

. . Model #Tets/Voxels(k) Total time (cutting time) (ms)
performance comparison with
Pan et al. [30]* Pan et al. Divided Voxels Ratio
Liver ~4 19.3 (15.2) 6.8 (0.35) 2.84 (43.43)
Spleen ~2 8.1(5.2) 4.14 (0.14) 1.96 (37.14)
Bunny ~2 7.7(5.1) 4.13 (0.13) 1.86 (39.23)

* To compare with Pan et al.’s work, where the same number of tetrahedra was utilized for both cutting and
deformation, we used a similar number of voxels for both also. The time listed in parentheses is the cutting
time. Pan et al.’s statistics were obtained using the desktop with Intel Xeon, 2.53 GHz, 12 GB RAM
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Fig. 12 Visual comparison between this (left) and Wu et al.’s work
(right)

7 Conclusion and future work

In this paper, we introduce an efficient cutting algorithm—
Divided Voxels—for interactive progressive cutting in
deformable objects. We propose a novel voxel-based topo-
logical operator, divide, which can model a cut in a voxel as
it is being cut. This operator divides a voxel that is cut into
two divided voxels, which can effectively represent the topo-
logical change and connectivity of the cut. The cut surface
can therefore be generated directly from the divided voxels
on the fly, and the correspondence between the cut surface
and the simulation voxels is maintained without the need for
pre-computation. Using several test cases, we show that our
cutting algorithm can perform at interactive rates also scales
linearly with an increase in the number of voxels that repre-
sent the deformable object. Moreover, our experiment also
shows that the proposed cutting algorithm produces higher-
quality mesh with fewer ill-shaped elements after cutting.

There are several directions to further improve or extend
the Divided Voxels algorithm:

Cutting existing cuts. The major focus of this paper is to
propose an efficient voxel-based cutting algorithm that can
model partial cut and progressive cut within voxels based on
a novel topological operator, divide. More complex cutting
scenarios such as cutting an existing cut are not discussed in
this work, but can be handled by our algorithm. Cutting an
existing cut such as cut intersection requires to further divid-
ing the voxels that have already been divided. Specifically,
when cutting a voxel that is already cut, the number of divided
voxels created from the original voxel depends on the num-
ber of edges being cut. For simplicity, let us take a 2D voxel
for example. If the voxel is cut by two intersecting cutting
paths and all its edges are cut, then four divided voxels are
created from the original voxel, and the same divide operator
can be used to distribute the cut voxel elements into the new
divided voxels to model the cut surfaces. This belongs to the
scope of our future work.

Complex cutting surface. Similar to those voxel-based
mesh generation methods (marching cubes, dual contouring)
that rely on sign change of voxel nodes to generate surfaces,
when the size of the mesh to be constructed is smaller than
the width of that voxel, in our case, the cutting path intersects
with a voxel edge more than once, or the cutting path does
not intersect with the voxel edge at all, this would result in no
sign change of the voxel nodes, and the surface mesh may not
be constructed properly from the voxels. To represent such
complex cutting surface, in the future implementation such
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Fig. 13 Left: example model and cutting plane; the detailed view (yel-
low square) depicts that the triangles of the cut mesh produced by our
work are well shaped. Right: comparing mesh quality between our work,
remeshing-based cutting, and Wu et al.’s work by measuring 6,,;, and
Omax of triangles after cutting, results show that our algorithm produces
less triangles with extreme internal angles. Since Wu et al.’s output mesh
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is not exactly same as ours, we normalize the number of triangles with
extreme internal angels by dividing the number of triangles after cutting
by the number of triangles before cutting, where each triangle satisfies
one of the following conditions: 0,i;, < Orhreshold OF Omax = Othresholds
for all three works
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voxels can be further refined using a regular 1:8 subdivision
until each voxel edge is intersected at most once [15]; we
then apply the divide operator to the refined voxels to model
the cut.

Memory consumption. To effectively represent the topol-
ogy change in the voxels being cut, we employ a non-
manifold voxel grid, where voxel connectivity is stored
explicitly in our data structure. Such a grid structure, on
the other hand, has a much higher memory footprint than a
regular Cartesian grid. To address the above problems more
effectively, we plan to exploit adaptive voxels in our future
work, where a coarse uniform grid can be used to represent
the deformable object in the beginning; we then refine the
voxels along the boundary of the object or the places where
cuts occur.

Physics-based deformation. Although PBD is imple-
mented in this work for simplicity and speed, techniques
such as the extended finite element method (XFEM) may
be directly applied to the voxels if they are treated as voxel
finite elements and additional degrees of freedom are intro-
duced corresponding to the cut. On the other hand, XFEM
or similar algorithms employing level set methods may be
computationally more demanding due to the need to perform
numerical integration of the weak form.
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